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protocol through the local node.
If the node is not the originator of the data packet (Line 31) and still has no valid route to the

destination, the data packet is lost and possibly an error message is sent. If there is an (invalid) route
to the data’s destination dip in the routing table (Line 34), the possibly affected neighbours can be
determined and the error message is sent to these precursors (Line 36). If there is no information about
a route towards dip nothing happens (and the basic process AODV is called again).

6.3 Receiving Route Requests

The process RREQ models all events that may occur after a route request has been received.

Process 3 RREQ handling

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip , ip,sn,rt,rreqs,store)
def
=

1. [ (oip , rreqid) 2 rreqs ] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rreqs,store) /* silently ignore RREQ, i.e. do nothing */
3. + [ (oip , rreqid) 62 rreqs ] /* the RREQ is new to this node */
4. [[rt := update(rt,(oip,osn,kno,val,hops+1,sip, /0))]] /* update the route to oip in rt */
5. [[rreqs := rreqs[{(oip,rreqid)}]] /* update rreqs by adding (oip , rreqid) */
6. (
7. [ dip= ip ] /* this node is the destination node */
8. [[sn := max(sn,dsn)]] /* update the sqn of ip */
9. /* unicast a RREP towards oip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store)
11. I /* If the transmission is unsuccessful, a RERR message is generated */
12. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
13. [[rt := invalidate(rt,dests)]]
14. [[store := setRRF(store,dests)]]
15. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

16. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
17. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
18. + [ dip 6= ip ] /* this node is not the destination node */
19. (
20. [dip2vD(rt)^dsnsqn(rt,dip)^sqnf(rt,dip)=kno ] /* valid route to dip that is fresh enough */
21. /* update rt by adding precursors */
22. [[rt := addpreRT(rt,dip,{sip})]]
23. [[rt := addpreRT(rt,oip,{nhop(rt,dip)})]]
24. /* unicast a RREP towards the oip of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

AODV(ip,sn,rt,rreqs,store)
26. I /* If the transmission is unsuccessful, a RERR message is generated */
27. [[dests := {(rip,inc(sqn(rt,rip))) |rip 2 vD(rt) ^ nhop(rt,rip) = nhop(rt,oip)}]]
28. [[rt := invalidate(rt,dests)]]
29. [[store := setRRF(store,dests)]]
30. [[pre :=

S
{precs(rt,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt,rip) 6= /0}]]
32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
33. + [ dip 62vD(rt)_sqn(rt,dip)< dsn_sqnf(rt,dip)=unk ] /* no valid route that is fresh enough */
34. /* no further update of rt */
35. broadcast(rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .
36. AODV(ip,sn,rt,rreqs,store)
37. )
38. )

The process first reads the unique identifier (oip,rreqid) of the route request received. If this pair
is already stored in the node’s data rreqs, the route request has been handled before and the message
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• Ad	Hoc	On-Demand	Distance	Vector	Protocol	
• routing	protocol	for	wireless	mesh	networks  
(wireless	networks	without	wired	backbone)	

• Ad	hoc	(network	is	not	static)	
• On-Demand	(routes	are	established	when	needed)	
• Distance	(metric	is	hop	count)	

• developed	1997-2001	by	Perkins,	Beldig-Royer	and	Das  
(University	of	Cincinnati)	

• one	of	the	four	protocols	standardised	by	the 
IETF	MANET	working	group	(IEEE	802.11s)

Case	Study:	AODV
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• Main	Mechanism	
• if	route	is	needed	 
						BROADCAST	RREQ	

• if	node	has	information	about	a	destination  
						UNICAST	RREP	

• if	unicast	fails	or	link	break	is	detected  
						GROUPCAST	RERR	

• performance	improvement	via 
intermediate	route	reply
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• full	specification	of	AODV	(IETF	Standard)	
• specification	details	

• around	5	types	and	30	functions	
• around	120	lines	of	specification	 
(in	contrast	to	43	pages	English	prose)

Case	Study:	AODV
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Main	Process
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31 Modelling, Verifying and Analysing AODV

with the unknown sequence number 0 and hop count 1; in case there is already a routing table entry
(sip,dsn,⇤,⇤,⇤,⇤,pre), then this entry is updated to (sip,dsn,unk,val,1,sip,pre) (cf. Lines 10, 14
and 18). Afterwards, the processes RREQ, RREP and RERR are called, respectively.

Process 1 The basic routine
AODV(ip ,sn ,rt ,rreqs ,store)

def
=

1. receive(msg) .
2. /* depending on the message, the node calls different processes */
3. (
4. [ msg= newpkt(data ,dip) ] /* new DATA packet */
5. NEWPKT(data ,dip , ip ,sn ,rt ,rreqs ,store)
6. + [ msg= pkt(data ,dip ,oip) ] /* incoming DATA packet */
7. PKT(data ,dip ,oip , ip ,sn ,rt ,rreqs ,store)
8. + [ msg= rreq(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip) ] /* RREQ */
9. /* update the route to sip in rt */

10. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]] /* 0 is used since no sequence number is known */
11. RREQ(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip , ip ,sn ,rt ,rreqs ,store)
12. + [ msg= rrep(hops ,dip ,dsn ,oip ,sip) ] /* RREP */
13. /* update the route to sip in rt */
14. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
15. RREP(hops ,dip ,dsn ,oip ,sip , ip ,sn ,rt ,rreqs ,store)
16. + [ msg= rerr(dests ,sip) ] /* RERR */
17. /* update the route to sip in rt */
18. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
19. RERR(dests ,sip , ip ,sn ,rt ,rreqs ,store)
20. )
21. + [ Let dip 2 qD(store)\vD(rt) ] /* send a queued data packet if a valid route is known */
22. [[data := head(squeue(store ,dip))]]
23. unicast(nhop(rt ,dip) ,pkt(data ,dip ,ip)) .
24. [[store := drop(dip ,store)]] /* drop data from the store for dip if the transmission was successful */
25. AODV(ip ,sn ,rt ,rreqs ,store)
26. I /* an error is produced and the routing table is updated */
27. [[dests := {(rip,inc(sqn(rt ,rip))) |rip 2 vD(rt) ^ nhop(rt ,rip) = nhop(rt ,dip)}]]
28. [[rt := invalidate(rt ,dests)]]
29. [[store := setRRF(store ,dests)]]
30. [[pre :=

S
{precs(rt ,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt ,rip) 6= /0}]]
32. groupcast(pre ,rerr(dests ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)
33. + [ Let dip 2 qD(store)�vD(rt) ^ sp-flag(store ,dip) = req ] /* a route discovery process is initiated */
34. [[store := unsetRRF(store ,dip)]] /* set request-required flag to no-req */
35. [[sn := inc(sn)]] /* increment own sequence number */
36. /* update rreqs by adding (ip,nrreqid(rreqs ,ip)) */
37. [[rreqid := nrreqid(rreqs ,ip)]]
38. [[rreqs := rreqs[{(ip,rreqid)}]]
39. broadcast(rreq(0 ,rreqid ,dip ,sqn(rt ,dip) ,sqnf(rt ,dip) ,ip ,sn ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)

The second part of AODV (Lines 21–32) initiates the sending of a data packet. For that, it has
to be checked if there is a queued data packet for a destination that has a known and valid route
in the routing table (qD(store)\ vD(rt) 6= /0). In case that there is more than one destination with
stored data and a known route, an arbitrary destination is chosen and denoted by dip (Line 21).25

Moreover data is set to the first queued data packet from the application layer that should be sent
(data := head(squeue(store ,dip))).26 This data packet is unicast to the next hop on the route to dip.

25Although the word “let” is not part of the syntax, we add it to stress the nondeterminism happening here.
26Following the RFC, data packets waiting for a route should be buffered “first-in, first-out” (FIFO).
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31 Modelling, Verifying and Analysing AODV

with the unknown sequence number 0 and hop count 1; in case there is already a routing table entry
(sip,dsn,⇤,⇤,⇤,⇤,pre), then this entry is updated to (sip,dsn,unk,val,1,sip,pre) (cf. Lines 10, 14
and 18). Afterwards, the processes RREQ, RREP and RERR are called, respectively.

Process 1 The basic routine
AODV(ip ,sn ,rt ,rreqs ,store)

def
=

1. receive(msg) .
2. /* depending on the message, the node calls different processes */
3. (
4. [ msg= newpkt(data ,dip) ] /* new DATA packet */
5. NEWPKT(data ,dip , ip ,sn ,rt ,rreqs ,store)
6. + [ msg= pkt(data ,dip ,oip) ] /* incoming DATA packet */
7. PKT(data ,dip ,oip , ip ,sn ,rt ,rreqs ,store)
8. + [ msg= rreq(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip) ] /* RREQ */
9. /* update the route to sip in rt */

10. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]] /* 0 is used since no sequence number is known */
11. RREQ(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip , ip ,sn ,rt ,rreqs ,store)
12. + [ msg= rrep(hops ,dip ,dsn ,oip ,sip) ] /* RREP */
13. /* update the route to sip in rt */
14. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
15. RREP(hops ,dip ,dsn ,oip ,sip , ip ,sn ,rt ,rreqs ,store)
16. + [ msg= rerr(dests ,sip) ] /* RERR */
17. /* update the route to sip in rt */
18. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
19. RERR(dests ,sip , ip ,sn ,rt ,rreqs ,store)
20. )
21. + [ Let dip 2 qD(store)\vD(rt) ] /* send a queued data packet if a valid route is known */
22. [[data := head(squeue(store ,dip))]]
23. unicast(nhop(rt ,dip) ,pkt(data ,dip ,ip)) .
24. [[store := drop(dip ,store)]] /* drop data from the store for dip if the transmission was successful */
25. AODV(ip ,sn ,rt ,rreqs ,store)
26. I /* an error is produced and the routing table is updated */
27. [[dests := {(rip,inc(sqn(rt ,rip))) |rip 2 vD(rt) ^ nhop(rt ,rip) = nhop(rt ,dip)}]]
28. [[rt := invalidate(rt ,dests)]]
29. [[store := setRRF(store ,dests)]]
30. [[pre :=

S
{precs(rt ,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt ,rip) 6= /0}]]
32. groupcast(pre ,rerr(dests ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)
33. + [ Let dip 2 qD(store)�vD(rt) ^ sp-flag(store ,dip) = req ] /* a route discovery process is initiated */
34. [[store := unsetRRF(store ,dip)]] /* set request-required flag to no-req */
35. [[sn := inc(sn)]] /* increment own sequence number */
36. /* update rreqs by adding (ip,nrreqid(rreqs ,ip)) */
37. [[rreqid := nrreqid(rreqs ,ip)]]
38. [[rreqs := rreqs[{(ip,rreqid)}]]
39. broadcast(rreq(0 ,rreqid ,dip ,sqn(rt ,dip) ,sqnf(rt ,dip) ,ip ,sn ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)

The second part of AODV (Lines 21–32) initiates the sending of a data packet. For that, it has
to be checked if there is a queued data packet for a destination that has a known and valid route
in the routing table (qD(store)\ vD(rt) 6= /0). In case that there is more than one destination with
stored data and a known route, an arbitrary destination is chosen and denoted by dip (Line 21).25

Moreover data is set to the first queued data packet from the application layer that should be sent
(data := head(squeue(store ,dip))).26 This data packet is unicast to the next hop on the route to dip.

25Although the word “let” is not part of the syntax, we add it to stress the nondeterminism happening here.
26Following the RFC, data packets waiting for a route should be buffered “first-in, first-out” (FIFO).
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Route	Reply
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Process 5 RREP handling

RREP(hops ,dip ,dsn ,oip ,sip , ip ,sn ,rt ,rreqs ,store)
def
=

1. [ rt 6= update(rt ,(dip ,dsn ,kno ,val ,hops+1 ,sip , /0)) ] /* the routing table has to be updated */
2. [[rt := update(rt ,(dip ,dsn ,kno ,val ,hops+1 ,sip , /0))]]
3. (
4. [ oip= ip ] /* this node is the originator of the corresponding RREQ */
5. /* a packet may now be sent; this is done in the process AODV */
6. AODV(ip ,sn ,rt ,rreqs ,store)
7. + [ oip 6= ip ] /* this node is not the originator; forward RREP */
8. (
9. [ oip 2 vD(rt) ] /* valid route to oip */

10. /* add next hop towards oip as precursor and forward the route reply */
11. [[rt := addpreRT(rt ,dip ,{nhop(rt ,oip)})]]
12. [[rt := addpreRT(rt ,nhop(rt ,dip) ,{nhop(rt ,oip)})]]
13. unicast(nhop(rt ,oip) ,rrep(hops+1 ,dip ,dsn ,oip ,ip)) .
14. AODV(ip ,sn ,rt ,rreqs ,store)
15. I /* If the transmission is unsuccessful, a RERR message is generated */
16. [[dests := {(rip,inc(sqn(rt ,rip))) |rip 2 vD(rt) ^ nhop(rt ,rip) = nhop(rt ,oip)}]]
17. [[rt := invalidate(rt ,dests)]]
18. [[store := setRRF(store ,dests)]]
19. [[pre :=

S
{precs(rt ,rip) |(rip,⇤) 2 dests}]]

20. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt ,rip) 6= /0}]]
21. groupcast(pre ,rerr(dests ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)
22. + [ oip 62 vD(rt) ] /* no valid route to oip */
23. AODV(ip ,sn ,rt ,rreqs ,store)
24. )
25. )
26. + [ rt= update(rt ,(dip ,dsn ,kno ,val ,hops+1 ,sip , /0)) ] /* the routing table is not updated */
27. AODV(ip ,sn ,rt ,rreqs ,store)

In case that one of these conditions is true, the routing table is updated in Line 2. If the node is the
intended addressee of the route reply (oip= ip) the protocol returns to its basic process AODV. Otherwise
(oip 6= ip) the message should be forwarded. Following the RFC [79], “If the current node is not the
node indicated by the Originator IP Address in the RREP message AND a forward route has been created
or updated [. . . ], the node consults its route table entry for the originating node to determine the next hop
for the RREP packet, and then forwards the RREP towards the originator using the information in that
route table entry.” This action needs a valid route to the originator oip of the route request to which the
current message is a reply (oip2 vD(rt), Line 9). The content of the RREP message to be sent is mostly
copied from the RREP received; only the sender has to be changed (it is now the node’s ip) and the hop
count is incremented. Prior to the unicast, the node nhop(rt,oip), to which the message is sent, is added
to the list of precursors for the routes to dip (Line 11) and to the next hop on the route to dip (Line 12).
Although not specified in the RFC, it would make sense to also add a precursor to the reverse route by
[[rt := addpreRT(rt ,oip ,{nhop(rt ,dip)})]]. As usual, if the unicast fails, the affected routing table
entries are invalidated and the precursors of all routes using the broken link are determined and an error
message is sent (Lines 16–21). In the unlikely situation that a reply should be forwarded but no valid
route is known by the node, nothing happens. Following the RFC, no precursor has to be notified and no
error message has to be sent—even if there is an invalid route.

If a forward routing table entry is not created nor updated, the reply is silently ignored and the basic
process is called (Lines 26–27).
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(at least for some interpretations)



(c)	2017						P.	Höfner18

• Loop	Freedom	
• invariant	proof  
based	on	about	35	invariants,	e.g.		

• ultimately	we	defined	quality	on	routes	 
the	quality	strictly	increases	

• first	rigorous	and	complete	proof	of	loop	freedom	of	AODV  
(for	some	interpretations)

Case	Study:	Analysis	
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Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0 ) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0 ) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.29 The relation @dip is irreflexive and transitive.
Theorem 7.30 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalid routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip ) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip)  nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.27), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip ,0 ,unk ,val ,1 ,sip , /0) is used for the update; its destination
is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqnipc

N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .
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• Loop	Freedom	
• 5184	possible	interpretations	due	to	ambiguities	
• 5006	of	these	readings	of	the	standard	contain	loops	
• 3	out	of	5	open-source	implementations	contain	loops	

• Found	other	shortcomings	
• e.g.	non-optimal	routing	information	
• we	proposed	solutions	and	proved	them	correct

Case	Study:	Analysis	
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• Model	Checking	
• quick	feedback	for	development	
• cannot	be	used	for	full	verification	(yet)	

• (Interactive)	Theorem	Proving	
• Isabelle/HOL	
• replay	proofs	

– proof	verification	
– robust	against	small	changes	in	specification

Computer-Aided	Verification



Properties	of	Routing	Protocols
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• Safety	

• Liveness

22

	Safety	&	Liveness

something	good	will	eventually	happen	[Lamport77]

something	bad	will	never	happen	[Lamport77]
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• route	correctness	

• loop	freedom	

• route	discovery	

• packet	delivery

23

Examples	for	Routing	Protocols
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• Invariants	
• a	condition	that	is	true	during	the	execution	of	a	program,	 
or	during	some	portion	of	it	

• in	Computation	Tree	Logic	(CTL):	

• Reachability	
• a	given	program	state	can	be	reached	
• in	CTL:	

Proof	principles

AG ' (same as A⇤ ')

AF ' (same as A⌃ ')
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Formalising	Examples



CTL	(Computation	Tree	Logic)
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• Specify	branching	time	properties:	given	a	computation	tree	

• Define	sets	of	trees	(without	enumerating	…)	

• All	trees	are	infinite		

• Setting:	branching	time	semantics	and	tree

27

Objective



(c)	2017						P.	Höfner

Properties	of	Trees
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CTL	–	Syntax

29



(c)	2017						P.	Höfner

CTL	–	Simple	Semantics
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Useful	Derived	Operators	(1)
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Useful	Derived	Operators	(1)
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Useful	Derived	Operators	(2)
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Useful	Derived	Operators	(2)
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Useful	Derived	Operators	(2)
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Useful	Derived	Operators	(2)
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