DATA 51

1$>^{\prime}$

Modelling and Verification of Protocols for Wireless Networks

(Lecture 2)

Peter Höfner

(Lecture at University of Twente, Jan/Feb 2017)

Contents of this Lecture

What should you have learnt

- What is a Structural Operational Semantics
- recap ?!?
- Semantics of (untimed) AWN
- intuition
- level-based approach
- detailed sos-rules

AWN: A Layered Approach

AWN: A brief Recap

- AWN (Algebra for Wireless Networks)
- key features
- local broadcast
- prioritised unicast
- data structure
- dynamic topologies
- ...

Structure of Wireless Networks (2)

- Users
- Network as a "cloud"
- Collection of nodes
- connect / disconnect / send / receive
- "parallel execution" of nodes
- Nodes
- data management
- data packets, messages, IP addresses ...
- message management (avoid blocking)
- core management
- broadcast / unicast / groupcast ...
- "parallel execution" of sequential processes

The Process Algebra AWN Structural Operational Semantics

Structural Operational Semantics (1)

Overview

- one of the main methods for defining the meaning in description languages
- system behaviour is represented
- by a closed term built from a collection of operators
- the behaviour of a process is given by its collection of (outgoing) transitions
- formal definitions to be found at the webpage

Structural Operational Semantics (2)

Example

The following fragment of CCS (Calculus of Communicating Systems) has the constant 0 , unary operators a. for $a \in$ Act, binary operators + and $\|$, and the SOS rules below, one for every $\alpha \in$ Act and $a \in A$ Here Act $=A \dot{\cup}\{\tau\}$ (actions) and $A=N \dot{\cup} \bar{N}$ with N a set of names and $\bar{N}=\{\bar{a} \mid a \in N\}$ the set of co-names.

$$
\begin{array}{r}
\frac{x_{1} \xrightarrow{\alpha} y_{1}}{x_{1}+x_{2} \xrightarrow{\alpha} y_{1}}
\end{array} \begin{gathered}
\frac{x_{2} \xrightarrow{\alpha} y_{2}}{x_{1}+x_{2} \xrightarrow{\alpha} y_{2}}
\end{gathered} \quad \begin{aligned}
& a \cdot x_{1} \xrightarrow{\alpha} x_{1} \\
& \underset{x_{1}\left\|x_{2} \xrightarrow{\alpha} y_{1}\right\| x_{2}}{x_{1} \xrightarrow{\alpha} y_{1}} \frac{x_{2} \xrightarrow{\alpha} y_{2}}{x_{1}\left\|x_{2} \xrightarrow{\alpha} x_{1}\right\| y_{2}}
\end{aligned} \frac{x_{1} \xrightarrow{a} y_{1} x_{2} \xrightarrow{\bar{a}} y_{2}}{x_{1}\left\|x_{2} \xrightarrow{\tau} y_{1}\right\| y_{2}}
$$

A Language for Sequential Processes

syntax

- defining equation
- sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \operatorname{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest } t, m s) . S P \vee S P \\
\alpha::= & \operatorname{broadcast}(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \text { receive }(\mathrm{msg})
\end{aligned}
$$

A Language for Sequential Processes

syntax

- defining equation

$$
X\left(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right) \stackrel{\text { def }}{=} p
$$

- sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \operatorname{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest } t, m s) . S P \vee S P \\
\alpha::= & \operatorname{broadcast}(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \text { receive }(\mathrm{msg})
\end{aligned}
$$

A Language for Sequential Processes

syntax

- defining equation

$$
X\left(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right) \stackrel{\text { def }}{=} p
$$

process name

- sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \operatorname{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest, ms }) \cdot S P \mid S P \\
\alpha::= & \text { broadcast }(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \operatorname{receive}(\mathrm{msg})
\end{aligned}
$$

A Language for Sequential Processes

syntax

- defining equation

- sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \operatorname{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest } t, m s) . S P \vee S P \\
\alpha::= & \operatorname{broadcast}(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \text { receive }(\mathrm{msg})
\end{aligned}
$$

A Language for Sequential Processes

syntax

- defining equation

- sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \operatorname{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest } t, m s) . S P \vee S P \\
\alpha::= & \operatorname{broadcast}(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \text { receive }(\mathrm{msg})
\end{aligned}
$$

A Language for Sequential Processes mandatory types \& valuation function

- mandatory types
- data structure always contains the types

$$
\text { DATA, MSG, IP and } \mathcal{P}(I P) \text { of }
$$

- application layer data,
- messages,
- IP addresses—or any other node identifiers
- sets of IP addresses
- sequential process expressions
- seq. process expression p together with a valuation ξ determines state
- values $\xi($ var $)$ associated to variables var

A Language for Sequential Processes

 structural operational semantics (1)$$
\begin{aligned}
& \xi, \operatorname{broadcast}(\mathrm{ms}) . p \xrightarrow{\text { broadcast }(\xi(\mathrm{ms}))} \xi, p \\
& \xi, \text { groupcast }(\text { dests, } m s) . p \xrightarrow{\operatorname{groupcast}(\xi(\text { dests }), \xi(\mathrm{ms})} \xi, p \\
& \xi, \text { unicast }(\text { dest, } \mathrm{ms}) . p \triangleright q \xrightarrow{\text { unicast }(\xi(\text { dest }), \xi(\mathrm{ms}))} \xi, p \\
& \xi, \text { unicast }(\text { dest, } m s) . p>q \xrightarrow{\text { ᄀunicast }(\xi(\text { dest })} \xi, q \\
& \xi, \operatorname{send}(m s) \cdot p \xrightarrow{\operatorname{send}(\xi(m s))} \xi, p \\
& \xi \text {, deliver(data). } p \xrightarrow{\text { deliver }(\xi(\text { data })} \xi, p \\
& \xi, \text { receive }(\mathrm{msg}) . p \xrightarrow{\text { receive }(m)} \xi[\mathrm{msg}:=m], p \quad(\forall m \in \mathrm{MSG}) \\
& \xi, \llbracket \operatorname{var}:=\exp \rrbracket p \xrightarrow{\tau} \xi[\operatorname{var}:=\xi(\exp)], p
\end{aligned}
$$

A Language for Sequential Processes

All|l

$$
\begin{aligned}
& \xi, \text { broadcast }(m s) . p \xrightarrow{\text { broadcast }(\xi(m s))} \xi, p \\
& \xi, \text { groupcast }(\text { dests, ms).p } \xrightarrow{\operatorname{groupcast}(\xi(\text { dests }), \xi(\mathrm{ms}))} \xi, p \\
& \xi, \text { unicast }(\text { dest, } m s) . p \triangleright q \xrightarrow{\text { unicast }(\xi(\text { dest }), \xi(\mathrm{ms}))} \xi, p \\
& \xi, \text { unicast }(\text { dest, ms).p } q \xrightarrow{\text { ᄀunicast }(\xi(\text { dest })} \xi, q \\
& \xi, \operatorname{send}(m s) \cdot p \xrightarrow{\operatorname{send}(\xi(m s))} \xi, p \\
& \xi \text {, deliver(data). } p \xrightarrow{\text { deliver }(\xi(\text { data })} \xi, p \\
& \xi, \text { receive }(\mathrm{msg}) \cdot p \xrightarrow{\text { receive }(m)} \xi[\mathrm{msg}:=m], p \quad(\forall m \in \mathrm{MSG}) \\
& \xi, \llbracket \operatorname{var}:=\exp \rrbracket p \xrightarrow{\tau} \xi[\operatorname{var}:=\xi(\exp)], p
\end{aligned}
$$

A Language for Sequential Processes

structural operational semantics (2)

A Language for Sequential Processes

structural operational semantics (2)

$$
\frac{\xi, p \xrightarrow{a} \zeta, p^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, p^{\prime}} \quad \frac{\xi, q \xrightarrow{a} \zeta, q^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, q^{\prime}}
$$

A Language for Sequential Processes

structural operational semantics (2)

$$
\frac{\xi, p \xrightarrow{a} \zeta, p^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, p^{\prime}} \quad \frac{\xi, q \xrightarrow{a} \zeta, q^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, q^{\prime}} \quad \frac{\xi \xrightarrow{\varphi} \zeta}{\xi,[\varphi] p \xrightarrow{\tau} \zeta, p} \quad(\forall a \in \mathrm{Act})
$$

A Language for Sequential Processes

structural operational semantics (2)

$$
\begin{aligned}
& \frac{\xi, p \xrightarrow{a} \zeta, p^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, p^{\prime}} \quad \frac{\xi, q \xrightarrow{a} \zeta, q^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, q^{\prime}} \quad \frac{\xi \stackrel{\varphi}{\rightarrow} \zeta}{\xi,[\varphi] p \xrightarrow{\tau} \zeta, p} \quad(\forall a \in \mathrm{Act}) \\
& \frac{\emptyset\left[\operatorname{var}_{i}:=\xi\left(\exp _{i}\right)\right]_{i=1}^{n}, p \xrightarrow{a} \zeta, p^{\prime}}{\xi, X\left(\exp _{1}, \ldots, \exp _{n}\right) \xrightarrow{a} \zeta, p^{\prime}}\left(X\left(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\right) \stackrel{\text { def }}{=} p\right)(\forall a \in \text { Act })
\end{aligned}
$$

Example Flooding

Process 1 Flooding

```
FLOOD(ip, m, b, store) \(\stackrel{\text { def }}{=}\)
    o. (receive(ms).
    1. /* check message format and distill contents */
    \(\left[\mathrm{ms}=\mathrm{msg}\left(\mathrm{ip}^{\prime}, \mathrm{m}^{\prime}\right)\right]\)
        [store(ip') \(=\mathrm{m}^{\prime}\) ] /* message handled before */
                        FLOOD(ip,m,b,store)
        \(+\left[\operatorname{store}\left(\right.\right.\) ip \(\left.\left.^{\prime}\right) \neq \mathrm{m}^{\prime}\right] \quad / *\) new message */
            \(\llbracket\) store \(\left(i p^{\prime}\right)=m^{\prime} \rrbracket\)
            broadcast(ms).
            FLOOD(ip,m,b,store)
        ))
    . \(+[b=\) false \(] \quad /^{*}\) message not yet send */
    broadcast(msg(ip,m)). FLOOD(ip,m,true,store)
```


A Language for Parallel Processes

syntax \& sos-rules

- syntax

$$
P P::=\xi, S P \mid P P\langle/ P P,
$$

- structural operational semantics (sos)

$$
\begin{gathered}
\frac{P \stackrel{a}{\longrightarrow} P^{\prime}}{P\left\langle\left\langle Q \xrightarrow{a} P^{\prime}\langle\langle Q\right.\right.} \quad(\forall a \neq \text { receive }(m)) \\
\frac{Q \xrightarrow{a} Q^{\prime}}{P\left\langle\left\langleQ \xrightarrow { a } P \left\langle/ Q^{\prime}\right.\right.\right.} \quad(\forall a \neq \operatorname{send}(m)) \\
\frac{P \xrightarrow{\text { receive }(m)} P^{\prime} \quad Q \xrightarrow{\text { send }(m)} Q^{\prime}}{P\left\langle\left\langleQ \xrightarrow { \tau } P ^ { \prime } \left\langle\left\langle Q^{\prime}\right.\right.\right.\right.} \quad(\forall m \in \mathrm{MSG})
\end{gathered}
$$

Example Flooding, including Queue

DATA 61

A Language for Networks

syntax \& sos-rules

- syntax

$$
N::=[M] \quad M::=\quad i p: P P: R \quad \mid \quad M \| M
$$

- structural operational semantics (sos)

A Language for Networks

syntax \& sos-rules

- syntax

- structural operational semantics (sos)

A Language for Networks

syntax \& sos-rules

- syntax

- structural operational semantics (sos)

A Language for Networks

syntax \& sos-rules

- syntax

- structural operational semantics (sos)

A Language for Networks

syntax \& sos-rules

- syntax

$$
N::=[M] \quad M::=\quad \text { ip }: P P: R \quad \mid \quad M \| M
$$

- structural operational semantics (sos)

$$
\begin{aligned}
& \frac{P \xrightarrow{\text { broadcast }(m)} P^{\prime}}{i p: P: R \xrightarrow{R:{ }^{*} \text { cast }(m)} i p: P^{\prime}: R} \\
& P \xrightarrow{\text { unicast }(d i p, m)} P^{\prime} \quad d i p \in R \\
& i p: P: R \xrightarrow{\{d i p\}:{ }^{*} \operatorname{cast}(m)} i p: P^{\prime}: R \\
& \frac{P \xrightarrow{\text { groupcast }(D, m)} P^{\prime}}{i p: P: R \xrightarrow{R \cap D: * \operatorname{cast}(m)} i p: P^{\prime}: R} \\
& \xrightarrow{P \xrightarrow{\text { 乙unicast }(d i p)} P^{\prime} \quad d i p \notin R} \\
& i p: P: R \xrightarrow{\tau} i p: P^{\prime}: R
\end{aligned}
$$

A Language for Networks

syntax \& sos-rules

- structural operational semantics (cont'd)

$$
\frac{P \xrightarrow{\text { deliver }(d)} P^{\prime}}{i p: P: R \xrightarrow{i p: \operatorname{deliver}(d)} i p: P^{\prime}: R}
$$

$$
\frac{P \xrightarrow{\tau} P^{\prime}}{i p: P: R \xrightarrow{\tau} i p: P^{\prime}: R}
$$

$\frac{P \xrightarrow{\text { receive }(m)} P^{\prime}}{i p: P: R \xrightarrow{\{i p\} \neg \emptyset: \operatorname{arrive}(m)} i p: P^{\prime}: R}$
$i p: P: R \xrightarrow{\emptyset \neg\{i p\}: \operatorname{arrive}(m)} i p: P: R$

A Language for Networks

(III)

syntax \& sos-rules

- structural operational semantics (cont'd)

$$
\frac{P \xrightarrow{\text { deliver }(d)} P^{\prime}}{i p: P: R \xrightarrow{i p: \operatorname{deliver}(d)} i p: P^{\prime}: R}
$$

$$
\frac{P \xrightarrow{\tau} P^{\prime}}{i p: P: R \xrightarrow{\tau} i p: P^{\prime}: R}
$$

$\frac{P \xrightarrow{\text { receive }(m)} P^{\prime}}{i p: P: R \xrightarrow{\{i p\} \neg \emptyset: \operatorname{arrive}(m)} i p: P^{\prime}: R}$
$i p: P: R \xrightarrow{\emptyset \neg\{i p\}: \operatorname{arrive}(m)} i p: P: R$
$i p: P: R \xrightarrow{\boldsymbol{\operatorname { c o n n e c t }}\left(i p, i p^{\prime}\right)} i p: P: R \cup\left\{i p^{\prime}\right\}$
$i p: P: R \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} i p: P: R-\left\{i p^{\prime}\right\}$

A Language for Networks

syntax \& sos-rules

- structural operational semantics (cont'd)

$$
\frac{P \xrightarrow{\text { deliver }(d)} P^{\prime}}{i p: P: R \xrightarrow{i p: \operatorname{deliver}(d)} i p: P^{\prime}: R}
$$

$$
\frac{P \xrightarrow{\tau} P^{\prime}}{i p: P: R \xrightarrow{\tau} i p: P^{\prime}: R}
$$

$\frac{P \xrightarrow{\text { receive }(m)} P^{\prime}}{i p: P: R \xrightarrow{\{i p\} \neg \emptyset: \operatorname{arrive}(m)} i p: P^{\prime}: R}$
$i p: P: R \xrightarrow{\emptyset \neg\{i p\}: \operatorname{arrive}(m)} i p: P: R$
$i p: P: R \xrightarrow{\operatorname{connect}\left(i p, i p^{\prime}\right)} i p: P: R \cup\left\{i p^{\prime}\right\}$

$i p: P: R \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} i p: P: R-\left\{i p^{\prime}\right\}$
$i p: P: R \xrightarrow{\text { disconnect }\left(i p^{\prime}, i p\right)} i p: P: R-\left\{i p^{\prime}\right\}$

A Language for Networks

syntax \& sos-rules

- structural operational semantics (cont'd)

$$
\frac{P \xrightarrow{\text { deliver }(d)} P^{\prime}}{i p: P: R \xrightarrow{i p: \operatorname{deliver}(d)} i p: P^{\prime}: R}
$$

$\frac{P \xrightarrow{\text { receive }(m)} P^{\prime}}{i p: P: R \xrightarrow{\{i p\} \neg \emptyset: \operatorname{arrive}(m)} i p: P^{\prime}: R}$

$$
\frac{P \xrightarrow{\tau} P^{\prime}}{i p: P: R \xrightarrow{\tau} i p: P^{\prime}: R}
$$

$$
i p: P: R \xrightarrow{\emptyset \neg\{i p\}: \operatorname{arrive}(m)} i p: P: R
$$

$i p: P: R \xrightarrow{\operatorname{connect}\left(i p, i p^{\prime}\right)} i p: P: R \cup\left\{i p^{\prime}\right\}$

$$
i p \notin\left\{i p^{\prime}, i p^{\prime \prime}\right\}
$$

$i p: P: R \xrightarrow{\operatorname{connect}\left(i p^{\prime}, i p^{\prime \prime}\right)} i p: P: R$
$i p: P: R \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} i p: P: R-\left\{i p^{\prime}\right\}$

$$
i p \notin\left\{i p^{\prime}, i p^{\prime \prime}\right\}
$$

$i p: P: R \xrightarrow{\text { disconnect }\left(i p^{\prime}, i p^{\prime \prime}\right)} i p: P: R$

A Language for Networks

syntax \& sos-rules

$$
\begin{aligned}
& \xrightarrow{M \xrightarrow{R: * \operatorname{cast}(m)} M^{\prime} \quad N \xrightarrow{H \neg K: \operatorname{arrive}(m)} N^{\prime}}\binom{H \subseteq R}{K \cap R=\emptyset} \quad \xrightarrow{M \xrightarrow{R: * \operatorname{cast}(m)} M^{\prime} \| N^{\prime}} M^{H \| K: \operatorname{arrive}(m)} M^{\prime} \quad N \xrightarrow{R: * \operatorname{cast}(m)} N^{\prime}\binom{H \subseteq R}{K \cap R=\emptyset} \\
& \xrightarrow[{M \xrightarrow{H \neg K: \operatorname{arrive}(m)} M^{\prime} \quad N \xrightarrow{H^{\prime} \neg K^{\prime}: \operatorname{arrive}(m)} N^{\prime}}]{M\left\|N \xrightarrow{\left(H \cup H^{\prime}\right) \neg\left(K \cup K^{\prime}\right): \text { arrive }(m)} M^{\prime}\right\| N^{\prime}} \\
& \frac{M \xrightarrow{i p: \text { deliver }(d)} M^{\prime}}{M\left\|N \xrightarrow{i p: \text { deliver }(d)} M^{\prime}\right\| N} \quad \frac{N \xrightarrow{i p: \text { deliver }(d)} N^{\prime}}{M\|N \xrightarrow{i p: \operatorname{deliver}(d)} M\| N^{\prime}} \\
& \frac{M \xrightarrow{\tau} M^{\prime}}{M\left\|N \xrightarrow{\tau} M^{\prime}\right\| N} \quad \frac{N \xrightarrow{\tau} N^{\prime}}{M\|N \xrightarrow{\tau} M\| N^{\prime}} \\
& \xrightarrow{M \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} M^{\prime} \quad N \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} N^{\prime}} \quad M\left\|N \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} M^{\prime}\right\| N^{\prime} \\
& \frac{M \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} M^{\prime}}{[M] \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)}\left[M^{\prime}\right]} \quad \frac{M \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} M^{\prime}}{[M] \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)}\left[M^{\prime}\right]} \\
& \frac{M \xrightarrow{i p: \operatorname{deliver}(d)} M^{\prime}}{[M] \xrightarrow{i p: \operatorname{deliver}(d)}\left[M^{\prime}\right]} \\
& M \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} M^{\prime} \quad N \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} N^{\prime} \\
& M\left\|N \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} M^{\prime}\right\| N^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{M \xrightarrow{\{i p\} \neg K: \operatorname{arrive}(\text { newpkt }(d, d i p))}}{[M] \xrightarrow{i p: \text { newpkt }(d, d i p)}\left[M^{\prime}\right]} M^{\prime}
\end{aligned}
$$

Example Flooding, 2 Node Topology

Alll 61

AWN: Some results

- both parallel operations are associative
- the outer one is commutative
- the process algebra is blocked (hence requires input-enabled processes)
- result follow from meta theory by de Simone

AWN: Some results

- both parallel operations are associative
- the outer one is commutative
- the process algebra is blocked (hence requires input-enabled processes)

$$
\frac{P \stackrel{\text { receive }(m) /}{i p: P: R \xrightarrow{\{i p\} \neg \emptyset: \operatorname{arrive}(m)}} i p: P: R}{}
$$

- result follow from meta theory by de Simone

References

- Rob van Glabbeek. Structural Operational Semantics - The main definitions. available at the webpage
- A. Fehnker, R.J. van Glabbeek, P. Höfner, A. Mclver, M. Portmann and W.L. Tan: A Process Algebra for Wireless Mesh Networks. In H. Seidl (ed.), Programming Languages and Systems (ESOP'12), Lecture Notes in Computer Science 7211, 295-315, Springer, 2012. doi: 10.1007/978-3-642-28869-2 15
- A. Fehnker, R.J. van Glabbeek, P. Höfner, M. Portmann, A. Mclver and W.L. Tan: A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV. Technical Report 5513, NICTA. 2013.
arXiv: CoRR abs/1312.7645

