
www.data61.csiro.au

Modelling	and	Verification	of	
Protocols	for	Wireless	Networks
(Lecture	5)

Peter	Höfner
(Lecture	at	University	of	Twente,	Jan/Feb	2017)

last	update:	Jan	31,	2017

http://www.data61.csiro.au

(c)	2017						P.	Höfner

• Monday:	Last	Lecture:	Q&A	and	open	problems	

• Monday	afternoon:	last	lab	-	discussion	of	individual	projects	

• Tuesday	morning:	Oral	exams	in	Zi	3063

2

Admin	-	Next	Week

(c)	2017						P.	Höfner

• Formalising	Properties	

• Invariants	
• local	vs	global	properties	

• Reachability	
• problems		
• progress	
• fairness	and	its	problems

3

Contents	of	this	Lecture	
What	should	you	have	learnt

Invariants

(c)	2017						P.	Höfner5

• Basic	principle

InvariantsThe basic ‘pattern’ for showing invariance

44 Modelling, Verifying and Analysing AODV

Proposition 7.2 Each sequence number of any given node ip increases monotonically, i.e., never de-
creases, and is never unknown. That is, for ip2 IP, if N `�! N0 then 1  x

ip
N (sn) x

ip
N0(sn).

Proof. In all initial states the invariant is satisfied, as all sequence numbers of all nodes are set to 1
(see (2) in Section 6.7). The Processes 1–7 of Section 6 change a node’s sequence number only through
the functions inc and max. This occurs at two places only:
Pro. 1, Line 35: Here x

ip
N (sn) inc(x ip

N (sn)) = x

ip
N0(sn).

Pro. 4, Line 8: Here x

ip
N (sn) max(x ip

N (sn),⇤) = x

ip
N0(sn).

From this and the fact that all sequence numbers are initialised with 1 we get 1  x

ip
N (sn). ut

The proof strategy used above can be generalised.

Remark 7.3 Most of the forthcoming proofs can be done by showing the statement for each initial state
and then checking all locations in the processes where the validity of the invariant is possibly changed.
Note that routing table entries are only changed by the functions update, invalidate or addpreRT.
Thus we have to show that an invariant dealing with routing tables is satisfied after the execution of these
functions if it was valid before. In our proofs, we go through all occurrences of these functions. In case
the invariant does not make statements about precursors, the function addpreRT need not be considered.

Proposition 7.4 The set of known destinations of a node increases monotonically. That is, for ip2 IP,
if N `�! N0 then kDip

N ✓ kDip
N0 .

Proof. None of the functions used to change routing tables removes an entry altogether. ut

Proposition 7.5 The set of already seen route requests of a node increases monotonically. That is, for
ip2 IP, if N `�! N0 then x

ip
N (rreqs)✓ x

ip
N0(rreqs).

Proof. None of the functions used in the specification ever removes an entry from rreqs. ut

Proposition 7.6 In each node’s routing table, the sequence number for any given destination increases
monotonically, i.e., never decreases. That is, for ip,dip2 IP, if N `�! N0 then sqnip

N (dip) sqnip
N0(dip).

Proof. The only function that can decrease a sequence number is invalidate. When invalidating
routing table entries using the function invalidate(rt,dests), sequence numbers are copied from
dests to the corresponding entry in rt. It is sufficient to show that for all (rip,rsn) 2 x

ip
N (dests)

sqnip
N (rip) rsn, as all other sequence numbers in routing table entries remain unchanged.

Pro. 1, Line 28; Pro. 3, Line 10; Pro. 4, Lines 13, 28; Pro. 5, Line 17:
The set dests is constructed immediately before the invalidation procedure. For (rip,rsn) 2
x

ip
N (dests), we have sqnip

N (rip) inc(sqnip
N (rip)) = rsn.

Pro. 6, Line 3: When constructing dests in Line 2, the side condition x

ip
N2
(sqn(rt,rip)) < x

ip
N2
(rsn)

is taken into account, which immediately yields the claim for (rip,rsn) 2 x

ip
N (dests). ut

Our next invariant tells that each node is correctly informed about its own identity.
Proposition 7.7 For each ip 2 IP and each reachable state N we have x

ip
N (ip) = ip.

Proof. According to Section 6.7 the claim is assumed to hold for each initial state, and none of our
processes has an assignment changing the value of the variable ip. ut

This proposition will be used implicitly in many of the proofs to follow. In particular, for all ip0, ip00 2 IP

x

ip0
N (ip) = ip00) ip0 = ip00 ^ x

ip0
N = x

ip00
N . (3)

Next, we show that every AODV control message contains the IP address of the sender.

15 / 34

show	for	a	single	step

statement	true	for	initial	state

(c)	2017						P.	Höfner

• All	routing	table	entries	have	a	hop	count	greater	or	equal	than	1.	

• Whenever	an	originator	sequence	number	is	sent	as	part	of	a	route	request	
message,	it	is	known,	i.e.,	it	is	greater	or	equal	than	1.	

• Whenever	a	destination	sequence	number	is	sent	as	part	of	a	route	reply	
message,	it	is	known,	i.e.,	it	is	greater	or	equal	than	1.

6

Auxiliary	Invariants	for	AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 42

Proposition 7.8 If an AODV control message is sent by node ip 2 IP, the node sending this message
identifies itself correctly:

N R:*cast(m)������!ip N0) ip = ipc ,

where the message m is either rreq(⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ , ipc), rrep(⇤ ,⇤ ,⇤ ,⇤ , ipc), or rerr(⇤ , ipc).

The proof is straightforward: whenever such a message is sent in one of the processes of Section 6, x (ip)
is set as the last argument. ut

Corollary 7.9 At no point will the variable sip maintained by node ip have the value ip.

x

ip
N (sip) 6= ip

Proof. The value of sip stems, through Lines 8, 12 or 16 of Pro. 1, from an incoming AODV control
message of the form x

ip
N (rreq(⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,sip)), x

ip
N (rrep(⇤ ,⇤ ,⇤ ,⇤ ,sip)), or x

ip
N (rerr(⇤ ,sip))

(Pro. 1, Line 1); the value of sip is never changed. By Proposition 7.1, this message must have been
sent before by a node ip0 6= ip. By Proposition 7.8, x

ip
N (sip) = ip0. ut

Proposition 7.10 All routing table entries have a hop count greater or equal than 1.

(⇤,⇤,⇤,⇤,hops,⇤,⇤) 2 x

ip
N (rt)) hops � 1 (4)

Proof. All initial states trivially satisfy the invariant since all routing tables are empty. The functions
invalidate and addpreRT do not affect the invariant, since they do not change the hop count of a
routing table entry. Therefore, we only have to look at the application calls of update. In each case, if
the update does not change the routing table entry beyond its precursors (the last clause of update), the
invariant is trivially preserved; hence we examine the cases that an update actually occurs.

Pro. 1, Lines 10, 14, 18: All these updates have a hop count equals to 1; hence the invariant is preserved.

Pro. 4, Line 4; Pro. 5, Line 2: Here, x (hops)+ 1 is used for the update. Since x (hops) 2 IN, the in-
variant is maintained. ut

Proposition 7.11

(a) If a route request with hop count 0 is sent by a node ipc 2 IP , the sender must be the originator.

N R:*cast(rreq(0,⇤,⇤,⇤,⇤,oipc,⇤,ipc))������������������!ip N0) oipc = ipc(= ip) (5)

(b) If a route reply with hop count 0 is sent by a node ipc 2 IP, the sender must be the destination.

N R:*cast(rrep(0,dipc,⇤,⇤,ipc))���������������!ip N0) dipc = ipc(= ip) (6)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent. In all the processes
there are only two locations where this happens.
Pro. 1, Line 39: A request with content x (0 ,⇤ ,⇤ ,⇤ ,⇤ ,ip ,⇤ ,ip) is sent. Since the sixth and the

eighth component are the same (x (ip)), the claim holds.
Pro. 4, Line 36: The message has the form rreq(x (hops)+1,⇤,⇤,⇤,⇤,⇤,⇤,⇤). Since x (hops)2 IN,

x (hops)+1 6= 0 and hence the antecedent does not hold.

(b) We have to check that the consequent holds whenever a route reply is sent. In all the processes there
are only three locations where this happens.

just	some	decoration	to	identify	node,	
and	state	of	the	network

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 44

Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 44

Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

(c)	2017						P.	Höfner7

• Easy	to	encode	(pen	and	paper;	Uppaal;	Isabelle/HOL)	

• only	concern	sequential	processes	(local	state)

Auxiliary	Invariants

(c)	2017						P.	Höfner

• The	quality	of	the	routing	table	entries	for	a	destination	dip	is	strictly	increasing	
along	a	route	towards	dip,	until	it	reaches	either	dip	or	a	node	with	an	invalid	
routing	table	entry	to	dip.	

• property	of	networks	(not	sequential	process	any	more)	

• but				,	the	evaluation	function,	is	locally	defined	for	seq.	processes

8

Loop	Freedom

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.29 The relation @dip is irreflexive and transitive.
Theorem 7.30 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalid routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip)  nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.27), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip ,0 ,unk ,val ,1 ,sip , /0) is used for the update; its destination
is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqnipc

N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .

⇠

(c)	2017						P.	Höfner9

• Pen-and-Paper	analysis	
• easy:	just	make	up	new	notation	(as	we	did)	

• Uppaal	
• move	local	data	structure	to	global	structure 
(often	the	easiest	way	is	to	use	arrays	and	structs)	

• but:	“local”	properties	have	to	be	adapted	
• is	there	another	way?	

• Isabelle	(or	any	other	mechanised	formalism)	
• even	harder	since	they	are	“fully	accurate”	
• data	structure,	but	also	reachable	state	

• often	a	pain	to	encode	this	stuff	(see	tomorrow)

Loop	Freedom	-	Encoding

Reachability	Properties	
(based	on	LTL	or	CTL)

(c)	2017						P.	Höfner11

• interpreted	over	transition	systems  
(that	can	be	derived	from	the	SOS	rules	of	AWN)	

• built	from	atomic	propositions,	e.g.	“two	nodes	are	connected”	

• Syntax

CTL	-	Recap

(c)	2017						P.	Höfner12

• evaluated	on	paths,	so	it	does	not	requires	A-	and	E-operators

LTL	-	Recap

(c)	2017						P.	Höfner13

• 		

• sometimes	a	side	condition,	which	will	hold	“constantly”	should	be	added	

• In	LTL	(which	only	considers	paths)	the	following	formulas	are	equivalent

Leads-To

AG('pre) AF'post)

G(('pre ^ G)) F'post)

G('pre) F('post _ ¬))

AG('pre) AF('post _ ¬))

(c)	2017						P.	Höfner14

• system	stops	in	state	s	without	ever	forming	an	internal	transition  

• 								should	be	true	when	in	state	s,	but	not	necessarily	in	state	a,	e.g.,	 
when	a	is	a	receive	action

ProgressA. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 92

r s

t

a ⌧

(a) Progress
r s

t

a ⌧
⌧

(c) Fairness

a ⌧ k
⌧

=
r s

t

a ⌧
⌧ ⌧ ⌧

(b) Justness

Figure 13: Progress, Justness and Fairness

It remains to be determined which transitions generated by the structural operational semantics of
AWN should be classified as output transitions. In the transition system for (encapsulated) network ex-
pressions generated by the rules of Table 4, only five types of transition labels occur: connect(ip, ip0),
disconnect(ip, ip0), ip:newpkt(d,dip), ip:deliver(d) and t . These are all actions to be considered, since
we regard (LTL-)properties on network expressions only. The actions connect(ip, ip0), disconnect(ip, ip0)
and ip :newpkt(d,dip) are entirely triggered by the environment of the network, and thus cannot be clas-
sified as output actions. Transitions labelled t are internal. For transitions labelled ip :deliver(d) two
points of view are possible. It could be that the action ip :deliver(d) is seen as attempt of the network
to synchronise with its client in delivering a message; the synchronisation will then happen only when
both the network and the client are ready to engage in this activity. A possible scenario would be that
Pro. 3 gets stuck in Line 2 because the client is not ready for such a synchronisation (the same happens
in Pro. 2, Line 2). This interpretation of our formalisation of AODV would give rise to deadlock possi-
bilities that violate useful properties we would like the protocol to have, such as the forthcoming route
discovery and packet delivery properties. We therefore take the opposite point of view by classifying
ip :deliver(d) as an output action. Hereby we disallow a deadlock when attempting a deliver-action,
since the environment of the network cannot prevent delivery of data packets. As a consequence, finite
complete paths of AODV can end only in states N where all message queues are empty, all nodes ip are
are either in their initial state or about to call the process AODV,57 and for all destinations dip for which
ip has a (non-empty) queue of data packets we have dip /2 vDip

N and sp-flag(x
ip
N (store) ,dip) = no-req.

This follows since our specification of AODV is input-enabled, is non-blocking, and avoids livelocks.
In the remainder of this paper we will only use LTL-formulas to check (encapsulated) network ex-

pressions. However, when defining output transitions also on partial networks, parallel processes and
sequential processes, it is easy to carry over our mechanism to arbitrary expressions of AWN. On the
level of partial network expressions R :*cast(m) counts as an output action, as its occurrence cannot be
prevented by other nodes in the network. Similarly, on the level of sequential and parallel processes
broadcast(m), groupcast(D ,m), unicast(dip ,m), ¬unicast(dip ,m) and deliver(d) are output actions,
but send(m) is not, for it requires synchronisation with receive(m). The remaining actions (arrive(m),
receive(m)) are not considered output actions.

Justness. Now suppose we have two concurrent systems that work independently in parallel, such as
two completely disconnected nodes in our network. One of them is modelled by the transition system
of Figure 13(a), and the other is doing internal transitions in perpetuity. The parallel composition is
depicted on the left-hand side of Figure 13(b). According to our structural operational semantics, the
overall transition system resulting from this parallel composition is the one depicted on the right. In this

57More precisely these positions are at the beginning of Pro. 1, Line 25, Pro. 4, Lines 2, 26, 37, Pro. 5, Lines 6, 14, 23, 27,
and in the middle of Lines 32, 39 (Pro. 1), 2, 4 (Pro. 2), 2, 7, 14, 20, 22 (Pro. 3), 10, 17, 33 (Pro. 4), 21 (Pro. 5), 8 (Pro. 6).

F

A process in a state that admits an internal transition τ  
or and output transition will eventually perform a transition.

(c)	2017						P.	Höfner15

• sometimes	also	called	output	actions 
(since	the	output	transitions	are	completely	determined	by	the	actions).	

• in	AWN,	on	the	layer	of	entire	networks,	assignments,	guards,	etc.	were	
encoded	as	internal	actions,	so	the	only	output	transitions	are	

• in	AWN,	on	the	layer	of	partial	network	expressions,	the	output	transitions	are	

• in	AWN,	on	the	layer	of	sequential	and	parallel	processes,	 
the	output	transitions	are

Output	Transitions

ip : deliver(d)

R : ⇤ cast(m)

broadcast(m), groupcast(D,m), unicast(dip,m),¬unicast(dip,m)

(c)	2017						P.	Höfner16

• Uppaal	
• use	of	committed/urgent	states	
• use	of	invariants	(in	the	timed	model)	

• early	work	on	temporal	logics	considered	only	infinite	(and	unlabelled)	paths	

• more	general:	consider	complete	paths	
• a	path	to	be	complete	iff	it	is	either	infinite	or	ends	in	a	state	from	which	no	
further	internal	or	output	transitions	are	possible	

• properties	are	satisfied	iff	they	hold	on	all	complete	paths

Progress	  
in	Uppaal	and	other	formalisms

(c)	2017						P.	Höfner17

• does																																hold?

Justness

A component in a parallel composition in a state that admits an internal or output
transition will eventually perform a transition.

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 92

r s

t

a ⌧

(a) Progress
r s

t

a ⌧
⌧

(c) Fairness

a ⌧ k
⌧

=
r s

t

a ⌧
⌧ ⌧ ⌧

(b) Justness

Figure 13: Progress, Justness and Fairness

It remains to be determined which transitions generated by the structural operational semantics of
AWN should be classified as output transitions. In the transition system for (encapsulated) network ex-
pressions generated by the rules of Table 4, only five types of transition labels occur: connect(ip, ip0),
disconnect(ip, ip0), ip:newpkt(d,dip), ip:deliver(d) and t . These are all actions to be considered, since
we regard (LTL-)properties on network expressions only. The actions connect(ip, ip0), disconnect(ip, ip0)
and ip :newpkt(d,dip) are entirely triggered by the environment of the network, and thus cannot be clas-
sified as output actions. Transitions labelled t are internal. For transitions labelled ip :deliver(d) two
points of view are possible. It could be that the action ip :deliver(d) is seen as attempt of the network
to synchronise with its client in delivering a message; the synchronisation will then happen only when
both the network and the client are ready to engage in this activity. A possible scenario would be that
Pro. 3 gets stuck in Line 2 because the client is not ready for such a synchronisation (the same happens
in Pro. 2, Line 2). This interpretation of our formalisation of AODV would give rise to deadlock possi-
bilities that violate useful properties we would like the protocol to have, such as the forthcoming route
discovery and packet delivery properties. We therefore take the opposite point of view by classifying
ip :deliver(d) as an output action. Hereby we disallow a deadlock when attempting a deliver-action,
since the environment of the network cannot prevent delivery of data packets. As a consequence, finite
complete paths of AODV can end only in states N where all message queues are empty, all nodes ip are
are either in their initial state or about to call the process AODV,57 and for all destinations dip for which
ip has a (non-empty) queue of data packets we have dip /2 vDip

N and sp-flag(x
ip
N (store) ,dip) = no-req.

This follows since our specification of AODV is input-enabled, is non-blocking, and avoids livelocks.
In the remainder of this paper we will only use LTL-formulas to check (encapsulated) network ex-

pressions. However, when defining output transitions also on partial networks, parallel processes and
sequential processes, it is easy to carry over our mechanism to arbitrary expressions of AWN. On the
level of partial network expressions R :*cast(m) counts as an output action, as its occurrence cannot be
prevented by other nodes in the network. Similarly, on the level of sequential and parallel processes
broadcast(m), groupcast(D ,m), unicast(dip ,m), ¬unicast(dip ,m) and deliver(d) are output actions,
but send(m) is not, for it requires synchronisation with receive(m). The remaining actions (arrive(m),
receive(m)) are not considered output actions.

Justness. Now suppose we have two concurrent systems that work independently in parallel, such as
two completely disconnected nodes in our network. One of them is modelled by the transition system
of Figure 13(a), and the other is doing internal transitions in perpetuity. The parallel composition is
depicted on the left-hand side of Figure 13(b). According to our structural operational semantics, the
overall transition system resulting from this parallel composition is the one depicted on the right. In this

57More precisely these positions are at the beginning of Pro. 1, Line 25, Pro. 4, Lines 2, 26, 37, Pro. 5, Lines 6, 14, 23, 27,
and in the middle of Lines 32, 39 (Pro. 1), 2, 4 (Pro. 2), 2, 7, 14, 20, 22 (Pro. 3), 10, 17, 33 (Pro. 4), 21 (Pro. 5), 8 (Pro. 6).

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 92

r s

t

a ⌧

(a) Progress
r s

t

a ⌧
⌧

(c) Fairness

a ⌧ k
⌧

=
r s

t

a ⌧
⌧ ⌧ ⌧

(b) Justness

Figure 13: Progress, Justness and Fairness

It remains to be determined which transitions generated by the structural operational semantics of
AWN should be classified as output transitions. In the transition system for (encapsulated) network ex-
pressions generated by the rules of Table 4, only five types of transition labels occur: connect(ip, ip0),
disconnect(ip, ip0), ip:newpkt(d,dip), ip:deliver(d) and t . These are all actions to be considered, since
we regard (LTL-)properties on network expressions only. The actions connect(ip, ip0), disconnect(ip, ip0)
and ip :newpkt(d,dip) are entirely triggered by the environment of the network, and thus cannot be clas-
sified as output actions. Transitions labelled t are internal. For transitions labelled ip :deliver(d) two
points of view are possible. It could be that the action ip :deliver(d) is seen as attempt of the network
to synchronise with its client in delivering a message; the synchronisation will then happen only when
both the network and the client are ready to engage in this activity. A possible scenario would be that
Pro. 3 gets stuck in Line 2 because the client is not ready for such a synchronisation (the same happens
in Pro. 2, Line 2). This interpretation of our formalisation of AODV would give rise to deadlock possi-
bilities that violate useful properties we would like the protocol to have, such as the forthcoming route
discovery and packet delivery properties. We therefore take the opposite point of view by classifying
ip :deliver(d) as an output action. Hereby we disallow a deadlock when attempting a deliver-action,
since the environment of the network cannot prevent delivery of data packets. As a consequence, finite
complete paths of AODV can end only in states N where all message queues are empty, all nodes ip are
are either in their initial state or about to call the process AODV,57 and for all destinations dip for which
ip has a (non-empty) queue of data packets we have dip /2 vDip

N and sp-flag(x
ip
N (store) ,dip) = no-req.

This follows since our specification of AODV is input-enabled, is non-blocking, and avoids livelocks.
In the remainder of this paper we will only use LTL-formulas to check (encapsulated) network ex-

pressions. However, when defining output transitions also on partial networks, parallel processes and
sequential processes, it is easy to carry over our mechanism to arbitrary expressions of AWN. On the
level of partial network expressions R :*cast(m) counts as an output action, as its occurrence cannot be
prevented by other nodes in the network. Similarly, on the level of sequential and parallel processes
broadcast(m), groupcast(D ,m), unicast(dip ,m), ¬unicast(dip ,m) and deliver(d) are output actions,
but send(m) is not, for it requires synchronisation with receive(m). The remaining actions (arrive(m),
receive(m)) are not considered output actions.

Justness. Now suppose we have two concurrent systems that work independently in parallel, such as
two completely disconnected nodes in our network. One of them is modelled by the transition system
of Figure 13(a), and the other is doing internal transitions in perpetuity. The parallel composition is
depicted on the left-hand side of Figure 13(b). According to our structural operational semantics, the
overall transition system resulting from this parallel composition is the one depicted on the right. In this

57More precisely these positions are at the beginning of Pro. 1, Line 25, Pro. 4, Lines 2, 26, 37, Pro. 5, Lines 6, 14, 23, 27,
and in the middle of Lines 32, 39 (Pro. 1), 2, 4 (Pro. 2), 2, 7, 14, 20, 22 (Pro. 3), 10, 17, 33 (Pro. 4), 21 (Pro. 5), 8 (Pro. 6).

G(a) F())

(c)	2017						P.	Höfner18

• defined	via	the	entire	hierarchy	of	layers	

• avoids	the	existence	of	premature	paths	
• a	path	starting	from	any	AWN	expression	(i.e.	a	sequential	or	parallel	process	
expression,	a	node	expression	or	(partial)	network	expression)	ends	
prematurely	if	it	is	finite	and	from	its	last	state	an	internal	or	output	
transitions	is	possible.	

• refinement	of	the	definition	of	a	complete	path	

• using	this	definition																															holds		

• Justness	in	Uppaal:	I	do	not	know

Justness	in	AWN

G(a) F())

(c)	2017						P.	Höfner19

• 																														does	not	hold	under	justness	

• often	global	fairness	assumptions	are	made	
• weak:	if	a	transition	is	enabled	continuously,	it	will	be	taken	infinitely	often	

• strong:	if	a	transition	is	enable	infinitely	often,	it	will	be	taken	infinitely	often	

• weak	fairness	is	equivalent	to													 
and		

• to	validate	a	formula,	only	fair	runs	are	considered

FairnessA. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 92

r s

t

a ⌧

(a) Progress
r s

t

a ⌧
⌧

(c) Fairness

a ⌧ k
⌧

=
r s

t

a ⌧
⌧ ⌧ ⌧

(b) Justness

Figure 13: Progress, Justness and Fairness

It remains to be determined which transitions generated by the structural operational semantics of
AWN should be classified as output transitions. In the transition system for (encapsulated) network ex-
pressions generated by the rules of Table 4, only five types of transition labels occur: connect(ip, ip0),
disconnect(ip, ip0), ip:newpkt(d,dip), ip:deliver(d) and t . These are all actions to be considered, since
we regard (LTL-)properties on network expressions only. The actions connect(ip, ip0), disconnect(ip, ip0)
and ip :newpkt(d,dip) are entirely triggered by the environment of the network, and thus cannot be clas-
sified as output actions. Transitions labelled t are internal. For transitions labelled ip :deliver(d) two
points of view are possible. It could be that the action ip :deliver(d) is seen as attempt of the network
to synchronise with its client in delivering a message; the synchronisation will then happen only when
both the network and the client are ready to engage in this activity. A possible scenario would be that
Pro. 3 gets stuck in Line 2 because the client is not ready for such a synchronisation (the same happens
in Pro. 2, Line 2). This interpretation of our formalisation of AODV would give rise to deadlock possi-
bilities that violate useful properties we would like the protocol to have, such as the forthcoming route
discovery and packet delivery properties. We therefore take the opposite point of view by classifying
ip :deliver(d) as an output action. Hereby we disallow a deadlock when attempting a deliver-action,
since the environment of the network cannot prevent delivery of data packets. As a consequence, finite
complete paths of AODV can end only in states N where all message queues are empty, all nodes ip are
are either in their initial state or about to call the process AODV,57 and for all destinations dip for which
ip has a (non-empty) queue of data packets we have dip /2 vDip

N and sp-flag(x
ip
N (store) ,dip) = no-req.

This follows since our specification of AODV is input-enabled, is non-blocking, and avoids livelocks.
In the remainder of this paper we will only use LTL-formulas to check (encapsulated) network ex-

pressions. However, when defining output transitions also on partial networks, parallel processes and
sequential processes, it is easy to carry over our mechanism to arbitrary expressions of AWN. On the
level of partial network expressions R :*cast(m) counts as an output action, as its occurrence cannot be
prevented by other nodes in the network. Similarly, on the level of sequential and parallel processes
broadcast(m), groupcast(D ,m), unicast(dip ,m), ¬unicast(dip ,m) and deliver(d) are output actions,
but send(m) is not, for it requires synchronisation with receive(m). The remaining actions (arrive(m),
receive(m)) are not considered output actions.

Justness. Now suppose we have two concurrent systems that work independently in parallel, such as
two completely disconnected nodes in our network. One of them is modelled by the transition system
of Figure 13(a), and the other is doing internal transitions in perpetuity. The parallel composition is
depicted on the left-hand side of Figure 13(b). According to our structural operational semantics, the
overall transition system resulting from this parallel composition is the one depicted on the right. In this

57More precisely these positions are at the beginning of Pro. 1, Line 25, Pro. 4, Lines 2, 26, 37, Pro. 5, Lines 6, 14, 23, 27,
and in the middle of Lines 32, 39 (Pro. 1), 2, 4 (Pro. 2), 2, 7, 14, 20, 22 (Pro. 3), 10, 17, 33 (Pro. 4), 21 (Pro. 5), 8 (Pro. 6).

G(a) F())

FG(enabled(a))) GF(a)

GF(enabled(a))) GF(a)

G(G(enabled(a))) Fa)
GF(a _ ¬enabled(a))

(c)	2017						P.	Höfner20

• non-deterministic	choice	may	always	choose	“the	other”	transition	

• in	AWN,	we	consider	all	occurrences	of	choice,	and	decide	individually	
• e.g.	choice	in	the	main	process	(Lines	21	,33) 
here	we	postulate	a	weak	fairness	assumption

Fairness	may	be	too	strong

(c)	2017						P.	Höfner21

• Consider	the	following	two	programs	

• side	remark:	these	programs	are	bisimilar

Why	Fairness	is	dangerous

x := 1 k repeat y := y + 1 forever

repeat

case

if True then y:=y+1 fi

if x = 0 then x:=1 fi

end

forever

(c)	2017						P.	Höfner

Main	Process	(cont’d)

22

31 Modelling, Verifying and Analysing AODV

with the unknown sequence number 0 and hop count 1; in case there is already a routing table entry
(sip,dsn,⇤,⇤,⇤,⇤,pre), then this entry is updated to (sip,dsn,unk,val,1,sip,pre) (cf. Lines 10, 14
and 18). Afterwards, the processes RREQ, RREP and RERR are called, respectively.

Process 1 The basic routine
AODV(ip ,sn ,rt ,rreqs ,store)

def
=

1. receive(msg) .
2. /* depending on the message, the node calls different processes */
3. (
4. [msg= newpkt(data ,dip)] /* new DATA packet */
5. NEWPKT(data ,dip , ip ,sn ,rt ,rreqs ,store)
6. + [msg= pkt(data ,dip ,oip)] /* incoming DATA packet */
7. PKT(data ,dip ,oip , ip ,sn ,rt ,rreqs ,store)
8. + [msg= rreq(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip)] /* RREQ */
9. /* update the route to sip in rt */

10. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]] /* 0 is used since no sequence number is known */
11. RREQ(hops ,rreqid ,dip ,dsn ,dsk ,oip ,osn ,sip , ip ,sn ,rt ,rreqs ,store)
12. + [msg= rrep(hops ,dip ,dsn ,oip ,sip)] /* RREP */
13. /* update the route to sip in rt */
14. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
15. RREP(hops ,dip ,dsn ,oip ,sip , ip ,sn ,rt ,rreqs ,store)
16. + [msg= rerr(dests ,sip)] /* RERR */
17. /* update the route to sip in rt */
18. [[rt := update(rt ,(sip,0,unk,val,1,sip, /0))]]
19. RERR(dests ,sip , ip ,sn ,rt ,rreqs ,store)
20.)
21. + [Let dip 2 qD(store)\vD(rt)] /* send a queued data packet if a valid route is known */
22. [[data := head(squeue(store ,dip))]]
23. unicast(nhop(rt ,dip) ,pkt(data ,dip ,ip)) .
24. [[store := drop(dip ,store)]] /* drop data from the store for dip if the transmission was successful */
25. AODV(ip ,sn ,rt ,rreqs ,store)
26. I /* an error is produced and the routing table is updated */
27. [[dests := {(rip,inc(sqn(rt ,rip))) |rip 2 vD(rt) ^ nhop(rt ,rip) = nhop(rt ,dip)}]]
28. [[rt := invalidate(rt ,dests)]]
29. [[store := setRRF(store ,dests)]]
30. [[pre :=

S
{precs(rt ,rip) |(rip,⇤) 2 dests}]]

31. [[dests := {(rip,rsn) |(rip,rsn) 2 dests ^ precs(rt ,rip) 6= /0}]]
32. groupcast(pre ,rerr(dests ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)
33. + [Let dip 2 qD(store)�vD(rt) ^ sp-flag(store ,dip) = req] /* a route discovery process is initiated */
34. [[store := unsetRRF(store ,dip)]] /* set request-required flag to no-req */
35. [[sn := inc(sn)]] /* increment own sequence number */
36. /* update rreqs by adding (ip,nrreqid(rreqs ,ip)) */
37. [[rreqid := nrreqid(rreqs ,ip)]]
38. [[rreqs := rreqs[{(ip,rreqid)}]]
39. broadcast(rreq(0 ,rreqid ,dip ,sqn(rt ,dip) ,sqnf(rt ,dip) ,ip ,sn ,ip)) . AODV(ip ,sn ,rt ,rreqs ,store)

The second part of AODV (Lines 21–32) initiates the sending of a data packet. For that, it has
to be checked if there is a queued data packet for a destination that has a known and valid route
in the routing table (qD(store)\ vD(rt) 6= /0). In case that there is more than one destination with
stored data and a known route, an arbitrary destination is chosen and denoted by dip (Line 21).25

Moreover data is set to the first queued data packet from the application layer that should be sent
(data := head(squeue(store ,dip))).26 This data packet is unicast to the next hop on the route to dip.

25Although the word “let” is not part of the syntax, we add it to stress the nondeterminism happening here.
26Following the RFC, data packets waiting for a route should be buffered “first-in, first-out” (FIFO).

(c)	2017						P.	Höfner23

• whenever	the	node	ip	perpetually	has	queued	packets	for	dip	as	well	as	a	(valid)	
route	to	dip,	it	will	eventually	forward	a	data	packet	originating	from	ip	towards	
dip	

• whenever	ip	perpetually	has	queued	packets	for	dip	but	no	valid	route	to	dip,	
then	node	ip	does	issue	a	request	for	a	route	from	ip	to	dip  
(is	also	considers	a	request-required	flag)	

• there	is	no	need	to	formalise	a	fairness	assumption	for	Line	1	—	Why?

Fairness	Assumptions	for	AODV

95 Modelling, Verifying and Analysing AODV

terminates in a finite amount of time,60 after which the AODV-scheduler needs to make another choice.
For each of these tasks we postulate a weak fairness property. It requires that if this task, from

some point onwards, is perpetually enabled, it will eventually be scheduled. A weak fairness property
is expressed in LTL as the requirement G(Gy) Ff); here y is the condition that states that the task
is enabled, whereas f states that it is being executed.61 The property says that if the condition y holds
uninterruptedly from some time point onwards, then eventually f will hold. This is the first formula
of (34) with f

pre = true and f

post = f . Hence a logically equivalent formula is GF(f _¬y). Another
equivalent formula expressing weak fairness is FGy) GFf . It says that if, from some point onwards,
a task is perpetually enabled, it will be scheduled infinitely often.62

Sometimes a strong fairness property is needed, saying that if a task is enabled infinitely often,63 but
allowing interruptions during which it is not enabled, it will eventually be scheduled. Such a property is
expressed in LTL as G(GFy) Ff),64 or equivalently GFy) GFf . We do not need strong fairness
properties in this paper.

Our first fairness property (F1) requires that if the guard of Pro. 1, Line 21 evaluates to true from
some state onwards, for a particular value of dip, then eventually Line 21 (or equivalently Line 22 or 23)
will be executed, for that value of dip. Naturally, such a property needs to be required for each node ip in
the network, and for each possible destination dip. Later, we will formulate a packet delivery property,
saying that under certain circumstances a data packet will surely be delivered to its destination. Without
the fairness property (F1) there is no hope on such a property being satisfied by AODV. It could be that
a node ip with a valid route to dip has a queued data packet for dip, but will never send it, because it
is constantly busy processing messages—that is, executing Line 1 instead of Line 21. Alternatively, it
could be that the node has a constant supply of data packets for another destination dip0, and always
chooses to send a packet to dip0 instead of to dip.

Fairness property (F1) can be formalised as an instance of the template G(Gy) Ff) by taking y

to be the formula that says that the guard in Line 21 is satisfied, and f a formula that holds after Line 21
has been executed. We take y to be the atomic proposition dip 2 qDip \ vDip, which we define to hold
for state N iff dip 2 qD(x ip

N (store))\vDip
N . Other atomic propositions used below are defined along the

same lines. In order to formulate f we use the atomic proposition unicast(⇤ ,pkt(⇤ ,dip , ip)), which is
defined to hold when node ip tries to unicast a data packet with destination dip. Thus we require, for all
ip,dip 2 IP, that

G
�
G(dip 2 qDip \vDip)) F

�
unicast(⇤ ,pkt(⇤ ,dip , ip))

��
. (F1)

(F1) says that whenever the node ip perpetually has queued packets for the destination dip as well as a
valid route to dip, it will eventually forward a data packet originating from ip towards dip—i.e. Line 23
will be executed. In classifying this property as a weak fairness property, we count a task as enabled
when its guard is valid, notwithstanding that the task cannot be started during the time AODV is working
on a competing task.

Our second fairness property (F2) demands fairness for the task starting with Line 33 of Pro. 1. We
require, for all ip,dip 2 IP, that

G
�
G(dip 2 qDip �vDip ^ s

ip
p-flag(dip) = req)) F

�
broadcast(rreq(⇤ ,⇤ ,dip ,⇤ ,⇤ , ip ,⇤ , ip))

��
. (F2)

60Here we use that each of these tasks consists of finitely many actions, of which only the initial one could be blocking. The
task of handling an incoming message could fail to terminate if the message received is not of the form specified in any of the
guards of Lines 4, 6, 8, 12 or 16; in this case a deadlock would occur in Line 3. However, using Proposition 7.1(a), this will
never happen, as all messages sent have the required form.

61These properties were introduced and formalised in LTL in [28] under the name “responsiveness to insistence”. They were
deemed “the minimal fairness requirement” for any scheduler.

62or is scheduled in the final state of the system. This possibility needs to be added because, unlike in [86, 28], we allow
complete paths to be finite.

63or in the final state of the system
64These properties were introduced and formalised in LTL in [28] under the name “responsiveness to persistence”.

95 Modelling, Verifying and Analysing AODV

terminates in a finite amount of time,60 after which the AODV-scheduler needs to make another choice.
For each of these tasks we postulate a weak fairness property. It requires that if this task, from

some point onwards, is perpetually enabled, it will eventually be scheduled. A weak fairness property
is expressed in LTL as the requirement G(Gy) Ff); here y is the condition that states that the task
is enabled, whereas f states that it is being executed.61 The property says that if the condition y holds
uninterruptedly from some time point onwards, then eventually f will hold. This is the first formula
of (34) with f

pre = true and f

post = f . Hence a logically equivalent formula is GF(f _¬y). Another
equivalent formula expressing weak fairness is FGy) GFf . It says that if, from some point onwards,
a task is perpetually enabled, it will be scheduled infinitely often.62

Sometimes a strong fairness property is needed, saying that if a task is enabled infinitely often,63 but
allowing interruptions during which it is not enabled, it will eventually be scheduled. Such a property is
expressed in LTL as G(GFy) Ff),64 or equivalently GFy) GFf . We do not need strong fairness
properties in this paper.

Our first fairness property (F1) requires that if the guard of Pro. 1, Line 21 evaluates to true from
some state onwards, for a particular value of dip, then eventually Line 21 (or equivalently Line 22 or 23)
will be executed, for that value of dip. Naturally, such a property needs to be required for each node ip in
the network, and for each possible destination dip. Later, we will formulate a packet delivery property,
saying that under certain circumstances a data packet will surely be delivered to its destination. Without
the fairness property (F1) there is no hope on such a property being satisfied by AODV. It could be that
a node ip with a valid route to dip has a queued data packet for dip, but will never send it, because it
is constantly busy processing messages—that is, executing Line 1 instead of Line 21. Alternatively, it
could be that the node has a constant supply of data packets for another destination dip0, and always
chooses to send a packet to dip0 instead of to dip.

Fairness property (F1) can be formalised as an instance of the template G(Gy) Ff) by taking y

to be the formula that says that the guard in Line 21 is satisfied, and f a formula that holds after Line 21
has been executed. We take y to be the atomic proposition dip 2 qDip \ vDip, which we define to hold
for state N iff dip 2 qD(x ip

N (store))\vDip
N . Other atomic propositions used below are defined along the

same lines. In order to formulate f we use the atomic proposition unicast(⇤ ,pkt(⇤ ,dip , ip)), which is
defined to hold when node ip tries to unicast a data packet with destination dip. Thus we require, for all
ip,dip 2 IP, that

G
�
G(dip 2 qDip \vDip)) F

�
unicast(⇤ ,pkt(⇤ ,dip , ip))

��
. (F1)

(F1) says that whenever the node ip perpetually has queued packets for the destination dip as well as a
valid route to dip, it will eventually forward a data packet originating from ip towards dip—i.e. Line 23
will be executed. In classifying this property as a weak fairness property, we count a task as enabled
when its guard is valid, notwithstanding that the task cannot be started during the time AODV is working
on a competing task.

Our second fairness property (F2) demands fairness for the task starting with Line 33 of Pro. 1. We
require, for all ip,dip 2 IP, that

G
�
G(dip 2 qDip �vDip ^ s

ip
p-flag(dip) = req)) F

�
broadcast(rreq(⇤ ,⇤ ,dip ,⇤ ,⇤ , ip ,⇤ , ip))

��
. (F2)

60Here we use that each of these tasks consists of finitely many actions, of which only the initial one could be blocking. The
task of handling an incoming message could fail to terminate if the message received is not of the form specified in any of the
guards of Lines 4, 6, 8, 12 or 16; in this case a deadlock would occur in Line 3. However, using Proposition 7.1(a), this will
never happen, as all messages sent have the required form.

61These properties were introduced and formalised in LTL in [28] under the name “responsiveness to insistence”. They were
deemed “the minimal fairness requirement” for any scheduler.

62or is scheduled in the final state of the system. This possibility needs to be added because, unlike in [86, 28], we allow
complete paths to be finite.

63or in the final state of the system
64These properties were introduced and formalised in LTL in [28] under the name “responsiveness to persistence”.

(c)	2017						P.	Höfner24

• whenever	there	is	a	stored	message,	it	will	be	passed	on

Fairness	Assumption	for	QMSG

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 96

(F2) says that whenever ip perpetually has queued packets for dip but no valid route to dip, and the
request-required flag at ip for destination dip is set to req, indicating that a new route discovery process
needs to be initiated, then node ip does issue a request for a route from ip to dip—so Line 39 will be
executed.

We do not formalise a fairness property saying that Line 1 of Pro. 1 will be executed eventually.
Since the receive-action of Line 1 of Pro. 1 has to synchronise with the send-action in Line 6 of Pro. 7 it
suffices to formalise a fairness property for QMSG.

Process QMSG can be understood as scheduling two tasks: (1) store an incoming message at the end
of the message queue, and (2) pop the top message from the queue and send it to AODV for handling. The
reason that (1) occurs twice in the specification (Lines 1–2 as well as 7–8) is that we require our node to
be input enabled, meaning that (1) must be possible in every state.

Our third and last fairness property (F3) guards against starvation of task (2). It says that if the guard
of Line 3 of Pro. 7 evaluates to true from some state onwards, then eventually Line 6 of Pro. 7 will be
executed. In order to formulate this property we use the atomic propositions msgsip 6= [], which holds in
state N iff x

ip
N (msgs) 6= [], and ip : send(⇤), saying that the process QMSG running on node ip performs

a send-action. We need to explicitly annotate this activity with the name of node ip, as—unlike for
unicast and broadcast—this information cannot be derived from the message being sent. We require,
for all ip 2 IP, that

G
�
G(msgsip 6= [])) F

�
ip : send(⇤)

��
. (F3)

(F3) says that whenever node ip perpetually has a non-empty queue of incoming messages, eventually
one of these messages will be handled. Just as for the first task of the process AODV, there is no need
to specify a fairness property for task (1): our justness property forbids any component from stopping
when it can do a *cast-action, and our structural operational semantics requires each component within
transmission range of a component doing a *cast to receive the transmitted message.

To say that a run of AODV is fair amounts to requiring the corresponding complete path to satisfy
properties (F1)–(F3) for all values of ip and dip. In order to require fairness for all runs of AODV we
augment the specification of AODV with a fairness component. Henceforth, our specification of AODV
consists of two parts: (A) the AWN specification of Section 6, which by the operational semantics of
AWN generates a labelled transition system L, and (B) a fairness specification, consisting of a collec-
tion of LTL formulas. The latter narrows down the complete paths in L to the ones that satisfy those
formulas.65

65 Formally, we require the labelled transition system L and the fairness specification to be consistent with each other. By
this we mean that one cannot reach a state in L from where, given a sufficiently uncooperative environment, it is impossible
to satisfy the fairness specification—in other words [58], ‘the automaton can never “paint itself into a corner.” ’ In [58] this
requirement is called machine closure, and demands that any finite path in L, starting from an initial state, can be extended to a
path satisfying the fairness specification. Since we deal with a reactive system here, we need a more complicated consistency
requirement, taking into account all possibilities of the environment to allow or block transitions that are not fully controlled
by the specified system itself. This requirement can best be explained in terms of a two player game between a scheduler and
the environment.

Define a run of L as a path that starts from an initial state. Thus a finite run is an alternating sequence of states and transitions,
starting from an initial state and ending in a state, such that each transition in the sequence goes from the state before to the
state after it. Moreover, a complete run is a finite or infinite path starting from an initial state. The game begins with any finite
run p of L, chosen by the environment. In each turn, first the environment selects a set next(p) of transitions starting in the last
state N of p; this set has to include all internal and output transitions starting from N, but can also include further transitions
starting in N. If next(p) is empty, the game ends; otherwise the scheduler selects a transition from this set, which is, together
with its ending state, appended to p , and a new turn starts with the prolonged finite run. The result of the game is the finite
run in which the game ends, or—if it does not—the infinite run that arises as the limit of all finite runs encountered during the
game. So the result of the game always is a complete run. The game is won by the scheduler iff the result satisfies the fairness
specification. Now L is consistent with a fairness specification iff there exists a winning strategy for the scheduler.

Our AODV specification and our fairness properties (F1)–(F3) are constructed in such a way that they are consistent.

Properties	for	AODV

(c)	2017						P.	Höfner26

• route	discovery	does	not	hold	

• can	easily	be	fixed

Route	Discovery

97 Modelling, Verifying and Analysing AODV

There are many ways in which we could alter our AWN specification of AODV so as to ensure that
(F1)–(F3) are satisfied and thus need not be required as an extra part of our specification. For example,
Pro. 1 could be modified in a way such that the three different activities (Lines 1–20, Lines 21–32 and
Lines 33–39) are prioritised. The process could first initiate all route discovery processes, then handle
all queued data packets (for which a valid route is known) and finally handle a fixed number of received
messages (less if there are not enough messages in the queue). After the messages have been handled, the
modified process would loop back and start initiating route discovery processes again. However, for the
purpose of protocol specification we do not want to commit to any particular method of ensuring fairness.
Therefore we state fairness as an extra requirement without telling how it should be implemented.

When we later claim that an LTL formula f holds for AODV, as specified by (A) and (B) together,
this is equivalent to the claim that y) f holds for AODV as specified by (A) alone, where y is the
conjunction of all LTL formulas that make up the fairness specification (B).

9.2 Route Discovery

An important property that every routing protocol ought to satisfy is that if a route discovery process is
initiated in a state where the source is connected to the destination and during this process no (relevant)
link breaks, then the source will eventually discover a route to the destination. In case of AODV a route
discovery process is initiated when a route request is issued. So for any pair of IP addresses oip,dip 2 IP
the following should hold:

G
✓�

connected⇤(oip,dip) ^ broadcast(rreq(⇤ ,⇤ ,dip ,⇤ ,⇤ ,oip ,⇤ ,oip))
�

) F
�
dip 2 vDoip _ disconnect(⇤,⇤)

�
◆
.

Here, the predicate connected⇤(oip,dip) holds in state N iff there exist nodes ip0, . . . , ipn such that
ip0=oip, ipn=dip and ipi2Ripi�1

N for i=1, . . . ,n. The latter condition describes the fact that ipi is in
range of ipi�1.66 All other predicates follow the description of Page 90: broadcast(rreq(⇤ ,⇤ ,dip ,⇤ ,⇤ ,
oip ,⇤ ,oip)) models that node oip issues a request for a route from oip to dip; the predicate dip 2 vDoip

holds in state N iff dip 2 vDoip
N , i.e. oip has found a valid route to dip, and disconnect(⇤,⇤) is the action

of disconnecting any two nodes. By means of the last disjunct, the property does not require a route to
be found once any link in the network breaks.67

The following theorem might be a surprise.

Theorem 9.2 AODV does not satisfy the property route discovery.

We show this by an example (Figure 14). In particular, we show that a route reply may be dropped.
This problem has been raised before, back in Oct 2004.68 We discuss modifications of AODV to solve
this problem in Section 10.2. Figure 14 shows a network consisting of 3 nodes in a linear topology.
Two nodes (a and s) are both searching for a route to destination d.69 First, node a broadcasts a route
request, RREQ1 (Figure 14(b)). As usual all recipients update their routing tables. Since node s still
has no information about d, it also initiates a route request, RREQ2. After a has forwarded that request
(Figure 14(c)), d initiates a route reply as a consequence of RREQ1. When node a receives this reply, it
updates its own routing table (Figure 14(d)). Finally, node d reacts on the second route request received
(RREQ2) and sends yet another route reply. Node a receives RREP2, but does not forward it. This is

66Since the connectivity graph of AWN is always symmetric, this condition suffices to guarantee that both the RREQ message
and the RREP message reach their destinations.

67Here ¬disconnect(⇤,⇤) is the side condition y of (34).
68http://www.ietf.org/mail-archive/web/manet/current/msg05702.html shows the same shortcoming using a

4-node linear topology.
69In [48] we present a version of this example in a non-linear 4-node topology with symmetry between the two nodes that

search for a route to d.

(multihop)	connection	between	oil	and	dip

ANY	link	breaks

(c)	2017						P.	Höfner27

Example	of	Failure
A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 98

(a) The initial state. (b) a broadcasts a new RREQ message destined to d;
all nodes receive the RREQ and update their RTs.

s

1

d

1

a

1

s

1

(a,2,kno,val,1,a)

d

1

(a,2,kno,val,1,a)

a

2

(s,0,unk,val,1,s)

RREQ

1

RREQ

1

(c) s broadcasts a new RREQ destined to d;
a forwards it.

(d) d handles RREQ1 and unicasts a RREP to a.

s

2

(a,2,unk,val,1,a)

d

1

(a,2,unk,val,1,a)

(s,2,kno,val,2,a)

a

2

(s,2,kno,val,1,s)

RREQ

2

RREQ

2

s

2

(a,2,unk,val,1,a)

d

1

(a,2,unk,val,1,a)

(s,2,kno,val,2,a)

a

2

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

RREP

1

(e) d handles RREQ2 and unicasts a RREP to a. (f) This ends the work of AODV; s will never get an
answer for its RREQ.

s

2

(a,2,unk,val,1,a)

d

1

(a,2,unk,val,1,a)

(s,2,kno,val,2,a)

a

2

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

RREP

2

Figure 14: Route discovery fails

because RREP2 does not contain any fresher information about destination d, in comparison with the
information in node a’s existing routing table entry for d. As a result, RREP2 is dropped at node a, and
node s never receives a route reply for its route request. Looking at our model (Process 5), the node does
not forward a request since Line 1 evaluates to false whereas Line 26 evaluates to true. ut

At first glance, it seems that this behaviour can be fixed by a repeated route request. If node s
would initiate and broadcast another route request, node a would receive it and generate a route reply
immediately. The AODV RFC specifies that a node can broadcast another route request if it has not
received a route reply within a pre-defined time. However, a repeated route request does not guarantee
the receipt of a route reply. It is easy to construct an example similar to Figure 14 where, instead of a
linear topology with 3 nodes, we use a linear topology with n+2 nodes, where n is the maximum number
of repeated route requests.

But the situation is even worse. Even in a 4-node topology an infinite stream of repeated route
requests cannot guarantee route discovery. Figure 15 illustrates this fact.

In the initial state, node a has established a route to d via a standard RREQ-RREP cycle, initiated
by a. Subsequently, in Part (b), node b searches for a route to x (an arbitrary node that is not connected to
any of the nodes we consider). After d forwards the RREQ message destined for x, node a creates a valid
route to d with an unknown sequence number that equals d’s own sequence number.70 Now s initiates

(a) The initial state;
a established a route to d by a RREQ-RREP-cycle.

(b) b broadcasts a new RREQ destined to x;
the request travels through the network.

s

1

(a,2,kno,val,1,a)

d

1

(a,2,kno,val,1,a)

a

2

(d,1,kno,val,1,d)

(s,0,unk,val,1,s)

b

1

s

1

(a,2,unk,val,1,a)

(b,2,kno,val,3,a)

d

1

(a,2,unk,val,1,a)

(b,2,kno,val,1,b)

a

2

(b,2,kno,val,2,d)

(d,1,unk,val,1,d)

(s,0,unk,val,1,s)

b

2

(d,0,unk,val,1,d)

RREQ

1

R

R

E

Q

1

R

R

E

Q

1

Figure 15: Route discovery also fails with repeated request resending
70This examples hinges on our choice of Resolution (2c) of Ambiguity 2. Taking Resolutions (2a) or (2d) would avoid this

problem; another solution would be following the suggestion of I. Chakares in Footnote 29 on Page 35. We will propose a more
thorough solution, that also tackles the problem of Figure 14, in Section 10.2.

(c)	2017						P.	Höfner28

• route	deliver	does	not	hold	(even	with	the	fixed	route	discovery	algorithm)	

• but	this	is	normal	behaviour	of	any	routing	protocol	for	wireless	networks!

Packet	Delivery	(1)

99 Modelling, Verifying and Analysing AODV

(c) s broadcasts a new RREQ destined to d. (d) d sends a route reply for s back to a;
a drops the reply.

s

2

(a,2,unk,val,1,a)

(b,2,kno,val,3,a)

d

1

(a,2,unk,val,1,a)

(b,2,kno,val,1,b)

(s,2,kno,val,2,a)

a

2

(b,2,kno,val,2,d)

(d,1,unk,val,1,d)

(s,2,kno,val,1,s)

b

2

(d,0,unk,val,1,d)

R

R

E

Q

2

R

R

E

Q

2

s

2

(a,2,unk,val,1,a)

(b,2,kno,val,3,a)

d

1

(a,2,unk,val,1,a)

(b,2,kno,val,1,b)

(s,2,kno,val,2,a)

a

2

(b,2,kno,val,2,d)

(d,1,unk,val,1,d)

(s,2,kno,val,1,s)

b

2

(d,0,unk,val,1,d)

R

R

E

P

2

Figure 15 (cont’d): Route discovery also fails with repeated request resending

a route request, searching for a route to d. Since node a does not have a known sequence number for d
it may not generate an intermediate route reply (Pro. 4, Line 20 evaluate to false). Hence it forwards
the route request (Part (c)), and node d answers with a RREP message (Part (d)). However, node a will
not update its routing table entry for d, because it already has an entry with the same sequence number
and the same hop count (Line 1 of Pro. 5 evaluates to false whereas Line 26 evaluates to true). As a
consequence, a does not forward the route reply to s, and s will not create a route to d. Repeating the
route request by s will not help, as the same events will be repeated.

Both counterexamples show a failure in forwarding a route reply back to the originator of the route
discovery process. This travelling back can be seen as the second step of a route discovery process.
The first step consists of the route request travelling from the originator to either the destination or to a
node that has a valid route to the destination (with known sequence number) in its routing table. The
following property states that this step always succeeds: whenever a route request is issued in a state
where the source is connected to the destination and subsequently no link break occurs, then some node
will eventually send a route reply back towards the source.

G
✓�

connected⇤(oip,dip) ^ broadcast(rreq(⇤ ,⇤ ,dip ,⇤ ,⇤ ,oip ,⇤ ,oip))
�

) F
�
unicast(rrep(⇤ ,dip ,⇤ ,oip ,⇤) ,⇤) _ disconnect(⇤,⇤)

�
◆
.

This property does hold for AODV. Namely, Pro. 4 is structured in such a way that upon receipt of a
RREQ message, either a matching RREP is sent or the RREQ is forwarded. So if a route reply is never
generated, then the route request floods the network and reaches all nodes connected to the originator of
the request, which by assumption includes the destination—this would cause a RREP to be sent.

9.3 Packet Delivery

The property of packet delivery says that if a client injects a packet, it will eventually be delivered to
the destination. However, in a WMN it is not guaranteed that this property holds, since nodes can
get disconnected, e.g., due to node mobility. A useful formulation has to be weaker. A higher-layer
communication protocol should guarantee packet delivery only if an end-to-end route exists long enough.
More precisely, such a protocol should guarantee delivery of a packet injected by a client at node oip with
destination dip, when oip is connected to dip and afterwards no link in the network is disconnected. This
means that for all oip,dip 2 IP, and any data packet dp 2 DATA, the following should hold:

G
✓�

connected⇤(oip,dip) ^ oip : newpkt(dp,dip)
�

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤)

�
◆
. (PD1)

(c)	2017						P.	Höfner29

Example	of	Failure

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 100

(a) The initial state;
s has established a route to d.

(b) The topology changes.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

(c) s transfers a packet to a, for delivery at d. (d) a drops the packet and sends a RERR message to s.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

P

k

t

a

1

(d,2,kno,inv,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,2,kno,inv,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

R

E

R

R

P

k

t

Figure 16: Packet delivery property PD1 fails

Here oip :newpkt(dp,dip) models injection of a new data packet dp at oip, and dip :deliver(dp) that the
destination receives it. This formulation of packet delivery does not specify any particular route, but
merely requires that dp will eventually be delivered. The property does not require a packet to arrive
once any link in the network breaks down.

For a routing protocol like AODV, this form of packet delivery is a much too strong requirement. The
example of Figure 16 shows why it does not hold.

In the initial state node s has, through a standard RREQ-RREP cycle, established a route to d. After-
wards, the link between a and d breaks, and a new link between s and d is established. Subsequently, say
in state S, the application layer injects a data packet dp destined for d at node s. Based on the information
in its routing table, s transfers the packet to a. However, the packet is dropped by a when a fails to for-
ward the packet to d. To be precise, the reachable state S satisfies connected⇤(s,d) ^ s : newpkt(dp,d)
but there is a path from S that does not feature any state with d : deliver(dp) or disconnect(⇤,⇤).

This failure of (PD1) is normal behaviour of a routing protocol. A higher layer in the network stack
(e.g. the transport or the application layer) may use an acknowledgement and retransmission protocol on
top of its use of a routing protocol, and this combination might guarantee (PD1). For the routing protocol
itself, it suffices that a packet will eventually be delivered if the client (higher-layer protocol) injects the
same data packet again and again, until the packet has reached the destination. This gives rise to the
following weaker form of packet delivery:

G
✓ �

connected⇤(oip,dip) ^ oip : newpkt(dp,dip)
�

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
. (PD2)

This is the property (PD1), but under the side condition y = F
�
oip : newpkt(dp,dip)

�
that is required

to hold after the initial injection of the data packet and until the packet is delivered—see (34). This side
condition says that one will keep injecting copies of the same data packet, i.e. every state for which y

holds is followed by one where such a packet is injected. In (PD2), the clause oip : newpkt(dp,dip) in
the precondition is redundant, as it is implied by the side condition y . Moreover, by the equivalence of

destination

sequence	number  
(freshness)

(dip, sqn, k, v, hc, nhip)

known/
unknown

next	hop

hop	count 
avalidity

(c)	2017						P.	Höfner

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 100

(a) The initial state;
s has established a route to d.

(b) The topology changes.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

(c) s transfers a packet to a, for delivery at d. (d) a drops the packet and sends a RERR message to s.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

P

k

t

a

1

(d,2,kno,inv,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,2,kno,inv,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

R

E

R

R

P

k

t

Figure 16: Packet delivery property PD1 fails

Here oip :newpkt(dp,dip) models injection of a new data packet dp at oip, and dip :deliver(dp) that the
destination receives it. This formulation of packet delivery does not specify any particular route, but
merely requires that dp will eventually be delivered. The property does not require a packet to arrive
once any link in the network breaks down.

For a routing protocol like AODV, this form of packet delivery is a much too strong requirement. The
example of Figure 16 shows why it does not hold.

In the initial state node s has, through a standard RREQ-RREP cycle, established a route to d. After-
wards, the link between a and d breaks, and a new link between s and d is established. Subsequently, say
in state S, the application layer injects a data packet dp destined for d at node s. Based on the information
in its routing table, s transfers the packet to a. However, the packet is dropped by a when a fails to for-
ward the packet to d. To be precise, the reachable state S satisfies connected⇤(s,d) ^ s : newpkt(dp,d)
but there is a path from S that does not feature any state with d : deliver(dp) or disconnect(⇤,⇤).

This failure of (PD1) is normal behaviour of a routing protocol. A higher layer in the network stack
(e.g. the transport or the application layer) may use an acknowledgement and retransmission protocol on
top of its use of a routing protocol, and this combination might guarantee (PD1). For the routing protocol
itself, it suffices that a packet will eventually be delivered if the client (higher-layer protocol) injects the
same data packet again and again, until the packet has reached the destination. This gives rise to the
following weaker form of packet delivery:

G
✓ �

connected⇤(oip,dip) ^ oip : newpkt(dp,dip)
�

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
. (PD2)

This is the property (PD1), but under the side condition y = F
�
oip : newpkt(dp,dip)

�
that is required

to hold after the initial injection of the data packet and until the packet is delivered—see (34). This side
condition says that one will keep injecting copies of the same data packet, i.e. every state for which y

holds is followed by one where such a packet is injected. In (PD2), the clause oip : newpkt(dp,dip) in
the precondition is redundant, as it is implied by the side condition y . Moreover, by the equivalence of

30• add	side	condition:	 
(keep	injecting	the	same	packet	again	and	again)	

• seems	to	be	reasonable	formalisation	for	a	routing	protocol;	

• still	it	is	too	strong	for	AODV	(a	flow!)  
(there	is	a	problem	with	the	flag)

Packet	Delivery	(2)

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 100

(a) The initial state;
s has established a route to d.

(b) The topology changes.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

(c) s transfers a packet to a, for delivery at d. (d) a drops the packet and sends a RERR message to s.

a

1

(d,1,kno,val,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,1,kno,val,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

P

k

t

a

1

(d,2,kno,inv,1,d)

(s,2,kno,val,1,s)

s

2

(a,0,unk,val,1,a)

(d,2,kno,inv,2,a)

d

1

(a,0,unk,val,1,a)

(s,2,kno,val,2,a)

R

E

R

R

P

k

t

Figure 16: Packet delivery property PD1 fails

Here oip :newpkt(dp,dip) models injection of a new data packet dp at oip, and dip :deliver(dp) that the
destination receives it. This formulation of packet delivery does not specify any particular route, but
merely requires that dp will eventually be delivered. The property does not require a packet to arrive
once any link in the network breaks down.

For a routing protocol like AODV, this form of packet delivery is a much too strong requirement. The
example of Figure 16 shows why it does not hold.

In the initial state node s has, through a standard RREQ-RREP cycle, established a route to d. After-
wards, the link between a and d breaks, and a new link between s and d is established. Subsequently, say
in state S, the application layer injects a data packet dp destined for d at node s. Based on the information
in its routing table, s transfers the packet to a. However, the packet is dropped by a when a fails to for-
ward the packet to d. To be precise, the reachable state S satisfies connected⇤(s,d) ^ s : newpkt(dp,d)
but there is a path from S that does not feature any state with d : deliver(dp) or disconnect(⇤,⇤).

This failure of (PD1) is normal behaviour of a routing protocol. A higher layer in the network stack
(e.g. the transport or the application layer) may use an acknowledgement and retransmission protocol on
top of its use of a routing protocol, and this combination might guarantee (PD1). For the routing protocol
itself, it suffices that a packet will eventually be delivered if the client (higher-layer protocol) injects the
same data packet again and again, until the packet has reached the destination. This gives rise to the
following weaker form of packet delivery:

G
✓ �

connected⇤(oip,dip) ^ oip : newpkt(dp,dip)
�

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
. (PD2)

This is the property (PD1), but under the side condition y = F
�
oip : newpkt(dp,dip)

�
that is required

to hold after the initial injection of the data packet and until the packet is delivered—see (34). This side
condition says that one will keep injecting copies of the same data packet, i.e. every state for which y

holds is followed by one where such a packet is injected. In (PD2), the clause oip : newpkt(dp,dip) in
the precondition is redundant, as it is implied by the side condition y . Moreover, by the equivalence of

101 Modelling, Verifying and Analysing AODV

(34), (PD2) can also be formulated as

G
✓�

connected⇤(oip,dip) ^ GF
�
oip : newpkt(dp,dip)

��

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤)

�
◆
.

Here, GF
�
oip : newpkt(dp,dip)

�
states that the injection of the data packet dp at node oip will be re-

peated infinitely often.71 If during that time no two nodes get disconnected, the packet will eventually be
delivered at its destination dip.

Continuing the example of Figure 16, in Part (d), node a sends a route error message to s, as a result
of which s invalidates its routing table entry for d. If now a new data packet destined for d is injected at
s, node s initiates a new route discovery process and finds the 1-hop connection. As a result of this, the
packet will be delivered at d, as required by (PD2).

(PD2) appears to be a reasonable packet delivery property for a routing protocol like AODV. Yet, it
is still too strong for our purposes. A failure of (PD2) can occur easily in the following scenario: node
oip has a packet for node dip, and initiates a route discovery process by issuing a route request, while
setting the request-required flag for the route towards dip to no-req. The route request reaches dip, but
the corresponding route reply is lost on the way back to oip, due to a link break. From that moment
onwards the topology remains stable and a route from oip to dip exists. We may even assume that it
would be found if only oip does a second route request. However, such a second route request will never
happen because the request-required flag keeps having the value no-req in perpetuity.

This failure of (PD2) is a flaw of our model rather than of AODV. A more realistic model would
specify that the request-required flag cannot keep the value no-req forever. After a timeout, either the
flag should revert to req, so that a new route request will be made, or the entire queue of data packets
destined to dip will be dropped, so that a newly injected packet will start a fresh queue, which is initialised
with a request-required flag req. Such modelling requires timing primitives; however, since we abstract
from timing issues, we did not build such a feature into our packet handling routine.

To compensate for this omission, we add a precondition to the packet delivery property, namely that if
oip perpetually has queued packets for dip but no valid route to dip, then eventually the request-required
flag at oip for destination dip will be set to req:

G
�
G(dip 2 qDoip �vDoip)) F(soip

p-flag(dip) = req)
�

Adding this precondition to (PD2) yields (PD3), our final packet delivery property:

G
�
G(dip 2 qDoip �vDoip)) F

�
s

oip
p-flag(dip) = req

�

) G
✓

connected⇤(oip,dip)
) F

�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
.

(PD3)

This property ought to be satisfied by a protocol like AODV. Nevertheless,

Theorem 9.3 AODV does not satisfy the property packet delivery.

Figure 15 presents an example where an infinite stream of repeated route request does not result in route
discovery, let alone in packet delivery.

Figure 17 shows yet another counterexample against packet delivery, this time when the route dis-
covery property is satisfied. Initially, node d requests a route to b (Figure 17(a)). As a result, a creates
a routing table entry for d, with an empty set of precursors.72 In Part (b), the reply is sent from node b

71Due to the existence of finite complete paths, the formula GF
�
oip : newpkt(dp,dip)

�
also holds for complete paths whose

final state satisfies oip : newpkt(dp,dip). However, in our specification of AODV such complete paths do not occur.
72In fact, in this example all lists of precursors are empty.

(c)	2017						P.	Höfner

31• add	another	side	condition:	 
(keep	injecting	the	same	packet	again	and	again)	

• seems	(even	more)	to	be	a	reasonable	formalisation	for	a	routing	protocol;	

• still	AODV	does	not	satisfy	this	property	either 
(now	the	problem	lies	in	precursor	lists;	these	lists	contain	neighbours	
interested	in)

Packet	Delivery	(3)

101 Modelling, Verifying and Analysing AODV

(34), (PD2) can also be formulated as

G
✓�

connected⇤(oip,dip) ^ GF
�
oip : newpkt(dp,dip)

��

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤)

�
◆
.

Here, GF
�
oip : newpkt(dp,dip)

�
states that the injection of the data packet dp at node oip will be re-

peated infinitely often.71 If during that time no two nodes get disconnected, the packet will eventually be
delivered at its destination dip.

Continuing the example of Figure 16, in Part (d), node a sends a route error message to s, as a result
of which s invalidates its routing table entry for d. If now a new data packet destined for d is injected at
s, node s initiates a new route discovery process and finds the 1-hop connection. As a result of this, the
packet will be delivered at d, as required by (PD2).

(PD2) appears to be a reasonable packet delivery property for a routing protocol like AODV. Yet, it
is still too strong for our purposes. A failure of (PD2) can occur easily in the following scenario: node
oip has a packet for node dip, and initiates a route discovery process by issuing a route request, while
setting the request-required flag for the route towards dip to no-req. The route request reaches dip, but
the corresponding route reply is lost on the way back to oip, due to a link break. From that moment
onwards the topology remains stable and a route from oip to dip exists. We may even assume that it
would be found if only oip does a second route request. However, such a second route request will never
happen because the request-required flag keeps having the value no-req in perpetuity.

This failure of (PD2) is a flaw of our model rather than of AODV. A more realistic model would
specify that the request-required flag cannot keep the value no-req forever. After a timeout, either the
flag should revert to req, so that a new route request will be made, or the entire queue of data packets
destined to dip will be dropped, so that a newly injected packet will start a fresh queue, which is initialised
with a request-required flag req. Such modelling requires timing primitives; however, since we abstract
from timing issues, we did not build such a feature into our packet handling routine.

To compensate for this omission, we add a precondition to the packet delivery property, namely that if
oip perpetually has queued packets for dip but no valid route to dip, then eventually the request-required
flag at oip for destination dip will be set to req:

G
�
G(dip 2 qDoip �vDoip)) F(soip

p-flag(dip) = req)
�

Adding this precondition to (PD2) yields (PD3), our final packet delivery property:

G
�
G(dip 2 qDoip �vDoip)) F

�
s

oip
p-flag(dip) = req

�

) G
✓

connected⇤(oip,dip)
) F

�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
.

(PD3)

This property ought to be satisfied by a protocol like AODV. Nevertheless,

Theorem 9.3 AODV does not satisfy the property packet delivery.

Figure 15 presents an example where an infinite stream of repeated route request does not result in route
discovery, let alone in packet delivery.

Figure 17 shows yet another counterexample against packet delivery, this time when the route dis-
covery property is satisfied. Initially, node d requests a route to b (Figure 17(a)). As a result, a creates
a routing table entry for d, with an empty set of precursors.72 In Part (b), the reply is sent from node b

71Due to the existence of finite complete paths, the formula GF
�
oip : newpkt(dp,dip)

�
also holds for complete paths whose

final state satisfies oip : newpkt(dp,dip). However, in our specification of AODV such complete paths do not occur.
72In fact, in this example all lists of precursors are empty.

101 Modelling, Verifying and Analysing AODV

(34), (PD2) can also be formulated as

G
✓�

connected⇤(oip,dip) ^ GF
�
oip : newpkt(dp,dip)

��

) F
�
dip : deliver(dp) _ disconnect(⇤,⇤)

�
◆
.

Here, GF
�
oip : newpkt(dp,dip)

�
states that the injection of the data packet dp at node oip will be re-

peated infinitely often.71 If during that time no two nodes get disconnected, the packet will eventually be
delivered at its destination dip.

Continuing the example of Figure 16, in Part (d), node a sends a route error message to s, as a result
of which s invalidates its routing table entry for d. If now a new data packet destined for d is injected at
s, node s initiates a new route discovery process and finds the 1-hop connection. As a result of this, the
packet will be delivered at d, as required by (PD2).

(PD2) appears to be a reasonable packet delivery property for a routing protocol like AODV. Yet, it
is still too strong for our purposes. A failure of (PD2) can occur easily in the following scenario: node
oip has a packet for node dip, and initiates a route discovery process by issuing a route request, while
setting the request-required flag for the route towards dip to no-req. The route request reaches dip, but
the corresponding route reply is lost on the way back to oip, due to a link break. From that moment
onwards the topology remains stable and a route from oip to dip exists. We may even assume that it
would be found if only oip does a second route request. However, such a second route request will never
happen because the request-required flag keeps having the value no-req in perpetuity.

This failure of (PD2) is a flaw of our model rather than of AODV. A more realistic model would
specify that the request-required flag cannot keep the value no-req forever. After a timeout, either the
flag should revert to req, so that a new route request will be made, or the entire queue of data packets
destined to dip will be dropped, so that a newly injected packet will start a fresh queue, which is initialised
with a request-required flag req. Such modelling requires timing primitives; however, since we abstract
from timing issues, we did not build such a feature into our packet handling routine.

To compensate for this omission, we add a precondition to the packet delivery property, namely that if
oip perpetually has queued packets for dip but no valid route to dip, then eventually the request-required
flag at oip for destination dip will be set to req:

G
�
G(dip 2 qDoip �vDoip)) F(soip

p-flag(dip) = req)
�

Adding this precondition to (PD2) yields (PD3), our final packet delivery property:

G
�
G(dip 2 qDoip �vDoip)) F

�
s

oip
p-flag(dip) = req

�

) G
✓

connected⇤(oip,dip)
) F

�
dip : deliver(dp) _ disconnect(⇤,⇤) _ ¬F

�
oip : newpkt(dp,dip)

��
◆
.

(PD3)

This property ought to be satisfied by a protocol like AODV. Nevertheless,

Theorem 9.3 AODV does not satisfy the property packet delivery.

Figure 15 presents an example where an infinite stream of repeated route request does not result in route
discovery, let alone in packet delivery.

Figure 17 shows yet another counterexample against packet delivery, this time when the route dis-
covery property is satisfied. Initially, node d requests a route to b (Figure 17(a)). As a result, a creates
a routing table entry for d, with an empty set of precursors.72 In Part (b), the reply is sent from node b

71Due to the existence of finite complete paths, the formula GF
�
oip : newpkt(dp,dip)

�
also holds for complete paths whose

final state satisfies oip : newpkt(dp,dip). However, in our specification of AODV such complete paths do not occur.
72In fact, in this example all lists of precursors are empty.

(c)	2017						P.	Höfner32

Example	of	FailureA. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 102

(a) d broadcasts a new RREQ message destined to b;
the RREQ floods the network; s creates a route to d.

(b) b handles RREQ1 and unicasts a reply back to d.

s

1

(a,0,unk,val,1,a)

(d,2,kno,val,2,a)

b

1

(a,2,kno,val,1,a)

(s,0,unk,val,1,s)

a

1

(d,2,kno,val,1,d)

(s,0,unk,val,1,s)

d

2

(a,0,unk,val,1,a)

RREQ

1

R
R
E
Q

1

R
R
E
Q

1

RREQ

1

s

1

(a,0,unk,val,1,a)

(d,2,kno,val,2,a)

b

1

(a,2,kno,val,1,a)

(s,0,unk,val,1,s)

a

1

(d,2,kno,val,1,d)

(s,0,unk,val,1,s)

d

2

(a,0,unk,val,1,a)

(b,1,kno,val,1,b)

RREP

1

(c) The topology changes;
s receives a data packet destined to d.

(d) a tries to forward data packet to d;
packet delivery fails.

s

1

(a,0,unk,val,1,a)

(d,2,kno,val,2,a)

b

1

(a,2,kno,val,1,a)

(s,0,unk,val,1,s)

a

1

(d,2,kno,val,1,d)

(s,0,unk,val,1,s)

d

2

(a,0,unk,val,1,a)

(b,1,kno,val,1,b)

Pkt

s

1

(a,0,unk,val,1,a)

(d,2,kno,val,2,a)

b

1

(a,2,kno,val,1,a)

(s,0,unk,val,1,s)

a

1

(d,3,kno,inv,1,d)

(s,0,unk,val,1,s)

d

2

(a,0,unk,val,1,a)

(b,1,kno,val,1,b)

P
k
t

Figure 17: Precursor maintenance limits packet delivery ratio

to node d. Afterwards, in Part (c), the link between a and d breaks. From here on the topology remains
stable, and connected⇤(s,d) holds. In Part (c) the application layer injects a packet at s for delivery at d.
Since s already has a routing table entry for d, no new route request needs to be initiated, and the packet
can be sent right away. Unfortunately, the packet is dropped when a fails to forward it to d. Node a inval-
idates its entry, but has no precursors for the route to d to send an error message to.73 As a consequence,
s will not learn about the broken link, and all subsequent packets travelling from s to d will be dropped
at a (Pro. 3, Lines 15–20).

10 Analysing AODV—Problems and Improvements

In this section we point at shortcomings of the AODV protocol and discuss possible solutions. The
solutions are again modelled in our process algebra. This makes it easy to ensure that the presented
improvements are unambiguous and still satisfy the invariants discussed in the Section 7. In particular
we show that all variants of AODV presented in the remainder of this section are loop free and satisfy
the route correctness property.

More precisely we propose five changes to the AODV protocol.
In Section 10.1 we show that the route request identifier (RREQ ID) is redundant and can be dropped

from the specification of AODV without changing the behaviour of the protocol in any way. This is a
small improvement, but reduces the size of message headers.

In Sections 10.2–10.4 we address three deficiencies of AODV that each cause a failure of the packet
delivery property discussed in Section 9. The first two deal with failures of the route discovery property,
which is a necessary precondition to ensure packet delivery.

73The same behaviour occurs when node a detects the link break earlier, for instance by using Hello messages.

(c)	2017						P.	Höfner33

• Invariants	
• often	depend	on	local	data	structure	
• hence	system	dependent	
• for	automatic	analysis	local	data	structure	can	be	complicated	

• Reachability	
• problems	with	progress	and	fairness  
(needs	careful	decisions)	

• (weak/strong)	fairness	is	often	too	strong	
• properties	should	be	(more	or	less)	independent	of	the	protocol	
• are	they?

Summary

(c)	2017						P.	Höfner34

• A.	Fehnker,	R.J.	van	Glabbeek,	P.	Höfner,	M.	Portmann,	A.	McIver	and	W.L.	Tan:	
A	Process	Algebra	for	Wireless	Mesh	Networks	used	for	Modelling,	Verifying	
and	Analysing	AODV.	Technical	Report	5513,	NICTA.	2013.  
arXiv:	CoRR	abs/1312.7645	

• R.J.	van	Glabbeek	and	P.	Höfner:	Progress,	Fairness	and	Justness	in	Process	
Algebra.	arXiv:	CoRR	abs/1501.03268	

• Z.	Manna		and	A.	Pnueli:	Temporal	Verification	of	Reactive	Systems	-	Safety. 
Springer,	1995

References

http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1501.03268

