

Modelling and Verification of Protocols for Wireless Networks

(Lecture 6)

Peter Höfner

(Lecture at University of Twente, Jan/Feb 2017)

Contents of this Lecture

What should you have learnt

- What's Isabelle/HOL
- Encoding AWN/AODV in Isabelle
 - problems and challenges
 - overall structure

Isabelle/HOL

Isabelle

- generic interactive proof assistant
 - generic: not specialised to one particular logic
 - interactive: more than just yes/no, you can interactively guide the system
 - proof assistant:
 helps to explore, find, and maintain proofs
 allows mathematical formulas to be expressed in a formal language
- main application is the formalisation of mathematical proofs and in particular formal verification
- originally developed at the U Cambridge and TU München
 - now includes numerous contributions, including Data61
- developed since the 80s

Isabelle/HOL

- most widespread instance of Isabelle
- provides a higher-order logic theorem proving environment
- includes powerful specification tools, e.g. for (co)datatypes, (co)inductive definitions and recursive functions with complex pattern matching.
- Proofs are often conducted in the structured proof language Isar
 - allows for proof text naturally understandable for humans

Isabelle - An Introduction

 Concrete Semantics by G. Klein and T. Nipkow

 it's available online http://concrete-semantics.org/

If I use Isabelle, it's correct?

- NO,
 - implementation/specification could be faulty
 - logic could be inconsistent
 - theorem could mean something else

but assurance is increased

AWN, AODV, and Loop Freedom

- Why bother?
 - Can such a 'manual' proof be trusted (over time)?
 - The coarse structure of the proof is much looser than the fine details (i.e., the individual invariants)
 - Formalising it turns out to be an interesting challenge
 - Reuse the development
 - Changes to/variants of AODV
 - Development of new protocols
 - Provide a formal specification for verifying implementations?

AWN in Isabelle

Theorem: Loop Freedom


```
closed (pnet (\lambda i. paodv i \langle \langle qmsg \rangle n \rangle \models netglobal (<math>\lambda \sigma . \forall dip. irrefl ((rt-graph <math>\sigma dip)^+))
                                                                     description of the network
lemma net_nhop_quality_increases:
 assumes "wf_net_tree n"
 shows "closed (pnet (\lambda i. paodv i \langle\langle \text{ qmsg} \rangle n) \models netglobal
                         (\lambda \sigma. \forall i \text{ dip. let nhip} = \text{the (nhop (rt } (\sigma i)) \text{ dip)}
                                      in dip \in vD (rt (\sigma i)) \cap vD (rt (\sigma nhip)) \wedge nhip \neq dip
                                         \longrightarrow (rt (\sigma i)) \sqsubseteq \backslash \langle \text{dip} / \rangle (rt (\sigma nhip)))"
                                                                                   invariant
```

 $dip \in \mathtt{vD}_N^{ip} \cap \mathtt{vD}_N^{nhip} \wedge nhip \neq dip \ \Rightarrow \ \xi_N^{ip}(\mathtt{rt}) \sqsubseteq_{dip} \xi_N^{nhip}(\mathtt{rt})$

- ► AWN: layered process algebra
- ► SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

- ► AWN: layered process algebra
- SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

paodv i = $\{\text{(aodv-init i, } \Gamma_{AODV} \text{ PAodv}\}$, trans = $\frac{\text{seqp-sos}}{\Gamma_{AODV}}$

 $((\xi, \{I\} \text{groupcast(ips, ms)} \cdot p), \text{groupcast (ips } \xi) \text{ (ms } \xi), (\xi, p)) \in \text{seqp-sos } \Gamma$

$$\frac{\xi'=\mathsf{fa}\ \xi}{((\xi,\{\mathsf{I}\}[\![\mathsf{fa}]\!]\ \mathsf{p}),\ \tau,\ (\xi',\ \mathsf{p}))\ \in\ \mathsf{seqp\text{-sos}}\ \Gamma}$$


```
\begin{split} \Gamma_{AODV} \ \mathsf{PNewPkt} = & \mathsf{labelled} \ \mathsf{PNewPkt} \ (\\ & \langle \lambda \xi. \ \mathsf{if} \ \mathsf{dip} \ \xi = \mathsf{ip} \ \xi \ \mathsf{then} \ \{\xi\} \ \mathsf{else} \ \emptyset \rangle \\ & \mathsf{deliver}(\mathsf{data}) \ . \ \ [\mathsf{clear-locals}] \ \ \mathsf{call}(\mathsf{PAodv}) \\ & \oplus \\ & \langle \lambda \xi. \ \mathsf{if} \ \mathsf{dip} \ \xi \neq \mathsf{ip} \ \xi \ \mathsf{then} \ \{\xi\} \ \mathsf{else} \ \emptyset \rangle \\ & [\![\lambda \xi. \ \xi(\![\mathsf{store} := \mathsf{add} \ (\mathsf{data} \ \xi) \ (\mathsf{dip} \ \xi) \ (\mathsf{store} \ \xi)]\!]] \\ & [\![\mathsf{clear-locals}] \ \ \mathsf{call}(\![\mathsf{PAodv})) \end{split}
```


- ► AWN: layered process algebra
- SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

 $s \langle \langle t \equiv (|init = init s \times init t, trans = parp-sos (trans s) (trans t)|)$

$$\frac{(s,\,a,\,s') \in S \qquad \bigwedge m.\; a \neq \mathsf{receive}\; m}{((s,\,t),\,a,\,(s',\,t)) \in \mathsf{parp\text{-}sos}\; S\; T} \qquad \frac{(t,\,a,\,t') \in T \qquad \bigwedge m.\; a \neq \mathsf{send}\; m}{((s,\,t),\,a,\,(s,\,t')) \in \mathsf{parp\text{-}sos}\; S\; T}$$

$$\frac{(s,\,\mathsf{receive}\; m,\,s') \in S \qquad (t,\,\mathsf{send}\; m,\,t') \in T}{((s,\,t),\,\tau,\,(s',\,t')) \in \mathsf{parp\text{-}sos}\; S\; T}$$

- ► AWN: layered process algebra
- SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

$$\langle i:S:R\rangle \equiv (|init=\{s_R^i \mid s \in init \ S\}, \ trans=node\text{-sos} \ (trans \ S)|)$$

$$\frac{(\mathsf{s},\,\mathsf{groupcast}\;\mathsf{D}\;\mathsf{m},\,\mathsf{s}')\,\in\,\mathsf{S}}{(\mathsf{s}_\mathsf{R}^{\,\mathsf{i}},\,(\mathsf{R}\cap\mathsf{D}):^*\mathsf{cast}(\mathsf{m}),\,\mathsf{s'}_\mathsf{R}^{\,\mathsf{i}})\,\in\,\mathsf{node\text{-}sos}\;\mathsf{S}} \tag{P}$$

$$(P_R^{\,i},\, connect(i,\,i'),\, P_{R\,\cup\,\{i'\}}^{\,i}) \,\in\, node\text{-sos}\; S$$

- ► AWN: layered process algebra
- ► SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

```
pnet np (r, r) = (r inp r in)

pnet np (p_1 \parallel p_2) = (r init = {s1 \sqcup s2 \mid s1 \in init (pnet np p_1) \land s2 \in init (pnet np p_2)},

trans = pnet-sos (trans (pnet np p_1)) (trans (pnet np p_2))|)

\frac{(s, \tau, s') \in S}{(s \sqcup t, \tau, s' \sqcup t) \in pnet-sos S T}

\frac{(s, R:*cast(m), s') \in S}{(s \sqcup t, R:*cast(m), s' \sqcup t') \in pnet-sos S T}
```


- ► AWN: layered process algebra
- ► SOS rules for each 'operator'
- Layers transform lower layers
- Model all as automata (initial states and transitions)

Limitations

allowed are only processes of the form

$$(P \, \langle \langle \, \mathtt{qmsg}) \parallel (P \, \langle \langle \, \mathtt{qmsg}) \parallel \dots$$


```
{PToy-:0}
PTov = (receive(\lambda msg' \xi. \xi (| msg := msg')).
                                                                                      {PToy-:1}
                [\lambda \xi. \ \xi \ (\text{lnhid} := \text{id} \ \xi)]
                                                                                      {PToy-:2}
                ( (is-newpkt)
                                                                                      {PToy-:3}
                      \|\lambda \xi. \ \xi \ (\text{no} := \max \ (\text{no} \ \xi) \ (\text{num} \ \xi)) \|
                      broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                                                                                     {PToy-:4}
                                                                                     {PToy-:5}
                      [clear-locals] call(PToy)
                                                                                      {PToy-:2}
                 \oplus (is-pkt)
                      ( \langle \lambda \xi. if num \xi \geq \text{no } \xi \text{ then } \{\xi\} \text{ else } \emptyset \rangle {PToy-:6}
                           [\lambda \xi. \ \xi \ (\text{no} := \text{num} \ \xi)]
                                                                                     {PToy-:7}
                           [\lambda \xi. \ \xi \ (\text{lnhid} := \text{sid} \ \xi)]
                                                                        {PToy-:8}
                           broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                                                                                     {PToy-:9}
                           [clear-locals] call(PToy)
                                                                                     {PToy-:10}
                      \oplus \langle \lambda \xi. if num \xi < \text{no } \xi then \{\xi\} else \emptyset \rangle {PToy-:6}
                           [clear-locals] call(PToy))))
                                                                                     {PToy-:11}
```


the "magic" assignment of AWN needs to be implemented

```
is-newpkt \xi= \operatorname{case\ msg}\ \xi of \operatorname{Pkt}\ d\ \operatorname{sid}\ \Rightarrow\ \emptyset  |\ \operatorname{Newpkt}\ d\ \operatorname{dst}\ \Rightarrow\ \{\xi(|\operatorname{num}\ :=\ d|)\}
```

another difference is "clear locals"

• Control Structure

In-built Message Queue

Mechanising Properties

Properties

 so far only invariants supported (no reasoning over traces/paths necessary)

reachability

$$\frac{s \in init A}{s \in reachable A I}$$

$$\frac{s \in \text{reachable A I} \quad (s, a, s') \in \text{trans A} \quad \text{I a}}{s' \in \text{reachable A I}}$$

For an assertion φ ,

B1.
$$\Theta \to \varphi$$

$$\frac{B2. \{\varphi\} \mathcal{T} \{\varphi\}}{\Box \varphi}$$

Fig. 1.1. Rule INV-B (basic invariance).


```
{PToy-:0}
PToy = ( receive(\lambdamsg' \xi. \xi (| msg := msg' |)).
                 [\lambda \xi. \ \xi \ (| \text{nhid} := \text{id} \ \xi |)]
                                                                                             {PToy-:1}
                  ( \langle is-newpkt \rangle
                                                                                             {PToy-:2}
                        [\![\lambda \xi. \ \xi \ (\text{no} := \max \ (\text{no} \ \xi) \ (\text{num} \ \xi))]\!]
                                                                                             {PToy-:3}
                       broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                                                                                             {PToy-:4}
                        [clear-locals] call(PToy)
                                                                                             {PToy-:5}
                   \oplus (is-pkt)
                                                                                             {PToy-:2}
                       ( \langle \lambda \xi. if num \xi \geq \text{no } \xi \text{ then } \{\xi\} \text{ else } \emptyset \rangle {PToy-:6}
                             [\![\lambda \xi. \ \xi \ (\text{no} := \text{num} \ \xi)]\!]
                                                                                             {PToy-:7}
                             [\lambda \xi. \ \xi \ (\text{lnhid} := \text{sid} \ \xi)]
                                                                                            {PToy-:8}
                             broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                                                                                            {PToy-:9}
                             [clear-locals] call(PToy)
                                                                                             {PToy-:10}
                        \oplus \langle \lambda \xi. if num \xi < \text{no } \xi then \{\xi\} else \emptyset \rangle {PToy-:6}
                             [clear-locals] call(PToy))))
                                                                                             {PToy-:11}
```

State Invariant:

ptoy i \models onl Γ_{Toy} ($\lambda(\xi, \mathsf{I})$. $\mathsf{I} \in \{\mathsf{PToy}\text{-:}2..\mathsf{PToy}\text{-:}8\} \longrightarrow \mathsf{nhid}\ \xi = \mathsf{state.id}\ \xi$)

Definition (invariance) Given an automaton A and an assumption I, a predicate P is (state) invariant, denoted A \models (I \rightarrow) P, iff $\forall s \in reachable A I. P s.$


```
{PToy-:0}
PToy = ( receive(\lambdamsg' \xi. \xi (| msg := msg' |)).
                 [\lambda \xi. \ \xi \ (\text{lnhid} := \text{id} \ \xi)]
                                                                                           {PToy-:1}
                  ( (is-newpkt)
                                                                                           {PToy-:2}
                       [\![\lambda \xi. \ \xi \ (\text{no} := \max \ (\text{no} \ \xi) \ (\text{num} \ \xi))]\!]
                                                                                            {PToy-:3}
                                                                                           {PToy-:4}
                       broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                       [clear-locals] call(PToy)
                                                                                           {PToy-:5}
                  \oplus (is-pkt)
                                                                                           {PToy-:2}
                       ( \langle \lambda \xi. if num \xi \geq \text{no } \xi \text{ then } \{\xi\} \text{ else } \emptyset \rangle {PToy-:6}
                            [\![\lambda \xi. \ \xi \ (\text{no} := \text{num} \ \xi)]\!]
                                                                                           {PToy-:7}
                            [\![\lambda \xi, \xi \ (]\!]  [\![\lambda \xi, \xi \ (]\!]]
                                                                                           {PToy-:8}
                            broadcast(\lambda \xi. pkt(no \xi, id \xi)).
                                                                                           {PToy-:9}
                            [clear-locals] call(PToy)
                                                                                           {PToy-:10}
                       \oplus \langle \lambda \xi. if num \xi < \text{no } \xi then \{\xi\} else \emptyset \rangle {PToy-:6}
                             [clear-locals] call(PToy))))
                                                                                           {PToy-:11}
```

Step Invariant:

ptoy i
$$\models (\lambda((\xi, -), -, (\xi', -)))$$
. no $\xi \leq \text{no } \xi')$

Definition (step invariance) Given an automaton A and an assumption I, a predicate P is *step invariant*, denoted $A \models (I \rightarrow) P$, iff $\forall a. \ I \ a \longrightarrow (\forall \ s \in \text{ reachable } A \ I. \ \forall \ s'. \ (s, \ a, \ s') \in \text{ trans } A \longrightarrow P \ (s, \ a, \ s'))$.

Lecture 5: Auxiliary Invariants for AODV

All routing table entries have a hop count greater or equal than 1.

$$(*,*,*,*,hops,*,*) \in \xi_N^{ip}(\mathtt{rt}) \Rightarrow hops \geq 1$$

just some decoration to identify node, and state of the network

• Whenever an originator sequence number is sent as part of a *route request* message, it is known, i.e., it is greater or equal than 1.

$$N \xrightarrow{R:*\mathbf{cast}(\mathtt{rreq}(*,*,*,*,*,*,osn_c,*))}_{ip} N' \Rightarrow osn_c \geq 1$$

• Whenever a destination sequence number is sent as part of a *route reply* message, it is known, i.e., it is greater or equal than 1.

$$N \xrightarrow{R:*\mathbf{cast}(\mathtt{rrep}(*,*,dsn_c,*,*))}_{ip} N' \Rightarrow dsn_c \geq 1$$

Inter-Node invariants

examples are loop freedom

$$dip \in \mathtt{vD}_N^{ip} \cap \mathtt{vD}_N^{nhip} \ \land \ nhip
eq dip \ \Rightarrow \ \xi_N^{ip}(\mathtt{rt}) \sqsubseteq_{dip} \xi_N^{nhip}(\mathtt{rt})$$

or

closed (pnet (
$$\lambda$$
i. ptoy i $\langle \langle \text{ qmsg} \rangle \Psi \rangle \models$ netglobal ($\lambda \sigma$. \forall i. no (σ i) \leq no (σ (nhid (σ i))))

AWN in Isabelle (2)

An "open" Model

$$\sigma :: ip \Rightarrow state$$

An "open" Model

$$\frac{\sigma' \; i = \mathsf{fa} \; (\sigma \; i)}{((\sigma, \, \{I\} \llbracket \mathsf{fa} \rrbracket \; \mathsf{p}), \, \tau, \, (\sigma', \, \mathsf{p})) \, \in \, \underset{}{\mathsf{oseqp\text{-}sos}} \, \Gamma \; i}$$

versus

$$\frac{\xi' = \mathsf{fa} \ \xi}{\left(\left(\xi, \left\{\mathsf{I}\right\}[\![\mathsf{fa}]\!] \ \mathsf{p}\right), \ \tau, \left(\xi', \ \mathsf{p}\right)\right) \ \in \ \mathsf{seqp\text{-sos}} \ \Gamma}$$

An "open" Model

$$\frac{((\sigma,\,P),\,\tau,\,(\sigma',\,P'))\in S}{((\sigma,\,P_R^{\,i}),\,\tau,\,(\sigma',\,P_R^{\prime\,i}))\in \text{o} \text{node-sos } S}$$

More lifting

- Definition of invariance need to be lifted to the open model
 - taking all other nodes into account, etc.
 - make assumptions about environment (e.g. message correct content) added as another condition (which need to be proven later)
 - pretty complicated

Examples

Toy Protocol

```
optoy i \models (otherwith nos-inc {i} (orecvmsg msg-ok), other nos-inc {i} \rightarrow) (\lambda(\sigma, -). no (\sigma i) \leq no (\sigma (\text{nhid } (\sigma i)))),
```

AODV

```
opaodv i \models (otherwith (op=) {i} (orecvmsg (\lambda \sigma m. msg-fresh \sigma m \wedge msg-zhops m)), other quality-increases {i} \rightarrow) onl \Gamma_P (\lambda(\sigma, -). \forall dip. let nhip = the (nhop (rt (\sigma i)) dip) in dip \in vD (rt (\sigma i)) \cap vD (rt (\sigma nhip)) \wedge nhip \neq dip \rightarrow rt (\sigma i) \sqsubseteq_{dip} rt (\sigma nhip))
```

Overall Proof structure

Summary

- the 'open' model is used only in the proof
- was more complicated as anticipated
- fully mechanised
- no liveness yet

- Advantages
 - proof certificate
 - ideal for analysing variants (replay proof)

References

• T. Bourke, R.J. van Glabbeek, P. Höfner: *Mechanizing a Process Algebra for Network Protocols*. In Journal of Automated Reasoning 56(3):309-341, Springer, 2016. doi: 10.1007/s10817-015-9358-9