

Modelling and Verification of Protocols for Wireless Networks

(Lecture 1)

Peter Höfner

(Lecture at University of Twente, Jan/Feb 2017)

Lecturers

Dr. Peter Höfner Data61, CSIRO and UNSW, Australia email: peter.hoefner@data61.csiro.au

Dr. Ansgar Fehnker University of Twente email: ansgar.fehnker@utwente.nl

Timetable and Plan (1)

Time	Location	Туре	Topics
17/01, 10:45-12:30	CR2L	lecture	introduction, modelling: process algebra AWN (syntax)
17/01, 15:45-17:30	CR2N	lab	modelling
19/01, 10:45-12:30	HB2D	lecture	modelling: process algebra AWN (semantics)
19/01, 13:45-14:30	CR2N	tutorial	
23/01, 13:45-15:30	HB2D	lecture	modelling: timed automata
23/01, 15:45-17:30	HB2D	lab	modelling
26/01, 13:45-15:30	HB2D	lecture	comparison: AWN vs TAs
26/01, 15:45-16:30	HB2D	tutorial	Uppaal

Consultation Time: Wednesdays 13:30-14:30 (or via appointment); room: ZI-3063

Timetable and Plan (2)

Time	Location	Туре	Topics
01/02, 13:45-15:30	CR2N	lecture	verification(1): query language and local properties
01/02, 13:45-17:30	CR2N	lab	invariants & verification
02/02, 13:45-15:30	CR2N	lecture	verification(2): global properties, case study AODV
02/02, 15:45-16:30	CR2N	lab	verification (use of Uppaal, Isabelle or pen and paper)
06/02, 2 hours		lecture	open problems, Q&A
07/02, 4 hours		oral exam	individual exams (~30 minutes)
09/02, 2 hours*		lab	verification/setting up individual projects
Weeks 5-7			individual projects

^{*} taught by Ansgar Fehnker

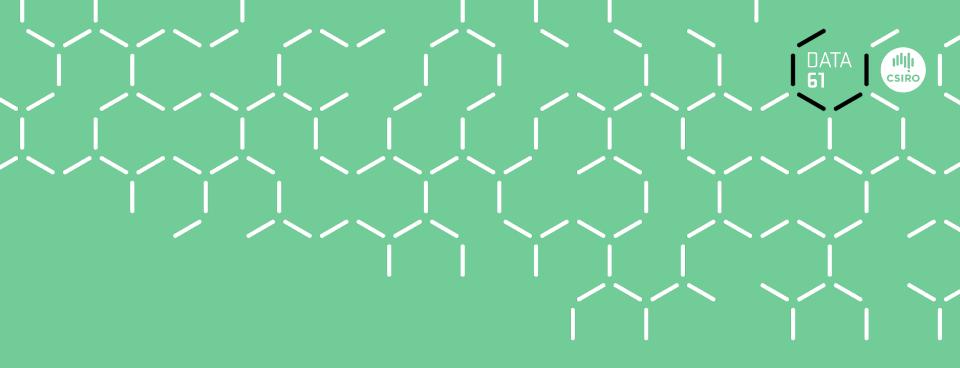
Administration

- Do I have to come to each and every lecture?
- Are the dates suitable for you?
- Passing the course
 - submit lab exercises
 - participate actively in tutorials
 - oral exam in week 4
 - (individual project)
- Other administration issues?

Preliminaries

- (predicate) logics
- finite automata / finite state machine
- have you heard about the following
 - process algebra
 - timed automata
 - model checking
 - interactive theorem proving (Isabelle/HOL)

Modelling and Verification of Protocols for Wireless Networks



Contents of this Lecture

What should you have learnt

- Introduction
 - why formal modelling
 - why formal reasoning
 - problems of state of the art
- Process Algebra AWN
 - intuition
 - syntax
 - examples

Introduction

Why Formal Modeling and Analysis

- Routing Protocols are Broken
 - Routing Protocols establish non-optimal routes
 - AODV Routing Protocol sends packets in loops
 - Chord Protocol is **not correct**
 - BGP **oscillates** persistent routes

Computer Networks 32 (2000) 1-16 Persistent route oscillations in inter-domain routing Kannan Varadhan a,*, Ramesh Govindan b, Deborah Estrin b Lucent Technologies, Room MH 2B-230, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

b USCUnformation Sciences Institute 4676 Admiralty Way, Maxing Dal Roy, CA 00202 USA * Lucent Technologies, Room MH 2B-230, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

**Lucent Technologies, Room MH 2B-230, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

**Way. Marina Del Rey, CA 90292, USA

**New South Way. South Wales, VSC Information Sciences Institute, 4676 Admirally wastralia

**USC Inform Rollin hy the Chord Ring-Maintenance Protoc Is Not Correct (Extended Abstract)

AT&T Laboratories—Research, Florham Park, New Jersey, USA

Today's Protocol Development

- IETF: "Rough Consensus and Running Code" (Trial and Error)
 - start with a good idea
 - build a protocol out of it (implementation)
 - run tests (over several years)
 - find limitations, flaws, etc...
 - fix problems
 - build a new version of the protocol
 - at some point people agree on an RFC (request for comments)

Beauvais Cathedral (~300 years to build, at least 2 collapses)

Better Protocols are Needed Now!

- We cannot afford this approach
 - to expensive w.r.t. time
 - to expensive w.r.t. money
 - we are not working in a lab, i.e.,
 sometimes we have one try only (e.g. BGP)
- Is there a method which is more reliable and cost efficient

The original design was so boldly conceived that it was found structurally impossible to build.

What's the Problem? (1)

- Specifications are (excessively) long
 - the Session Initiation Protocol is 268 pages long (and not even self contained - by 2009 142 additional documents were required)
 - IEEE 802.11 is 2.793 pages long

What's the Problem? (2)

- Specifications are
 - underspecified
 - contradictory
 - erroneous, and
 - ambiguous

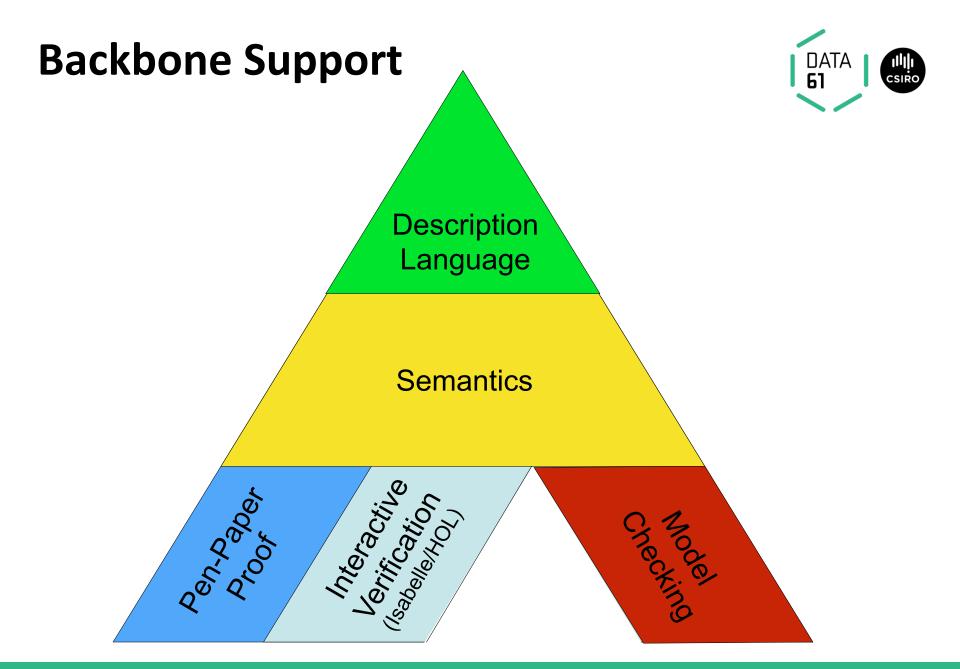
What's the Problem? (3)

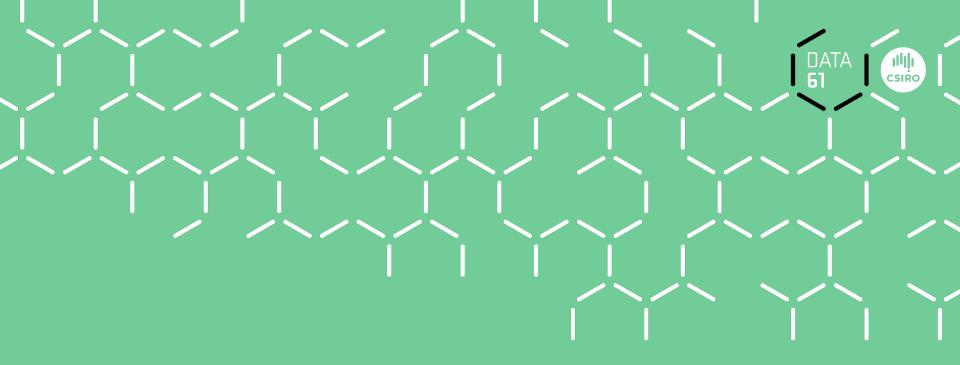
- Specifications are written in English Prose
 - in case of AODV there are 5 different implementations, all compliant to the standard

What's the Problem? (3)

- Specifications are written in English Prose
 - in case of AODV there are 5 different implementations, all compliant to the standard

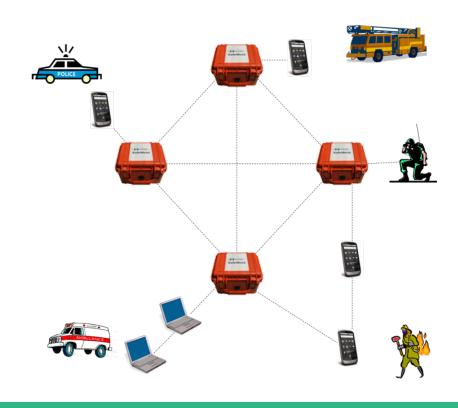
Aims




- Provide complete and practical formal methods
 - expressive (mobility, dynamic topology, types of communication,...)
 - usable and intuitive
 - description language + proof methodology + automation
- Specification, verification and analysis of protocols
 - formalise relevant standard protocols
 - analyse the protocols w.r.t. key requirements
 - analyse compliant implementations
- Development of improved protocols
 - assured protocol correctness
 - improve reliability and performance

Benefits

- Benefits
 - finding and fixing bugs
 - improve reliability and performance
 - proving correctness
 - reduce "time-to-market"



The Process Algebra AWN (Algebra for Wireless Networks)

A Simple Network

Wireless Network

Features

- Which features should a suitable formal method offer
 - sequential programs on nodes
 - update
 - (non)-deterministic choice
 - guards (if-constructs)
 - loops
 - data + data update
 - sequential composition
 - (function calls)

Features

- Which features should a suitable formal method offer
 - parallel programs on same node
 - synchronisation (send/receive)
 - interaction between different nodes
 - synchronisation (uni-, group-, broadcast)
 - network (topology)
 - how to model links
 - topology changes

Developed Process Algebra

Description Language (Syntax)

$X(exp_1,\ldots,\exp_n)$	process calls
P+Q	nondeterministic
[arphi]P	if-construct (guard)
$\llbracket \mathtt{var} := exp rbracket P$	assignment followed
$\mathbf{broadcast}(ms).P$	broadcast
$\mathbf{groupcast}(dests, ms).P$	groupcast
$\mathbf{unicast}(dest, ms).P \triangleright Q$	unicast
$\mathbf{send}(ms).P$	send
$\mathbf{receive}(\mathtt{msg}).P$	receive
$\mathbf{deliver}(data).P$	deliver

Developed Process Algebra

Description Language (Syntax)

$[\varphi]P + [\neg \varphi]Q$	deterministic choice
P(n) = [n := n+1].P(n)	loops

• Do we need more?

A Simple Example

- Can you describe a simple flooding protocol.
 - informal description:
 - every node has a unique identifier (IP address) and a message (let's say a number) to distribute
 - a node can send its message (together with its IP) at any time
 - if a node receive a message it stores the contents
 if the message was not handled previously,
 the message is forwarded to all nodes within transmission range

Flooding

specification follows roughly https://tools.ietf.org/html/draft-ietf-manet-bcast-00

Process 1 Flooding

```
\texttt{FLOOD}(\texttt{ip}, \texttt{m}, \texttt{b}, \texttt{store}) \stackrel{def}{=}
 1. (\mathbf{receive}(ms)).
     /* check message format and distill contents */
    [ms = msg(ip', m')]
             [ store(ip') = m' ] /* message handled before */
               FLOOD(ip,m,b,store)
    + [store(ip') \neq m'] /* new message */
 7.
               [store(ip') = m']
               broadcast(ms).
 9.
               FLOOD(ip,m,b,store)
10.
11.
12. + [b = false] /* message not yet send */
       broadcast(msg(ip,m)) . FLOOD(ip,m,true,store)
13.
```

the data structure and the initial state should be straight forward

Timed Protocols

- many protocols depend on timing issues (e.g. repetitive tasks)
- the process algebra AWN can easily be extended by time, the syntax is extended by a simple data type TIME; every node maintains a clock/timer now

References

• P. Höfner: Using Process Algebra to Design Better Protocols. In The Role and Importance of Mathematics in Innovation. Mathematics for Industry 25:87–101, Springer, 2016.

doi: 10.1007/978-981-10-0962-4 8

 A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann and W.L. Tan: A Process Algebra for Wireless Mesh Networks. In H. Seidl (ed.), Programming Languages and Systems (ESOP'12), Lecture Notes in Computer Science 7211, 295-315, Springer, 2012.

doi: 10.1007/978-3-642-28869-2 15

 A. Fehnker, R.J. van Glabbeek, P. Höfner, M. Portmann, A. McIver and W.L. Tan: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical Report 5513, NICTA. 2013.

arXiv: CoRR abs/1312.7645

• E. Bres, R.J. van Glabbeek, P. Höfner: *A Timed Process Algebra for Wireless* Networks with an Application in Routing (Extended Abstract). In Programming Languages and Systems (ESOP'16). Lecture Notes in Computer Science 9632, 95-122, Springer, 2016.

doi: 10.1007/978-3-662-49498-1 5