| | I |
/ N NS S IANNSN

I b1 NS NSNS NSN N

[I
\ / ~ /\I/ I/\I \I/\

N N\~ 7~

Modelling and Verification of P

: |
Protocols for Wireless Networks -
(Lecture 5) | |
Peter Hofner / \

(Lecture at University of Twente, Jan/Feb 2017)

last update: Jan 31, 2017

http://www.data61.csiro.au

Admin - Next Week “TuT | %

* Monday: Last Lecture: Q&A and open problems
e Monday afternoon: last lab - discussion of individual projects
e Tuesday morning: Oral exams in Zi 3063

2 (c) 2017 P. Hofner

. pd
Contents of this Lecture -
What should you have learnt N~

® Formalising Properties

¢ |nvariants
 local vs global properties

® Reachability
e problems
* progress
 fairness and its problems

3 (c) 2017 P. Hofner

Invariants

. v
Invariants Dama | %
N~

For an assertion ¢, L
! statement true for initial state

Bl. © — ¢

B2 {p} T {¢}

show for a single step
O
Fig. 1.1. Rule INv-B (basic invariance). Z:.:Trr .'av.'ﬁ,"e'n'.“
Temporal Verification

of Reactive Systems

5 (c) 2017 P. Hofner

Auxiliary Invariants for AODV DATA | %

¢ All routing table entries have a hop count greater or equal than 1.

(%, %, %, %, hops, *,%) € c‘._’;]z)(rt) = hops > 1

just some decoration to identify node,
and state of the network

() (c) 2017 P. Hofner

[J [] [J /
Auxiliary Invariants (o | @y
N~

e Easy to encode (pen and paper; Uppaal; Isabelle/HOL)
e only concern sequential processes (local state)

7 (c) 2017 P. Hofner

pd
Loop Freedom Iy %
N~

* The quality of the routing table entries for a destination dip is strictly increasing
along a route towards dip, until it reaches either dip or a node with an invalid
routing table entry to dip.

dip € vDP \vD"P A nhip # dip = rt) Caip rt)

e property of networks (not sequential process any more)
e but &, the evaluation function, is locally defined for seq. processes

8 (c) 2017 P. Hofner

Loop Freedom - Encoding oo | o
N~

® Pen-and-Paper analysis
e easy: just make up new notation (as we did)

9 (c) 2017 P. Hofner

Reachability Properties
(based on LTL or CTL)

CTL - Recap @m/ | D

* interpreted over transition systems
(that can be derived from the SOS rules of AWN)

¢ built from atomic propositions, e.g. “two nodes are connected”
e Synta)

True is in CTL

x € Pisin CTL

P,Q € CTL,-P e CTLand PA Q € CTL
EXpisinCTLif pisin CTL

AX pisin CTLif ¢ isin CTL

A (1 UNTIL ¢2) is in CTL if 1, 92 € CTL,
E (¢1 UNTIL) isin CTL if 1,2 € CTL,

11 (c) 2017 P. Hofner

LTL - Recap @m/ D

¢ evaluated on paths, so it does not requires A- and E-operators

12 (c) 2017 P. Hofner

vd
Leads-To [@y
N7
e AG(pP = AFpret)

e sometimes a side condition, which will hold “constantly” should be added

AG(p"® = AF(¢P" Vv)

13 (c) 2017 P. Hofner

e
Progress | DATA |
@

r

(2
—)O a >O T ><Ct)
S

¢ system stops in state s without ever forming an internal transition

e F'9 should be true when in state s, but not necessarily in state g, e.g.,
when a is a receive action

A process in a state that admits an internal transition t
or and output transition will eventually perform a transition.

14 (c) 2017 P. Hofner

Output Transitions @m D
N~

* sometimes also called output actions
(since the output transitions are completely determined by the actions).

e in AWN, on the layer of entire networks, assignments, guards, etc. were
encoded as internal actions, so the only output transitions are

ip : deliver(d)

R : x cast(m)

broadcast(m), groupcast(D,m), unicast(dip, m), ~unicast(dip, m)

15 (c) 2017 P. Hofner

Progress DATA | %

in Uppaal and other formalisms N7
¢ Uppaal

» use of committed/urgent states

* use of invariants (in the timed model)

e early work on temporal logics considered only infinite (and unlabelled) paths

e more general: consider complete paths

* a path to be complete iff it is either infinite or ends in a state from which no
further internal or output transitions are possible

* properties are satisfied iff they hold on all complete paths

16 (c) 2017 P. Hofner

e
Justness | o | @y

e does G(a = F(v)) hold?

A component in a parallel composition in a state that admits an internal or output
transition will eventually perform a transition.

17 (c) 2017 P. Hofner

Justness in AWN @m D
N~

¢ defined via the entire hierarchy of layers
¢ avoids the existence of premature paths

* a path starting from any AWN expression (i.e. a sequential or parallel process
expression, a node expression or (partial) network expression) ends
prematurely if it is finite and from its last state an internal or output
transitions is possible.

* refinement of the definition of a complete path

e using this definition G(a = F(1)) holds

e Justness in Uppaal: | do not know

18 (c) 2017 P. Hofner

. 7~
Fairness | 2 | Dy
N~

* G(a = F(v)) does not hold under justness
e often global fairness assumptions are made
» weak: if a transition is enabled continuously, it will be taken infinitely often

F G(enabled(a)) = GF(a)

* strong: if a transition is enable infinitely often, it will be taken infinitely often

G F(enabled(a)) = GF(a)

19 (c) 2017 P. Hofner

Fairness may be too strong o | ®

® non-deterministic choice may always choose “the other” transition
e in AWN, we consider all occurrences of choice, and decide individually

* e.g. choice in the main process (Lines 21 ,33)
here we postulate a weak fairness assumption

20 (c) 2017 P. Hofner

. . e
Why Fairness is dangerous 5" D
N~

® Consider the following two programs

r:=1 || repeat y:=y-+1 forever

repeat
case
if True then y:=y+1 fi
if =0 then x:=1 fi
end
forever

e side remark: these programs are bisimilar

21 (c) 2017 P. Hofner

. 7~
Main Process (cont’d) | @
N~

21. + [Let dip € gqD(store) NvD(rt)] /* send a queued data packet if a valid route is known */
2. [[data:=head(0gueue(store,dip))ll
23. unicast(nhop(rt,dip),pkt(data,dip,ip)) .

24, [store :=drop(dip,store)] /* drop data from the store for dip if the transmission was successful */
25. AODV(ip,sn,rt,rreqs,store)

26. » /* an error is produced and the routing table is updated */

27. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip)=nhop(rt,dip)}]

28. [rt := invalidate(rt,dests)]

29, [store := setRRF(store,dests)]

30. [pre := U{precs(rt,rip)|(rip,*) € dests}]|

31. [dests:= {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]

32. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)

33. + [Let dip € gD(store) — vD(rt) A Gp_ﬂag(store,dip) =req] /* a route discovery process is initiated */
3. [[store:=unsetRRF(store,dip)] /* set request-required flag to no-req */

35. [[sn:=inc(sn)]l /* increment own sequence number */

36. /*update rreqs by adding (ip,nrreqid(rreqs,ip)) */

37. [[rreqid :=nrreqid(rreqs,ip)]l

38. [[rregs:=rreqsU{(ip,rreqid)}]

3. broadcast(rreq(0,rreqid,dip,sqn(rt,dip),sqnf(rt,dip),ip,sn,ip)) . AODV(ip,sn,rt,rreqs,store)

22 (c) 2017 P. Hofner

Fairness Assumptions for AODV 0T | @y

e whenever the node ip perpetually has queued packets for dip as well as a (valid)
route to dip, it will eventually forward a data packet originating from ip towards

dip
G(G(dip € qD” ﬂvDip) = F(unicast(* , Pkt (* ,dip,ip))))

e whenever ip perpetually has queued packets for dip but no valid route to dip,
then node ip does issue a request for a route from ip to dip
(is also considers a request-required flag)

G(G(dip € qp” —vD? A o

p_ﬂag(dip) —=req) = F(broadcast(rreq(«,*,dip,*,x,ip,*,ip))))

e there is no need to formalise a fairness assumption for Line 1 — Why?

23 (c) 2017 P. Hofner

Fairness Assumption for QMSG @m D
N~

e whenever there is a stored message, it will be passed on
G(G(msgs” #[]) = F(ip:send(x)))

24 (c) 2017 P. Hofner

Properties for AODV

. e
Route Discovery o | @y
N

G (connected*(oip,dip) A broadcast(rreq(x,x,dip,*,*,0ip,*,0ip)))
= F(dip € vD°? Vv disconnect(x, *))

(multihop) connection between oil and dip

ANY link breaks

¢ route discovery does not hold
e can easily be fixed

26 (c) 2017 P. Hofner

Example of Failure

e
£
Gl

(a) The initial state.

(b) a broadcasts a new RREQ message destined to d;
all nodes receive the RREQ and update their RTs.

OO

(a,2,kno,val,1,a) (s,0,unk,val,1,s) (a,2,kno,val,1,a)

(c) s broadcasts a new RREQ destined to d;
a forwards it.

OO0

(a,2,unk,val,1,a) (s,2,kno,val,1,s) (a,2,unk,val,1,a)
(s,2,kno,val,2,a)

(d) d handles RREQ; and unicasts a RREP to a.

@ @(RREP; @

(a,2,unk,val,1,a) (d,1,kno,val,1,d) (a,2,unk,val,1,a)
(s,2,kno,val,1,s) (s,2,kno,val,2,a)

(e) d handles RREQ, and unicasts a RREP to a.

@ @(RREP, @

(a,2,unk,val,1,a) (d,1,kno,val,1,d) (a,2,unk,val,1,a)
(s,2,kno,val,1,s) (s,2,kno,val,2,a)

(f) This ends the work of AODV; s will never get an
answer for its RREQ.

27 (c) 2017 P. Hofner

Packet Delivery (1) (o | Do
N~

G (connected”(oip,dip) A oip : newpkt(dp,dip))
= F(dip : deliver(dp) V disconnect(x,x))

e route deliver does not hold (even with the fixed route discovery algorithm)
e but this is normal behaviour of any routing protocol for wireless networks!

28 (c) 2017 P. Hofner

Example of Failure (4. sgn. k. v, he. nhip) ATA | @
\/

[destination next hop
sequence number || known/ hop count
(freshness) unknown validity

(a) The initial state; (b) The topology changes
s has established a route to d.
(d,1,kno,val,1,d) (d,1,kno,val,1,d)
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a)
(d,1,kno,val,2,a) (s,2,kno,val,2,a) (d,1,kno,val,2,a) (s,2,kno,val,2,a)
(c) s transfers a packet to a, for delivery at d. (d) a drops the packet and sends a RERR message to s.
(d,1,kno,val,1,d) (d,2,kno,inv,1,d)
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a)
(d,1,kno,val,2,a) (s,2,kno,val,2,a) (d,2,kno,inv,2,a) (s,2,kno,val,2,a)

29 (c) 2017 P. Hofner

Packet Delivery (2) (o | Do
N~

G (connected* (oip,dip) A GF (oip : newpkt(dp,dip)))
= F(dip : deliver(dp) Vv disconnect(x,x))

e add side condition: ¥ = F(oip : newpkt(dp,dip))
(keep injecting the same packet again and again)

e seems to be reasonable formalisation for a routing protocol;

o still it is too strong for AODV (a flow!)
(there is a problem with the flag)

(c) 2017 P. Hofner

Packet Delivery (3) (o | Do
N~

G(G(dip € qD”? —vD?) = F(G;l_%ag (dip) = req)
connected” (oip, dip))

= G
(:> F(dip : deliver(dp) V disconnect(x,*) V —F (oip : newpkt(dp,dip)))

e add another side condition: G(G(dip € q0°? —vD*?) = F(o" (dip) =req))
(keep injecting the same packet again and again)

e seems (even more) to be a reasonable formalisation for a routing protocol;

e still AODV does not satisfy this property either

(now the problem lies in precursor lists; these lists contain neighbours
interested in)

(c) 2017 P. Hofner

Example of Failure

(a) d broadcasts a new RREQ message destined to b;

the RREQ floods the network; s creates a route to d.

(a,0,unk,val,1,a) (d,2,kno,val,1,d)
(d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1, s)

(b) b handles RREQ; and unicasts a reply backto &

(a,0,unk,val,1,a) (d,2,kno,val,1,d)
(d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1,s) (b,1,kno,val,1,b)

(c) The topology changes;
s receives a data packet destined to d.

(a,0,unk,val,1,a) (d,2,kno,val,1,d)
(d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1,s) (b,1,kno,val,1,b)

(d) a tries to forward data packet to d;
packet delivery fails.

(a,0,unk,val,1,a) (d,3,kno,inv,1,d)
(d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1,s) (b,1,kno,val,1,b)

32

(c) 2017 P. Hofner

e
Summary @m)%

® |nvariants
» often depend on local data structure

* hence system dependent
» for automatic analysis local data structure can be complicated

® Reachability

* problems with progress and fairness
(needs careful decisions)

* (weak/strong) fairness is often too strong
» properties should be (more or less) independent of the protocol

e are they?

33 (c) 2017 P. Hofner

References 0aTh. | @y

® A. Fehnker, R.J. van Glabbeek, P. Hofner, M. Portmann, A. Mclver and W.L. Tan:
A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying
and Analysing AODV. Technical Report 5513, NICTA. 2013.
arXiv: CoRR abs/1312.7645

e R.J. van Glabbeek and P. Hofner: Progress, Fairness and Justness in Process
Algebra. arXiv: CoRR abs/1501.03268

e 7. Manna and A. Pnueli: Temporal Verification of Reactive Systems - Safety.
Springer, 1995

34 (c) 2017 P. Hofner

http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1501.03268

