
www.data61.csiro.au

Modelling	and	Verification	of	
Protocols	for	Wireless	Networks
(Lecture	6)

Peter	Höfner
(Lecture	at	University	of	Twente,	Jan/Feb	2017)

last	update:	Feb	2,	2017

http://www.data61.csiro.au

(c)	2017						P.	Höfner

• What’s	Isabelle/HOL	

• Encoding	AWN/AODV	in	Isabelle	
• problems	and	challenges	
• overall	structure

2

Contents	of	this	Lecture	
What	should	you	have	learnt

Isabelle/HOL

(c)	2017						P.	Höfner4

• generic	interactive	proof	assistant	
• generic: 
not	specialised	to	one	particular	logic	

• 	interactive: 
more	than	just	yes/no,	you	can	interactively	guide	the	system	

• proof	assistant: 
helps	to	explore,	find,	and	maintain	proofs  
allows	mathematical	formulas	to	be	expressed	in	a	formal	language	

• main	application	is	the	formalisation	of	mathematical	proofs	and	 
in	particular	formal	verification	

• originally	developed	at	the	U	Cambridge	and	TU	München	
• now	includes	numerous	contributions,	including	Data61	

• developed	since	the	80s

Isabelle

(c)	2017						P.	Höfner5

• most	widespread	instance	of	Isabelle	

• provides	a	higher-order	logic	theorem	proving	environment	

• includes	powerful	specification	tools,	e.g.	for	(co)datatypes,	(co)inductive	
definitions	and	recursive	functions	with	complex	pattern	matching.	

• Proofs	are	often	conducted	in	the	structured	proof	language	Isar	
• allows	for	proof	text	naturally	understandable	for	humans

Isabelle/HOL

(c)	2017						P.	Höfner6

• Concrete	Semantics 
by	G.	Klein	and	T.	Nipkow	

• it’s	available	online 
http://concrete-semantics.org/

Isabelle	-	An	Introduction

http://concrete-semantics.org/

(c)	2017						P.	Höfner7

• NO,	
• implementation/specification	could	be	faulty	
• 		logic	could	be	inconsistent	
• 		theorem	could	mean	something	else

If	I	use	Isabelle,	it’s	correct?

but	assurance	is	increased

(c)	2017						P.	Höfner8

• Why	bother?	
• Can	such	a	‘manual’	proof	be	trusted	(over	time)?	
• The	coarse	structure	of	the	proof	is	much	looser	than	the	fine	details	 
(i.e.,	the	individual	invariants)	

• Formalising	it	turns	out	to	be	an	interesting	challenge	

• Reuse	the	development	
• Changes	to/variants	of	AODV	
• Development	of	new	protocols	
• Provide	a	formal	specification	for	verifying	implementations?

AWN,	AODV,	and	Loop	Freedom

AWN	in	Isabelle

(c)	2017						P.	Höfner10

Theorem:	Loop	Freedom
Theorem: Loop Freedom

for any well-formed network term n,
closed (pnet (�i. paodv i hh qmsg) n) ||= netglobal (��. 8 dip. irrefl ((rt-graph � dip)+))

I Abstract system state into a directed graph for each ip address:
graph node = network node
graph edge = valid route exists

I A relation rt1 <
i

rt2, shown to be an invariant, is irreflexive. . .
I . . . and it corresponds to the edges of the graph,
I therefore the graphs are (always) free of loops.

6 / 34

lemma	net_nhop_quality_increases:	
		assumes	"wf_net_tree	n"	
		shows	"closed	(pnet	(λi.	paodv	i	⟨⟨	qmsg)	n)	⊫	netglobal	
																											(λσ.	∀i	dip.	let	nhip	=	the	(nhop	(rt	(σ	i))	dip)	
																																								in	dip	∈	vD	(rt	(σ	i))	∩	vD	(rt	(σ	nhip))	∧	nhip	≠	dip	

																																												⟶	(rt	(σ	i))	⊏⇘dip⇙	(rt	(σ	nhip)))"

description	of	the	network

invariant

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.29 The relation @dip is irreflexive and transitive.
Theorem 7.30 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalid routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip)  nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.27), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip ,0 ,unk ,val ,1 ,sip , /0) is used for the update; its destination
is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqnipc

N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .

(c)	2017						P.	Höfner11

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

(c)	2017						P.	Höfner12

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

11 Modelling, Verifying and Analysing AODV

x ,broadcast(ms).p broadcast(x (ms))����������! x , p

x ,groupcast(dests ,ms).p groupcast(x (dests),x (ms))��������������! x , p

x ,unicast(dest ,ms).p I q unicast(x (dest),x (ms))������������! x , p

x ,unicast(dest ,ms).p I q ¬unicast(x (dest),x (ms))�������������! x ,q

x ,send(ms).p send(x (ms))�������! x , p

x ,deliver(data).p deliver(x (data))���������! x , p

x ,receive(msg).p receive(m)�����! x [msg := m], p (8m 2 MSG)

x , [[var := exp]]p t�! x [var := x (exp)], p

/0[vari := x (expi)]
n
i=1, p a�! z , p0

x ,X(exp1, . . . ,expn)
a�! z , p0

(X(var1, . . . ,varn)
def
= p) (8a 2 Act)

x , p a�! z , p0

x , p+q a�! z , p0
x ,q a�! z ,q0

x , p+q a�! z ,q0
x

j! z

x , [j]p t�! z , p
(8a 2 Act)

Table 1: Structural operational semantics for sequential process expressions

Given a valuation of the data variables by concrete data values, the sequential process [j]p acts as
p if j evaluates to true, and deadlocks if j evaluates to false. In case j contains free variables that
are not yet interpreted as data values, values are assigned to these variables in any way that satisfies
j , if possible. The sequential process [[var := exp]]p acts as p, but under an updated valuation of the
data variable var. The sequential process p+ q may act either as p or as q, depending on which of the
two processes is able to act at all. In a context where both are able to act, it is not specified how the
choice is made. The sequential process a.p first performs the action a and subsequently acts as p. The
action broadcast(ms) broadcasts (the data value bound to the expression) ms to the other network nodes
within transmission range, whereas unicast(dest ,ms).p I q is a sequential process that tries to unicast
the message ms to the destination dest ; if successful it continues to act as p and otherwise as q. In other
words, unicast(dest ,ms).p is prioritised over q; only if the action unicast(dest ,ms) is not possible, the
alternative q will happen. It models an abstraction of an acknowledgment-of-receipt mechanism that is
typical for unicast communication but absent in broadcast communication, as implemented by the link
layer of relevant wireless standards such as IEEE 802.11. The process groupcast(dests ,ms).p tries to
transmit ms to all destinations dests, and proceeds as p regardless of whether any of the transmissions is
successful. Unlike unicast and broadcast, the expression groupcast does not have a unique counterpart
in networking. Depending on the protocol and the implementation it can be an iteratively unicast, a
broadcast, or a multicast; thus groupcast abstracts from implementation details. The action send(ms)
synchronously transmits a message to another process running on the same network node; this action
can occur only when this other sequential process is able to receive the message. The sequential process
receive(msg).p receives any message m (a data value of type MSG) either from another node, from another
sequential process running on the same node or from the client hooked up to the local node. It then
proceeds as p, but with the data variable msg bound to the value m. The submission of data from a client
is modelled by the receipt of a message newpkt(d ,dip), where the function newpkt generates a message
containing the data d and the intended destination dip. Data is delivered to the client by deliver(data).

The internal state of a sequential process described by an expression p in this language is determined
by p, together with a valuation x associating data values x (var) to the data variables var maintained

11 Modelling, Verifying and Analysing AODV

x ,broadcast(ms).p broadcast(x (ms))����������! x , p

x ,groupcast(dests ,ms).p groupcast(x (dests),x (ms))��������������! x , p

x ,unicast(dest ,ms).p I q unicast(x (dest),x (ms))������������! x , p

x ,unicast(dest ,ms).p I q ¬unicast(x (dest),x (ms))�������������! x ,q

x ,send(ms).p send(x (ms))�������! x , p

x ,deliver(data).p deliver(x (data))���������! x , p

x ,receive(msg).p receive(m)�����! x [msg := m], p (8m 2 MSG)

x , [[var := exp]]p t�! x [var := x (exp)], p

/0[vari := x (expi)]
n
i=1, p a�! z , p0

x ,X(exp1, . . . ,expn)
a�! z , p0

(X(var1, . . . ,varn)
def
= p) (8a 2 Act)

x , p a�! z , p0

x , p+q a�! z , p0
x ,q a�! z ,q0

x , p+q a�! z ,q0
x

j! z

x , [j]p t�! z , p
(8a 2 Act)

Table 1: Structural operational semantics for sequential process expressions

Given a valuation of the data variables by concrete data values, the sequential process [j]p acts as
p if j evaluates to true, and deadlocks if j evaluates to false. In case j contains free variables that
are not yet interpreted as data values, values are assigned to these variables in any way that satisfies
j , if possible. The sequential process [[var := exp]]p acts as p, but under an updated valuation of the
data variable var. The sequential process p+ q may act either as p or as q, depending on which of the
two processes is able to act at all. In a context where both are able to act, it is not specified how the
choice is made. The sequential process a.p first performs the action a and subsequently acts as p. The
action broadcast(ms) broadcasts (the data value bound to the expression) ms to the other network nodes
within transmission range, whereas unicast(dest ,ms).p I q is a sequential process that tries to unicast
the message ms to the destination dest ; if successful it continues to act as p and otherwise as q. In other
words, unicast(dest ,ms).p is prioritised over q; only if the action unicast(dest ,ms) is not possible, the
alternative q will happen. It models an abstraction of an acknowledgment-of-receipt mechanism that is
typical for unicast communication but absent in broadcast communication, as implemented by the link
layer of relevant wireless standards such as IEEE 802.11. The process groupcast(dests ,ms).p tries to
transmit ms to all destinations dests, and proceeds as p regardless of whether any of the transmissions is
successful. Unlike unicast and broadcast, the expression groupcast does not have a unique counterpart
in networking. Depending on the protocol and the implementation it can be an iteratively unicast, a
broadcast, or a multicast; thus groupcast abstracts from implementation details. The action send(ms)
synchronously transmits a message to another process running on the same network node; this action
can occur only when this other sequential process is able to receive the message. The sequential process
receive(msg).p receives any message m (a data value of type MSG) either from another node, from another
sequential process running on the same node or from the client hooked up to the local node. It then
proceeds as p, but with the data variable msg bound to the value m. The submission of data from a client
is modelled by the receipt of a message newpkt(d ,dip), where the function newpkt generates a message
containing the data d and the intended destination dip. Data is delivered to the client by deliver(data).

The internal state of a sequential process described by an expression p in this language is determined
by p, together with a valuation x associating data values x (var) to the data variables var maintained

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

paodv i = (|init = {(aodv-init i, �
aodv

PAodv)}, trans = seqp-sos �
aodv

|)

⇠’ = fa ⇠

((⇠, {l}[[fa]] p), ⌧, (⇠’, p)) 2 seqp-sos �

((⇠, � pn), a, (⇠’, p’)) 2 seqp-sos �

((⇠, call(pn)), a, (⇠’, p’)) 2 seqp-sos �

((⇠, {l}groupcast(ips, ms) . p), groupcast (ips ⇠) (ms ⇠), (⇠, p)) 2 seqp-sos �

10 / 34

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

paodv i = (|init = {(aodv-init i, �
aodv

PAodv)}, trans = seqp-sos �
aodv

|)

⇠’ = fa ⇠

((⇠, {l}[[fa]] p), ⌧, (⇠’, p)) 2 seqp-sos �

((⇠, � pn), a, (⇠’, p’)) 2 seqp-sos �

((⇠, call(pn)), a, (⇠’, p’)) 2 seqp-sos �

((⇠, {l}groupcast(ips, ms) . p), groupcast (ips ⇠) (ms ⇠), (⇠, p)) 2 seqp-sos �

10 / 34

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

paodv i = (|init = {(aodv-init i, �
aodv

PAodv)}, trans = seqp-sos �
aodv

|)

⇠’ = fa ⇠

((⇠, {l}[[fa]] p), ⌧, (⇠’, p)) 2 seqp-sos �

((⇠, � pn), a, (⇠’, p’)) 2 seqp-sos �

((⇠, call(pn)), a, (⇠’, p’)) 2 seqp-sos �

((⇠, {l}groupcast(ips, ms) . p), groupcast (ips ⇠) (ms ⇠), (⇠, p)) 2 seqp-sos �

10 / 34

(c)	2017						P.	Höfner13

Mechanising	AWNModelling AODV: control state (�P)

PAodv

PNewPkt

PPkt

PRreq

PRrep

PRerr

�
aodv

PNewPkt = labelled PNewPkt (
h�⇠. if dip ⇠ = ip ⇠ then {⇠} else ;i
deliver(data) . [[clear-locals]] call(PAodv)
�
h�⇠. if dip ⇠ 6= ip ⇠ then {⇠} else ;i
[[�⇠. ⇠(|store := add (data ⇠) (dip ⇠) (store ⇠)|)]]
[[clear-locals]] call(PAodv))

9 / 34

(c)	2017						P.	Höfner14

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

s hh t ⌘ (|init = init s ⇥ init t, trans = parp-sos (trans s) (trans t)|)

(s, a, s’) 2 S
^

m. a 6= receive m
((s, t), a, (s’, t)) 2 parp-sos S T

(t, a, t’) 2 T
^

m. a 6= send m
((s, t), a, (s, t’)) 2 parp-sos S T

(s, receive m, s’) 2 S (t, send m, t’) 2 T
((s, t), ⌧, (s’, t’)) 2 parp-sos S T

10 / 34

(c)	2017						P.	Höfner15

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

hi : S : Ri ⌘ (|init = {s i
R | s 2 init S}, trans = node-sos (trans S)|)

(s, groupcast D m, s’) 2 S
(s i

R, (R \ D):*cast(m), s’ i
R) 2 node-sos S

(P i
R, connect(i, i’), P i

R [{i’}) 2 node-sos S

10 / 34

(c)	2017						P.	Höfner16

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

Mechanization of AWN
closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

pnet np hi; Ri = hi : np i : Ri
pnet np (p1 k p2) = (|init = {s1 q s2 | s1 2 init (pnet np p1) ^ s2 2 init (pnet np p2)},

trans = pnet-sos (trans (pnet np p1)) (trans (pnet np p2))|)

(s, ⌧, s’) 2 S
(s q t, ⌧, s’ q t) 2 pnet-sos S T

(s, R:*cast(m), s’) 2 S (t, H¬K:arrive(m), t’) 2 T H ✓ R K \ R = ;
(s q t, R:*cast(m), s’ q t’) 2 pnet-sos S T

10 / 34

(c)	2017						P.	Höfner17

Mechanising	AWN
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

(c)	2017						P.	Höfner18

• allowed	are	only	processes	of	the	form	

Limitations

(P hh qmsg) k (P hh qmsg)k . . .

(c)	2017						P.	Höfner19

An	Example
Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

(c)	2017						P.	Höfner20

• the	“magic”	assignment	of	AWN	needs	to	be	implemented	

• another	difference	is	“clear	locals”

An	Example

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

(c)	2017						P.	Höfner21

• Control	Structure

An	Example
8 Bourke, van Glabbeek, and Höfner

PToy

{PToy-:0}

{PToy-:1}

{PToy-:2}

{PToy-:3}

{PToy-:4}

{PToy-:5}

broadcast

[[· · ·]]

h· · · i

{PToy-:6}

{PToy-:7}

{PToy-:8}

{PToy-:9}

{PToy-:10}

broadcast

[[· · ·]]

[[· · ·]]

h· · · i

{PToy-:11}

h· · · i

h· · · i

[[· · ·]]

receive

[[· · ·]]

[[· · ·]]

[[· · ·]]

Fig. 3: Control state structure of �Toy.

As mentioned before, every sequential process is transformed into an automa-
ton—a record5 of two fields: a set of initial states and a set of transitions—
parameterized by an address i:

ptoy i = (|init = {(toy-init i, �Toy PToy)}, trans = seqp-sos �Toy|) ,

where toy-init i yields the initial data state (|state.id = i, no = 0, nhid = i, msg = SOME x.
True, num = SOME x. True, sid = SOME x. True|). The last three variables are initialized
to arbitrary values, as they are considered local. A representation of the automaton
toy-init i that abstracts from the concrete data allocation is depicted in Figure 3.

2.2 Local parallel composition

Message sending protocols must nearly always be input-enabled, that is, nodes
should always be in a state where they can receive messages. To achieve this, and
to model asynchronous message transmission, the protocol process is combined
with a queue model. The queue is itself expressed in AWN as the specification
� qmsg with single process Qmsg shown in Figure 4. Unlike the data state of the
PToy process, which mapped variable names to values, the data state msgs of Qmsg
is simply a list of messages. The control term is always ready to receive a message
(lines {Qmsg-:0} and {Qmsg-:4}), in which case it appends (@ concatenates lists) the
received message onto the state. When the state is not empty (line {Qmsg-:1}), the
first element can be sent (line {Qmsg-:2}: hd returns the head of a list), and, on
doing so, removes it from the state (line {Qmsg-:3}: tl returns the tail of a list). The
corresponding automaton is instantiated with an initially empty list:

5 The generic record has type (’s, ’a) automaton, where the type ’s is the domain of states,
here pairs of data records and control terms, and ’a is the domain of actions.

(c)	2017						P.	Höfner22

In-built	Message	Queue
Mechanizing a Process Algebra for Network Protocols 9

�qmsg Qmsg = labelled Qmsg (receive(�msg msgs. msgs @ [msg]) . call(Qmsg) {Qmsg-:0}
� h�msgs. if msgs 6= [] then {msgs} else ;i {Qmsg-:0}

(send(�msgs. hd msgs) . {Qmsg-:1}
[[�msgs. tl msgs]] call(Qmsg) {Qmsg-:2}

� receive(�msg msgs. msgs @ [msg]) . call(Qmsg))) {Qmsg-:1}

Fig. 4: AWN-specification of the queue process.

qmsg = (|init = {([], �qmsg Qmsg)}, trans = seqp-sos �qmsg|) ,

The composition of the example protocol with the queue is expressed as

ptoy i hh qmsg.

This local parallel operator is a function over automata:

A hh B = (|init = init A ⇥ init B, trans = parp-sos (trans A) (trans B)|) .

This is an operator of type (’s, ’a) automaton) (’t, ’a) automaton) (’s ⇥ ’t, ’a) automaton.
The process (automaton) A hh B is a parallel composition of A and B, running on the
same network node. As formalized in Figure 5 an action receive m of A synchronizes
with an action send m of B into an internal action ⌧ . These receive actions of A and
send actions of B cannot happen separately. All other actions of A and B, including
receive actions of t B and send actions of A, occur interleaved in A hh B. A parallel
process expression denotes a parallel composition of sequential processes—each
with states (⇠, p)—with information flowing from right to left. The variables of
different sequential processes running on the same node are maintained separately,
and thus cannot be shared.

2.3 Nodes

At the node level, a local (parallel) process np is wrapped in a layer that records
its address i and tracks the set of neighbouring node addresses, initially R

i

:

hi : np : R
i

i = (|init = {s i
R
i

| s2 init np}, trans = node-sos (trans np)|) .

Node states are denoted s i
R. Figure 6 presents the rules of node-sos. Output network

synchronizations, like groupcast or broadcast, are filtered by the list of neighbours
to become ⇤cast actions. So, an action R:⇤cast(m) casts a message m that can be
received by the set R of network nodes. A failed unicast attempt on the part of its
process is modelled as an internal action ⌧ on the part of a node expression. The
action send m of a process does not give rise to any action of the corresponding

(s, a, s’)2T
A

V
m. a 6= receive m

((s, t), a, (s’, t))2 parp-sos T
A

T
B

(t, a, t’)2T
B

V
m. a 6= send m

((s, t), a, (s, t’))2 parp-sos T
A

T
B

(s, receive m, s’)2T
A

(t, send m, t’)2T
B

((s, t), ⌧ , (s’, t’))2 parp-sos T
A

T
B

Fig. 5: SOS rules for parallel processes: parp-sos.

Mechanizing a Process Algebra for Network Protocols 9

�qmsg Qmsg = labelled Qmsg (receive(�msg msgs. msgs @ [msg]) . call(Qmsg) {Qmsg-:0}
� h�msgs. if msgs 6= [] then {msgs} else ;i {Qmsg-:0}

(send(�msgs. hd msgs) . {Qmsg-:1}
[[�msgs. tl msgs]] call(Qmsg) {Qmsg-:2}

� receive(�msg msgs. msgs @ [msg]) . call(Qmsg))) {Qmsg-:1}

Fig. 4: AWN-specification of the queue process.

qmsg = (|init = {([], �qmsg Qmsg)}, trans = seqp-sos �qmsg|) ,

The composition of the example protocol with the queue is expressed as

ptoy i hh qmsg.

This local parallel operator is a function over automata:

A hh B = (|init = init A ⇥ init B, trans = parp-sos (trans A) (trans B)|) .

This is an operator of type (’s, ’a) automaton) (’t, ’a) automaton) (’s ⇥ ’t, ’a) automaton.
The process (automaton) A hh B is a parallel composition of A and B, running on the
same network node. As formalized in Figure 5 an action receive m of A synchronizes
with an action send m of B into an internal action ⌧ . These receive actions of A and
send actions of B cannot happen separately. All other actions of A and B, including
receive actions of t B and send actions of A, occur interleaved in A hh B. A parallel
process expression denotes a parallel composition of sequential processes—each
with states (⇠, p)—with information flowing from right to left. The variables of
different sequential processes running on the same node are maintained separately,
and thus cannot be shared.

2.3 Nodes

At the node level, a local (parallel) process np is wrapped in a layer that records
its address i and tracks the set of neighbouring node addresses, initially R

i

:

hi : np : R
i

i = (|init = {s i
R
i

| s2 init np}, trans = node-sos (trans np)|) .

Node states are denoted s i
R. Figure 6 presents the rules of node-sos. Output network

synchronizations, like groupcast or broadcast, are filtered by the list of neighbours
to become ⇤cast actions. So, an action R:⇤cast(m) casts a message m that can be
received by the set R of network nodes. A failed unicast attempt on the part of its
process is modelled as an internal action ⌧ on the part of a node expression. The
action send m of a process does not give rise to any action of the corresponding

(s, a, s’)2T
A

V
m. a 6= receive m

((s, t), a, (s’, t))2 parp-sos T
A

T
B

(t, a, t’)2T
B

V
m. a 6= send m

((s, t), a, (s, t’))2 parp-sos T
A

T
B

(s, receive m, s’)2T
A

(t, send m, t’)2T
B

((s, t), ⌧ , (s’, t’))2 parp-sos T
A

T
B

Fig. 5: SOS rules for parallel processes: parp-sos.

Mechanising	Properties

(c)	2017						P.	Höfner24

• so	far	only	invariants	supported  
(no	reasoning	over	traces/paths	necessary)	

• reachability

Properties

The basic ‘pattern’ for showing invariance

44 Modelling, Verifying and Analysing AODV

Proposition 7.2 Each sequence number of any given node ip increases monotonically, i.e., never de-
creases, and is never unknown. That is, for ip2 IP, if N `�! N0 then 1  x

ip
N (sn) x

ip
N0(sn).

Proof. In all initial states the invariant is satisfied, as all sequence numbers of all nodes are set to 1
(see (2) in Section 6.7). The Processes 1–7 of Section 6 change a node’s sequence number only through
the functions inc and max. This occurs at two places only:
Pro. 1, Line 35: Here x

ip
N (sn) inc(x ip

N (sn)) = x

ip
N0(sn).

Pro. 4, Line 8: Here x

ip
N (sn) max(x ip

N (sn),⇤) = x

ip
N0(sn).

From this and the fact that all sequence numbers are initialised with 1 we get 1  x

ip
N (sn). ut

The proof strategy used above can be generalised.

Remark 7.3 Most of the forthcoming proofs can be done by showing the statement for each initial state
and then checking all locations in the processes where the validity of the invariant is possibly changed.
Note that routing table entries are only changed by the functions update, invalidate or addpreRT.
Thus we have to show that an invariant dealing with routing tables is satisfied after the execution of these
functions if it was valid before. In our proofs, we go through all occurrences of these functions. In case
the invariant does not make statements about precursors, the function addpreRT need not be considered.

Proposition 7.4 The set of known destinations of a node increases monotonically. That is, for ip2 IP,
if N `�! N0 then kDip

N ✓ kDip
N0 .

Proof. None of the functions used to change routing tables removes an entry altogether. ut

Proposition 7.5 The set of already seen route requests of a node increases monotonically. That is, for
ip2 IP, if N `�! N0 then x

ip
N (rreqs)✓ x

ip
N0(rreqs).

Proof. None of the functions used in the specification ever removes an entry from rreqs. ut

Proposition 7.6 In each node’s routing table, the sequence number for any given destination increases
monotonically, i.e., never decreases. That is, for ip,dip2 IP, if N `�! N0 then sqnip

N (dip) sqnip
N0(dip).

Proof. The only function that can decrease a sequence number is invalidate. When invalidating
routing table entries using the function invalidate(rt,dests), sequence numbers are copied from
dests to the corresponding entry in rt. It is sufficient to show that for all (rip,rsn) 2 x

ip
N (dests)

sqnip
N (rip) rsn, as all other sequence numbers in routing table entries remain unchanged.

Pro. 1, Line 28; Pro. 3, Line 10; Pro. 4, Lines 13, 28; Pro. 5, Line 17:
The set dests is constructed immediately before the invalidation procedure. For (rip,rsn) 2
x

ip
N (dests), we have sqnip

N (rip) inc(sqnip
N (rip)) = rsn.

Pro. 6, Line 3: When constructing dests in Line 2, the side condition x

ip
N2
(sqn(rt,rip)) < x

ip
N2
(rsn)

is taken into account, which immediately yields the claim for (rip,rsn) 2 x

ip
N (dests). ut

Our next invariant tells that each node is correctly informed about its own identity.
Proposition 7.7 For each ip 2 IP and each reachable state N we have x

ip
N (ip) = ip.

Proof. According to Section 6.7 the claim is assumed to hold for each initial state, and none of our
processes has an assignment changing the value of the variable ip. ut

This proposition will be used implicitly in many of the proofs to follow. In particular, for all ip0, ip00 2 IP

x

ip0
N (ip) = ip00) ip0 = ip00 ^ x

ip0
N = x

ip00
N . (3)

Next, we show that every AODV control message contains the IP address of the sender.

15 / 34

12 Bourke, van Glabbeek, and Höfner

(s, connect(i, i’), s’)2T
A

(s, connect(i, i’), s’)2 cnet-sos T
A

(s, disconnect(i, i’), s’)2T
A

(s, disconnect(i, i’), s’)2 cnet-sos T
A

(s, R:⇤cast(m), s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, ⌧ , s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, i:deliver(d), s’)2T
A

(s, i:deliver(d), s’)2 cnet-sos T
A

(s, {i}¬K:arrive(newpkt (d, dst)), s’)2T
A

(s, i:newpkt(d, dst), s’)2 cnet-sos T
A

Fig. 8: SOS rules for complete networks.

2.5 Complete networks

The last layer closes a network to further interactions with an environment; it
ensures that no messages will be received that have never been sent.

closed A = A(|trans := cnet-sos (trans A)|) .

The rules for cnet-sos are straightforward and presented in Figure 8.
The closed-operator passes through internal actions, as well as the delivery of

data to destination nodes, this being an interaction with the outside world. ⇤cast ac-
tions are declared internal actions at this level; they cannot be influenced by the
outside world. The connect and disconnect actions are passed through in Figure 8,
thereby placing them under the control of the environment. Actions arrive m are
simply blocked by the encapsulation—they cannot occur without synchronizing
with a ⇤cast m—except for {i}¬K:arrive(newpkt (d, dst)). This action represents new
data d that is submitted by a client of the modelled protocol to node i, for delivery
at destination dst.

3 Basic invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [21, Part III].and

reachable
transitions Definition 3.1 (reachability) Given an automaton A and an assumption I over

actions, reachable A I is the smallest set defined by the rules:

s2 init A
s2 reachable A I

s2 reachable A I (s, a, s’)2 trans A I a
s’2 reachable A I

As usual, all initial states are reachable; and any state that can be reached from a
reachable state by a single a-transition is as well—provided a satisfies property I.

Definition 3.2 (invariance) Given an automaton A and an assumption I, a pred-
icate P is (state) invariant, denoted A ||= (I !) P, iff 8 s2 reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is �-.
True, we write simply A ||= P.

(c)	2017						P.	Höfner25

An	Example
Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 13

Using this definition of invariance, we can state a basic property of an instance
of the toy process:

ptoy i ||= onl �Toy (�(⇠, l). l2 {PToy-:2..PToy-:8} �! nhid ⇠ = state.id ⇠) . (1)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,
after the assignment of PToy-:1 until before the assignment of PToy-:8, the values of
nhid and id are equal. Here onl � P, defined as �(⇠, p). 8 l2 labels � p. P (⇠, l), extracts
labels from control states, thereby converting a predicate on data states and line
numbers into one on data states and control terms.6 Because a �-control term
is unlabelled, the function label takes the labels of both of its arguments; for this
reason labels � p generally yields a set of labels rather than a single label. As a
control state call(pn) also is unlabelled, the function label associates labels with it
by unwinding the recursion; to enable this, label takes the recursive specification �

as an extra argument.
State invariants concentrate on single states only; it is, however, often useful

to characterize properties describing possible changes of the state. rename “step
inv.” into
“transition
inv.”

Definition 3.3 (step invariance) Given an automaton A and an assumption I,
a predicate P is step invariant, denoted A ||⌘ (I !) P, iff

8 a. I a �! (8 s2 reachable A I. 8 s’. (s, a, s’)2 trans A �! P (s, a, s’)) .

An example for a step invariant of our running example is that the value of no
never decreases over time:

ptoy i ||⌘ (�((⇠, -), -, (⇠’, -)). no ⇠  no ⇠’) . (2)

Here, the assumption on (input) actions I is �-. True and hence skipped. In case
we want to restrict the statement to specific line numbers, the mechanization
provides a function that extracts labels from control states, similar to onl for state
invariance:

onll � P = �((⇠, p), a, ⇠’, p’). 8 l2 labels � p. 8 l’2 labels � p’. P ((⇠, l), a, ⇠’, l’) .
parenthesis
around ⇠’,l’
(twice)

Our invariance proofs follow the compositional strategy recommended by de
Roever et al. in [27, §1.6.2]. That is, we show properties of sequential process
automata using the induction principle of Definition 3.1, and then apply generic
proof rules to successively lift such properties over each of the other layers. The
inductive assertion method, as stated by Manna and Pnueli in rule inv-b of [17],
requires a finite set of transition schemas, which, together with the obligation on
initial states yields a set of sufficient verification conditions. We develop this set
in Section 3.1 and use it to derive the main proof rule presented in Section 3.2
together with some examples.

3.1 Control terms

Given a specification � over finitely many process names, we can generate a finite
set of verification conditions because transitions from (’s, ’p, ’l) seqp terms always

6 Using labels in this way is standard, see, for instance, [17, Chap. 1], or the ‘assertion
networks’ of [27, §2.5.1].

State	Invariant:

12 Bourke, van Glabbeek, and Höfner

(s, connect(i, i’), s’)2T
A

(s, connect(i, i’), s’)2 cnet-sos T
A

(s, disconnect(i, i’), s’)2T
A

(s, disconnect(i, i’), s’)2 cnet-sos T
A

(s, R:⇤cast(m), s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, ⌧ , s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, i:deliver(d), s’)2T
A

(s, i:deliver(d), s’)2 cnet-sos T
A

(s, {i}¬K:arrive(newpkt (d, dst)), s’)2T
A

(s, i:newpkt(d, dst), s’)2 cnet-sos T
A

Fig. 8: SOS rules for complete networks.

2.5 Complete networks

The last layer closes a network to further interactions with an environment; it
ensures that no messages will be received that have never been sent.

closed A = A(|trans := cnet-sos (trans A)|) .

The rules for cnet-sos are straightforward and presented in Figure 8.
The closed-operator passes through internal actions, as well as the delivery of

data to destination nodes, this being an interaction with the outside world. ⇤cast ac-
tions are declared internal actions at this level; they cannot be influenced by the
outside world. The connect and disconnect actions are passed through in Figure 8,
thereby placing them under the control of the environment. Actions arrive m are
simply blocked by the encapsulation—they cannot occur without synchronizing
with a ⇤cast m—except for {i}¬K:arrive(newpkt (d, dst)). This action represents new
data d that is submitted by a client of the modelled protocol to node i, for delivery
at destination dst.

3 Basic invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [21, Part III].and

reachable
transitions Definition 3.1 (reachability) Given an automaton A and an assumption I over

actions, reachable A I is the smallest set defined by the rules:

s2 init A
s2 reachable A I

s2 reachable A I (s, a, s’)2 trans A I a
s’2 reachable A I

As usual, all initial states are reachable; and any state that can be reached from a
reachable state by a single a-transition is as well—provided a satisfies property I.

Definition 3.2 (invariance) Given an automaton A and an assumption I, a pred-
icate P is (state) invariant, denoted A ||= (I !) P, iff 8 s2 reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is �-.
True, we write simply A ||= P.

12 Bourke, van Glabbeek, and Höfner

(s, connect(i, i’), s’)2T
A

(s, connect(i, i’), s’)2 cnet-sos T
A

(s, disconnect(i, i’), s’)2T
A

(s, disconnect(i, i’), s’)2 cnet-sos T
A

(s, R:⇤cast(m), s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, ⌧ , s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, i:deliver(d), s’)2T
A

(s, i:deliver(d), s’)2 cnet-sos T
A

(s, {i}¬K:arrive(newpkt (d, dst)), s’)2T
A

(s, i:newpkt(d, dst), s’)2 cnet-sos T
A

Fig. 8: SOS rules for complete networks.

2.5 Complete networks

The last layer closes a network to further interactions with an environment; it
ensures that no messages will be received that have never been sent.

closed A = A(|trans := cnet-sos (trans A)|) .

The rules for cnet-sos are straightforward and presented in Figure 8.
The closed-operator passes through internal actions, as well as the delivery of

data to destination nodes, this being an interaction with the outside world. ⇤cast ac-
tions are declared internal actions at this level; they cannot be influenced by the
outside world. The connect and disconnect actions are passed through in Figure 8,
thereby placing them under the control of the environment. Actions arrive m are
simply blocked by the encapsulation—they cannot occur without synchronizing
with a ⇤cast m—except for {i}¬K:arrive(newpkt (d, dst)). This action represents new
data d that is submitted by a client of the modelled protocol to node i, for delivery
at destination dst.

3 Basic invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [21, Part III].and

reachable
transitions Definition 3.1 (reachability) Given an automaton A and an assumption I over

actions, reachable A I is the smallest set defined by the rules:

s2 init A
s2 reachable A I

s2 reachable A I (s, a, s’)2 trans A I a
s’2 reachable A I

As usual, all initial states are reachable; and any state that can be reached from a
reachable state by a single a-transition is as well—provided a satisfies property I.

Definition 3.2 (invariance) Given an automaton A and an assumption I, a pred-
icate P is (state) invariant, denoted A ||= (I !) P, iff 8 s2 reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is �-.
True, we write simply A ||= P.

12 Bourke, van Glabbeek, and Höfner

(s, connect(i, i’), s’)2T
A

(s, connect(i, i’), s’)2 cnet-sos T
A

(s, disconnect(i, i’), s’)2T
A

(s, disconnect(i, i’), s’)2 cnet-sos T
A

(s, R:⇤cast(m), s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, ⌧ , s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, i:deliver(d), s’)2T
A

(s, i:deliver(d), s’)2 cnet-sos T
A

(s, {i}¬K:arrive(newpkt (d, dst)), s’)2T
A

(s, i:newpkt(d, dst), s’)2 cnet-sos T
A

Fig. 8: SOS rules for complete networks.

2.5 Complete networks

The last layer closes a network to further interactions with an environment; it
ensures that no messages will be received that have never been sent.

closed A = A(|trans := cnet-sos (trans A)|) .

The rules for cnet-sos are straightforward and presented in Figure 8.
The closed-operator passes through internal actions, as well as the delivery of

data to destination nodes, this being an interaction with the outside world. ⇤cast ac-
tions are declared internal actions at this level; they cannot be influenced by the
outside world. The connect and disconnect actions are passed through in Figure 8,
thereby placing them under the control of the environment. Actions arrive m are
simply blocked by the encapsulation—they cannot occur without synchronizing
with a ⇤cast m—except for {i}¬K:arrive(newpkt (d, dst)). This action represents new
data d that is submitted by a client of the modelled protocol to node i, for delivery
at destination dst.

3 Basic invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [21, Part III].and

reachable
transitions Definition 3.1 (reachability) Given an automaton A and an assumption I over

actions, reachable A I is the smallest set defined by the rules:

s2 init A
s2 reachable A I

s2 reachable A I (s, a, s’)2 trans A I a
s’2 reachable A I

As usual, all initial states are reachable; and any state that can be reached from a
reachable state by a single a-transition is as well—provided a satisfies property I.

Definition 3.2 (invariance) Given an automaton A and an assumption I, a pred-
icate P is (state) invariant, denoted A ||= (I !) P, iff 8 s2 reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is �-.
True, we write simply A ||= P.

(c)	2017						P.	Höfner26

An	Example
Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Mechanizing a Process Algebra for Network Protocols 7

�Toy PToy = labelled PToy (receive(�msg’ ⇠. ⇠ (| msg := msg’ |)). {PToy-:0}
[[�⇠. ⇠ (|nhid := id ⇠|)]] {PToy-:1}
(his-newpkti {PToy-:2}

[[�⇠. ⇠ (|no := max (no ⇠) (num ⇠)|)]] {PToy-:3}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:4}
[[clear-locals]] call(PToy) {PToy-:5}

� his-pkti {PToy-:2}
(h�⇠. if num ⇠ � no ⇠ then {⇠} else ;i {PToy-:6}

[[�⇠. ⇠ (|no := num ⇠|)]] {PToy-:7}
[[�⇠. ⇠ (|nhid := sid ⇠|)]] {PToy-:8}
broadcast(�⇠. pkt(no ⇠, id ⇠)). {PToy-:9}
[[clear-locals]] call(PToy) {PToy-:10}

� h�⇠. if num ⇠ < no ⇠ then {⇠} else ;i {PToy-:6}
[[clear-locals]] call(PToy)))) {PToy-:11}

Fig. 2: AWN-specification of a toy protocol.

any message sent out by a node has the form pkt (d, src). Thus the message type
uniquely determines whether the message originated from the application layer,
or from another node.

The choice ({PToy-:2}) makes a case distinction based on whether the message
received is a new packet or a ‘standard’ one. In the former case the guard/bind
statement is-newpkt evaluates to true, copies the message content d to the vari-
able num, and proceeds to execute the lines labelled {PToy-:3},{PToy-:4} and {PToy-:5}.
Formally, is-newpkt is defined as

is-newpkt ⇠ = case msg ⇠ of
Pkt d sid) ;

| Newpkt d dst) {⇠(|num := d|)} .
we might
add a
sentence
explanation
here

In case of a ‘standard’ message the statement is-pkt evaluates to true, the local
state is updated by copying the message contents d into num and src into sid. and
the protocol proceeds with lines {PToy-:6}–{PToy-:11}.

In line {PToy-:3} the protocol compares the stored integer no with the integer
num—which was distilled from the incoming message, determines and stores the
larger one into the variable no and broadcasts this value to all its neighbours,
identifying itself as sender (line {PToy-:4}). After that, in line {PToy-:5}, the process
calls itself recursively, after clearing the local variables msg, num and sid.

Depending on the contents of the ‘standard’ message the protocol performs two
different sequences of actions: (1) if the integer distilled from the message—stored
in variable num—is larger than or equal to the stored no (line {PToy-:6}), then this
(larger) value is stored in variable no (line {PToy-:7}) and the sender of the message
is stored in nhid (line {PToy-:8}). Before clearing the local variables and returning to
the start of the protocol by a recursive call (line {PToy-:10}), the node sends out the
just updated number no, again identifying itself as sender (line {PToy-:9}). (2) if the
integer from the message is smaller than no (line {PToy-:6}), the node considers the
information of the message outdated, drops the message, and immediately returns
to its start state.

Step	Invariant:

Mechanizing a Process Algebra for Network Protocols 13

Using this definition of invariance, we can state a basic property of an instance
of the toy process:

ptoy i ||= onl �Toy (�(⇠, l). l2 {PToy-:2..PToy-:8} �! nhid ⇠ = state.id ⇠) . (1)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,
after the assignment of PToy-:1 until before the assignment of PToy-:8, the values of
nhid and id are equal. Here onl � P, defined as �(⇠, p). 8 l2 labels � p. P (⇠, l), extracts
labels from control states, thereby converting a predicate on data states and line
numbers into one on data states and control terms.6 Because a �-control term
is unlabelled, the function label takes the labels of both of its arguments; for this
reason labels � p generally yields a set of labels rather than a single label. As a
control state call(pn) also is unlabelled, the function label associates labels with it
by unwinding the recursion; to enable this, label takes the recursive specification �

as an extra argument.
State invariants concentrate on single states only; it is, however, often useful

to characterize properties describing possible changes of the state. rename “step
inv.” into
“transition
inv.”

Definition 3.3 (step invariance) Given an automaton A and an assumption I,
a predicate P is step invariant, denoted A ||⌘ (I !) P, iff

8 a. I a �! (8 s2 reachable A I. 8 s’. (s, a, s’)2 trans A �! P (s, a, s’)) .

An example for a step invariant of our running example is that the value of no
never decreases over time:

ptoy i ||⌘ (�((⇠, -), -, (⇠’, -)). no ⇠  no ⇠’) . (2)

Here, the assumption on (input) actions I is �-. True and hence skipped. In case
we want to restrict the statement to specific line numbers, the mechanization
provides a function that extracts labels from control states, similar to onl for state
invariance:

onll � P = �((⇠, p), a, ⇠’, p’). 8 l2 labels � p. 8 l’2 labels � p’. P ((⇠, l), a, ⇠’, l’) .
parenthesis
around ⇠’,l’
(twice)

Our invariance proofs follow the compositional strategy recommended by de
Roever et al. in [27, §1.6.2]. That is, we show properties of sequential process
automata using the induction principle of Definition 3.1, and then apply generic
proof rules to successively lift such properties over each of the other layers. The
inductive assertion method, as stated by Manna and Pnueli in rule inv-b of [17],
requires a finite set of transition schemas, which, together with the obligation on
initial states yields a set of sufficient verification conditions. We develop this set
in Section 3.1 and use it to derive the main proof rule presented in Section 3.2
together with some examples.

3.1 Control terms

Given a specification � over finitely many process names, we can generate a finite
set of verification conditions because transitions from (’s, ’p, ’l) seqp terms always

6 Using labels in this way is standard, see, for instance, [17, Chap. 1], or the ‘assertion
networks’ of [27, §2.5.1].

12 Bourke, van Glabbeek, and Höfner

(s, connect(i, i’), s’)2T
A

(s, connect(i, i’), s’)2 cnet-sos T
A

(s, disconnect(i, i’), s’)2T
A

(s, disconnect(i, i’), s’)2 cnet-sos T
A

(s, R:⇤cast(m), s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, ⌧ , s’)2T
A

(s, ⌧ , s’)2 cnet-sos T
A

(s, i:deliver(d), s’)2T
A

(s, i:deliver(d), s’)2 cnet-sos T
A

(s, {i}¬K:arrive(newpkt (d, dst)), s’)2T
A

(s, i:newpkt(d, dst), s’)2 cnet-sos T
A

Fig. 8: SOS rules for complete networks.

2.5 Complete networks

The last layer closes a network to further interactions with an environment; it
ensures that no messages will be received that have never been sent.

closed A = A(|trans := cnet-sos (trans A)|) .

The rules for cnet-sos are straightforward and presented in Figure 8.
The closed-operator passes through internal actions, as well as the delivery of

data to destination nodes, this being an interaction with the outside world. ⇤cast ac-
tions are declared internal actions at this level; they cannot be influenced by the
outside world. The connect and disconnect actions are passed through in Figure 8,
thereby placing them under the control of the environment. Actions arrive m are
simply blocked by the encapsulation—they cannot occur without synchronizing
with a ⇤cast m—except for {i}¬K:arrive(newpkt (d, dst)). This action represents new
data d that is submitted by a client of the modelled protocol to node i, for delivery
at destination dst.

3 Basic invariance

This paper only considers proofs of invariance, that is, properties of reachable
states. The basic definitions are classic [21, Part III].and

reachable
transitions Definition 3.1 (reachability) Given an automaton A and an assumption I over

actions, reachable A I is the smallest set defined by the rules:

s2 init A
s2 reachable A I

s2 reachable A I (s, a, s’)2 trans A I a
s’2 reachable A I

As usual, all initial states are reachable; and any state that can be reached from a
reachable state by a single a-transition is as well—provided a satisfies property I.

Definition 3.2 (invariance) Given an automaton A and an assumption I, a pred-
icate P is (state) invariant, denoted A ||= (I !) P, iff 8 s2 reachable A I. P s.

We state reachability relative to an assumption on (input) actions I. When I is �-.
True, we write simply A ||= P.

Mechanizing a Process Algebra for Network Protocols 13

Using this definition of invariance, we can state a basic property of an instance
of the toy process:

ptoy i ||= onl �Toy (�(⇠, l). l2 {PToy-:2..PToy-:8} �! nhid ⇠ = state.id ⇠) . (1)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,
after the assignment of PToy-:1 until before the assignment of PToy-:8, the values of
nhid and id are equal. Here onl � P, defined as �(⇠, p). 8 l2 labels � p. P (⇠, l), extracts
labels from control states, thereby converting a predicate on data states and line
numbers into one on data states and control terms.6 Because a �-control term
is unlabelled, the function label takes the labels of both of its arguments; for this
reason labels � p generally yields a set of labels rather than a single label. As a
control state call(pn) also is unlabelled, the function label associates labels with it
by unwinding the recursion; to enable this, label takes the recursive specification �

as an extra argument.
State invariants concentrate on single states only; it is, however, often useful

to characterize properties describing possible changes of the state. rename “step
inv.” into
“transition
inv.”

Definition 3.3 (step invariance) Given an automaton A and an assumption I,
a predicate P is step invariant, denoted A ||⌘ (I !) P, iff

8 a. I a �! (8 s2 reachable A I. 8 s’. (s, a, s’)2 trans A �! P (s, a, s’)) .

An example for a step invariant of our running example is that the value of no
never decreases over time:

ptoy i ||⌘ (�((⇠, -), -, (⇠’, -)). no ⇠  no ⇠’) . (2)

Here, the assumption on (input) actions I is �-. True and hence skipped. In case
we want to restrict the statement to specific line numbers, the mechanization
provides a function that extracts labels from control states, similar to onl for state
invariance:

onll � P = �((⇠, p), a, ⇠’, p’). 8 l2 labels � p. 8 l’2 labels � p’. P ((⇠, l), a, ⇠’, l’) .
parenthesis
around ⇠’,l’
(twice)

Our invariance proofs follow the compositional strategy recommended by de
Roever et al. in [27, §1.6.2]. That is, we show properties of sequential process
automata using the induction principle of Definition 3.1, and then apply generic
proof rules to successively lift such properties over each of the other layers. The
inductive assertion method, as stated by Manna and Pnueli in rule inv-b of [17],
requires a finite set of transition schemas, which, together with the obligation on
initial states yields a set of sufficient verification conditions. We develop this set
in Section 3.1 and use it to derive the main proof rule presented in Section 3.2
together with some examples.

3.1 Control terms

Given a specification � over finitely many process names, we can generate a finite
set of verification conditions because transitions from (’s, ’p, ’l) seqp terms always

6 Using labels in this way is standard, see, for instance, [17, Chap. 1], or the ‘assertion
networks’ of [27, §2.5.1].

Mechanizing a Process Algebra for Network Protocols 13

Using this definition of invariance, we can state a basic property of an instance
of the toy process:

ptoy i ||= onl �Toy (�(⇠, l). l2 {PToy-:2..PToy-:8} �! nhid ⇠ = state.id ⇠) . (1)

This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,
after the assignment of PToy-:1 until before the assignment of PToy-:8, the values of
nhid and id are equal. Here onl � P, defined as �(⇠, p). 8 l2 labels � p. P (⇠, l), extracts
labels from control states, thereby converting a predicate on data states and line
numbers into one on data states and control terms.6 Because a �-control term
is unlabelled, the function label takes the labels of both of its arguments; for this
reason labels � p generally yields a set of labels rather than a single label. As a
control state call(pn) also is unlabelled, the function label associates labels with it
by unwinding the recursion; to enable this, label takes the recursive specification �

as an extra argument.
State invariants concentrate on single states only; it is, however, often useful

to characterize properties describing possible changes of the state. rename “step
inv.” into
“transition
inv.”

Definition 3.3 (step invariance) Given an automaton A and an assumption I,
a predicate P is step invariant, denoted A ||⌘ (I !) P, iff

8 a. I a �! (8 s2 reachable A I. 8 s’. (s, a, s’)2 trans A �! P (s, a, s’)) .

An example for a step invariant of our running example is that the value of no
never decreases over time:

ptoy i ||⌘ (�((⇠, -), -, (⇠’, -)). no ⇠  no ⇠’) . (2)

Here, the assumption on (input) actions I is �-. True and hence skipped. In case
we want to restrict the statement to specific line numbers, the mechanization
provides a function that extracts labels from control states, similar to onl for state
invariance:

onll � P = �((⇠, p), a, ⇠’, p’). 8 l2 labels � p. 8 l’2 labels � p’. P ((⇠, l), a, ⇠’, l’) .
parenthesis
around ⇠’,l’
(twice)

Our invariance proofs follow the compositional strategy recommended by de
Roever et al. in [27, §1.6.2]. That is, we show properties of sequential process
automata using the induction principle of Definition 3.1, and then apply generic
proof rules to successively lift such properties over each of the other layers. The
inductive assertion method, as stated by Manna and Pnueli in rule inv-b of [17],
requires a finite set of transition schemas, which, together with the obligation on
initial states yields a set of sufficient verification conditions. We develop this set
in Section 3.1 and use it to derive the main proof rule presented in Section 3.2
together with some examples.

3.1 Control terms

Given a specification � over finitely many process names, we can generate a finite
set of verification conditions because transitions from (’s, ’p, ’l) seqp terms always

6 Using labels in this way is standard, see, for instance, [17, Chap. 1], or the ‘assertion
networks’ of [27, §2.5.1].

(c)	2017						P.	Höfner

• All	routing	table	entries	have	a	hop	count	greater	or	equal	than	1.	

• Whenever	an	originator	sequence	number	is	sent	as	part	of	a	route	request	
message,	it	is	known,	i.e.,	it	is	greater	or	equal	than	1.	

• Whenever	a	destination	sequence	number	is	sent	as	part	of	a	route	reply	
message,	it	is	known,	i.e.,	it	is	greater	or	equal	than	1.

27

Lecture	5:	Auxiliary	Invariants	for	AODV

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 42

Proposition 7.8 If an AODV control message is sent by node ip 2 IP, the node sending this message
identifies itself correctly:

N R:*cast(m)������!ip N0) ip = ipc ,

where the message m is either rreq(⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ , ipc), rrep(⇤ ,⇤ ,⇤ ,⇤ , ipc), or rerr(⇤ , ipc).

The proof is straightforward: whenever such a message is sent in one of the processes of Section 6, x (ip)
is set as the last argument. ut

Corollary 7.9 At no point will the variable sip maintained by node ip have the value ip.

x

ip
N (sip) 6= ip

Proof. The value of sip stems, through Lines 8, 12 or 16 of Pro. 1, from an incoming AODV control
message of the form x

ip
N (rreq(⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,⇤ ,sip)), x

ip
N (rrep(⇤ ,⇤ ,⇤ ,⇤ ,sip)), or x

ip
N (rerr(⇤ ,sip))

(Pro. 1, Line 1); the value of sip is never changed. By Proposition 7.1, this message must have been
sent before by a node ip0 6= ip. By Proposition 7.8, x

ip
N (sip) = ip0. ut

Proposition 7.10 All routing table entries have a hop count greater or equal than 1.

(⇤,⇤,⇤,⇤,hops,⇤,⇤) 2 x

ip
N (rt)) hops � 1 (4)

Proof. All initial states trivially satisfy the invariant since all routing tables are empty. The functions
invalidate and addpreRT do not affect the invariant, since they do not change the hop count of a
routing table entry. Therefore, we only have to look at the application calls of update. In each case, if
the update does not change the routing table entry beyond its precursors (the last clause of update), the
invariant is trivially preserved; hence we examine the cases that an update actually occurs.

Pro. 1, Lines 10, 14, 18: All these updates have a hop count equals to 1; hence the invariant is preserved.

Pro. 4, Line 4; Pro. 5, Line 2: Here, x (hops)+ 1 is used for the update. Since x (hops) 2 IN, the in-
variant is maintained. ut

Proposition 7.11

(a) If a route request with hop count 0 is sent by a node ipc 2 IP , the sender must be the originator.

N R:*cast(rreq(0,⇤,⇤,⇤,⇤,oipc,⇤,ipc))������������������!ip N0) oipc = ipc(= ip) (5)

(b) If a route reply with hop count 0 is sent by a node ipc 2 IP, the sender must be the destination.

N R:*cast(rrep(0,dipc,⇤,⇤,ipc))���������������!ip N0) dipc = ipc(= ip) (6)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent. In all the processes
there are only two locations where this happens.
Pro. 1, Line 39: A request with content x (0 ,⇤ ,⇤ ,⇤ ,⇤ ,ip ,⇤ ,ip) is sent. Since the sixth and the

eighth component are the same (x (ip)), the claim holds.
Pro. 4, Line 36: The message has the form rreq(x (hops)+1,⇤,⇤,⇤,⇤,⇤,⇤,⇤). Since x (hops)2 IN,

x (hops)+1 6= 0 and hence the antecedent does not hold.

(b) We have to check that the consequent holds whenever a route reply is sent. In all the processes there
are only three locations where this happens.

just	some	decoration	to	identify	node,	
and	state	of	the	network

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 44

Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 44

Proposition 7.13

(a) Whenever an originator sequence number is sent as part of a route request message, it is known, i.e.,
it is greater or equal than 1.

N R:*cast(rreq(⇤,⇤,⇤,⇤,⇤,⇤,osnc,⇤))�����������������!ip N0) osnc � 1 (11)

(b) Whenever a destination sequence number is sent as part of a route reply message, it is known, i.e., it
is greater or equal than 1.

N R:*cast(rrep(⇤,⇤,dsnc,⇤,⇤))���������������!ip N0) dsnc � 1 (12)

Proof.

(a) We have to check that the consequent holds whenever a route request is sent.
Pro. 1, Line 39: A route request is initiated. The originator sequence number is a copy of the node’s

own sequence number, i.e., osnc = x (sn). By Proposition 7.2, we get osnc � 1.
Pro. 4, Line 36: Here, osnc := x (osn). x (osn) is not changed within Pro. 4; it stems, through

Line 8 of Pro. 1, from an incoming RREQ message (Pro. 1, Line 1). For this incoming RREQ
message, using Proposition 7.1(a) and induction on reachability, the invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever a route reply is sent.
Pro. 4, Line 10: The destination initiates a route reply. The sequence number is a copy of the node’s

own sequence number, i.e., dsnc = x (sn). By Proposition 7.2, we get dsnc � 1.
Pro. 4, Line 25: The sequence number used for the message is copied from the routing table; its

value is dsnc := sqn(x (rt) ,x (dip)). By Line 20, we know that flag(x (rt) ,x (dip)) = kno

and hence, by Invariant (7), dsnc � 1. Thus the invariant is maintained.
Pro. 5, Line 13: Here, dsnc := x (dsn). x (dsn) is not changed within Pro. 5; it stems, through

Line 12 of Pro. 1, from an incoming RREP message (Pro. 1, Line 1). For this incoming RREP
message the invariant holds and hence the claim follows immediately. ut

Proposition 7.14

(a) If a route request is sent (forwarded) by a node ipc different from the originator of the request then
the content of ipc’s routing table must be fresher or at least as good as the information inside the
message.

N R:*cast(rreq(hopsc,⇤,⇤,⇤,⇤,oipc,osnc,ipc))����������������������!ip N0 ^ ipc 6= oipc

) oipc 2 kDipc
N ^

�
sqnipc

N (oipc)> osnc

_ (sqnipc
N (oipc) = osnc ^ dhopsipc

N (oipc) hopsc ^ flagipc
N (oipc) = val)

� (13)

(b) If a route reply is sent by a node ipc, different from the destination of the route, then the content of
ipc’s routing table must be consistent with the information inside the message.

N R:*cast(rrep(hopsc,dipc,dsnc,⇤,ipc))�������������������!ip N0 ^ ipc 6= dipc

) dipc 2 kDipc
N ^ sqnipc

N (dipc) = dsnc ^ dhopsipc
N (dipc) = hopsc ^ flagipc

N (dipc) = val
(14)

Proof.

(a) We have to check all cases where a route request is sent:

(c)	2017						P.	Höfner28

• examples	are	loop	freedom	  
 
 
 
 
or

Inter-Node	invariants

18 Bourke, van Glabbeek, and Höfner

4 Open invariance

The analysis of network protocols often requires ‘inter-node’ invariants, like

wf-net-tree =) closed (pnet (�i. ptoy i hh qmsg)) ||=

netglobal (��. 8 i. no (� i)  no (� (nhid (� i)))) , (5)

which states that, for any network topology, specified as a net-tree with disjoint
node addresses (wf-net-tree), the value of no at a node is never greater than its
value at the ‘next hop’—the address in nhid. This is a property of a global stateto be

expanded � mapping addresses to corresponding data states. In our mechanization such a
global state is readily constructed with:

netglobal P = �s. P (default toy-init (netlift fst s)),
default df f = (�i. case f i of None) df i | Some s) s), and

netlift sr (s i
R) = [i 7! fst (sr s)]

netlift sr (s q t) = netlift sr s ++ netlift sr t .

The applications of fst elide the state of qmsg and the protocol’s control state.10

While we can readily state inter-node invariants of a complete model, show-
ing them compositionally is another issue. Sections 4.1 and 4.2 present a way to
state and prove such invariants at the level of sequential processes—that is, with
only ptoy i left of the turnstile. Sections 4.3 and 4.4 present, respectively, rules for
lifting such results to network models and for recovering invariants like (5).

4.1 The open model

In the model of AWN presented in Section 2, a network state is a closed parallel
composition of the states of the nodes in the network, arranged in a net-tree. A
state of a node, in turn, is a wrapper around a local parallel composition of states
of sequential processes, each consisting of a local data state ⇠ and a control term p.
To effectively reason about the relations between all these local data states, the
open model of AWN, presented below, collects all the relevant information of the
local states ⇠ in the network in a single global state �. For our applications so far,
we found no need to collect in this global data state all the local control states;
in fact we need only one control state per node, namely the one stemming from
the leftmost component of the (not commutative) local parallel composition of
processes running on that node. This type of global state is not only sufficient for
our intended purposes, but also easier to implement in Isabelle.

Recall that the data type ip contains identifiers for all nodes that could occur
in a network. The leftmost parallel process running on a node has a local data
state of type ’s. Hence, our global date state is of type ip) ’s. ., where

dummy
values are
used for
addresses of
type ip that
do not occur
in our
network

In the open model, a state of a network is described as a pair (�, s) of such a
global state and a closed parallel composition s of the control states of the nodes
in the network. The control state of a node is a wrapper around a local parallel
composition of states of sequential processes, where we take only the control term

10 The formulation here is a technical detail: sr corresponds to netlift as np does to pnet.

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.29 The relation @dip is irreflexive and transitive.
Theorem 7.30 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalid routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip)  nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.27), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip ,0 ,unk ,val ,1 ,sip , /0) is used for the update; its destination
is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqnipc

N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .

AWN	in	Isabelle	(2)

(c)	2017						P.	Höfner30

An	“open”	Model
Mechanization of AWN

closed ()

k

h i : : R i· · ·

hh

paodv i qmsg

cnet

pnet

node

parp

seqp

I AWN: layered process algebra
I SOS rules for each ‘operator’
I Layers transform lower layers

I Model all as automata
(initial states and transitions)

10 / 34

An ‘open model’ of AWN
oclosed ()

k

h i : : R i
o· · ·

hh
i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

⇠ :: state

� :: ip) state

20 / 34

(c)	2017						P.	Höfner31

An	“open”	Model
An ‘open model’ of AWN

oclosed ()

k

h i : : R i
o· · ·

hh
i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

⇠ :: state

� :: ip) state

20 / 34

An ‘open model’ of AWN
oclosed ()

k

h i : : R i
o· · ·

hh
i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

⇠ :: state

� :: ip) state

opaodv i = (|init = {(aodv-init, �
aodv

PAodv)}, trans = oseqp-sos �
aodv

i|).

�’ i = fa (� i)
((�, {l}[[fa]] p), ⌧, (�’, p)) 2 oseqp-sos � i

versus
⇠’ = fa ⇠

((⇠, {l}[[fa]] p), ⌧, (⇠’, p)) 2 seqp-sos �

20 / 34

(c)	2017						P.	Höfner32

An	“open”	Model
An ‘open model’ of AWN

oclosed ()

k

h i : : R i
o· · ·

hh
i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

⇠ :: state

� :: ip) state

20 / 34

An ‘open model’ of AWN
oclosed ()

k

h i : : R i
o· · ·

hh
i

opaodv i qmsg

ocnet

opnet

onode

oparp

oseqp

⇠ :: state

� :: ip) state

((�, P), groupcast D m, �’, P’) 2 S
((�, P i

R), (R \ D):*cast(m), (�’, P’ i
R)) 2 onode-sos S

((�, P), ⌧, (�’, P’)) 2 S 8 j 6= i. �’ j = � j
((�, P i

R), ⌧, (�’, P’ i
R)) 2 onode-sos S

20 / 34

(c)	2017						P.	Höfner33

• Definition	of	invariance	need	to	be	lifted	to	the	open	model	
• taking	all	other	nodes	into	account,	etc.	
• make	assumptions	about	environment	(e.g.	message	correct	content) 
added	as	another	condition	(which	need	to	be	proven	later)	

• pretty	complicated

More	lifting

(c)	2017						P.	Höfner34

• Toy	Protocol	

• AODV

Examples

Verifying loop freedom of AODV: Theorem 7.29 again

56 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route established by AODV the quality of routing tables
increases when going from one node to the next hop. Here, the preorder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tables rt and rt0 that both have an entry to dip, i.e.,
dip 2 kD(rt)\kD(rt0), we define a relation @dip by

rt @dip rt0 :, rt vdip rt0 ^ rt 6⇡dip rt0 .

Corollary 7.28 The relation @dip is irreflexive and transitive.
Theorem 7.29 The quality of the routing table entries for a destination dip is strictly increasing along a
route towards dip, until it reaches either dip or a node with an invalided routing table entry to dip.

dip 2 vDip
N \vDnhip

N ^ nhip 6= dip) x

ip
N (rt)@dip x

nhip
N (rt) , (21)

where N is a reachable network expression and nhip := nhopip
N (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transition system and then check all locations in
Processes 1–7 where a routing table might be changed. For an initial network expression, the invariant
holds since all routing tables are empty. Adding precursors to x

ip
N (rt) or x

nhip
N (rt) does not affect the

invariant, since the invariant does not depend on precursors, so it suffices to examine all modifications
to x

ip
N (rt) or x

nhip
N (rt) using update or invalidate. Moreover, without loss of generality we restrict

attention to those applications of update or invalidate that actually modify the entry for dip, beyond
its precursors; if update only adds some precursors in the routing table, the invariant—which is assumed
to hold before—is maintained.

Applications of invalidate to either x

ip
N (rt) or x

nhip
N (rt) lead to a network state in which the

antecedent of (21) is not satisfied. Now consider an application of update to x

nhip
N (rt). We restrict

attention to the case that the antecedent of (21) is satisfied right after the update, so that right before the
update we have dip 2 vDip

N ^nhip 6= dip. In the special case that sqnnhip
N (dip) = 0 right before the update,

we have nsqnnhip
N (dip) = 0 and thus nsqnip

N (dip) = 0 by Invariant (20). Since flagip
N (dip) = val, this

implies sqnip
N (dip) = 0. By Proposition 7.12(d) we have nhip = dip, contradicting our assumptions. It

follows that right before the update sqnnhip
N (dip)> 0, and hence nsqnnhip

N (dip)< sqnnhip
N (dip).

An application of update to x

nhip
N (rt) that changes flagnhip

N (dip) from inv to val cannot decrease
the sequence number of the entry to dip and hence strictly increases its net sequence number. Be-
fore the update we had nsqnip

N (dip)  nsqnnhip
N (dip) by Invariant (20), so afterwards we must have

nsqnip
N (dip)< nsqnnhip

N (dip), and hence x

ip
N (rt)@dip x

nhip
N (rt). An update to x

nhip
N (rt) that maintains

flagnhip
N (dip) = val can only increase the quality of the entry to dip (cf. Theorem 7.26), and hence

maintains Invariant (21).
It remains to examine the updates to x

ip
N (rt).

Pro. 1, Lines 10, 14, 18: The entry x (sip , 0 , unk , val , 1 , sip , /0) is used for the update; its destina-
tion is dip := x (sip). Since dip = nhopip

N (dip) = nhip, the antecedent of the invariant to be proven
is not satisfied.

Pro. 4, Line 4: We assume that the entry x (oip,osn,kno,val,hops+1,sip,⇤) is inserted into x (rt).
So dip := x (oip), nhip := x (sip), nsqnip

N (dip) := x (osn) and dhopsip
N (dip) := x (hops) + 1.

This information is distilled from a received route request message (cf. Lines 1 and 8 of Pro. 1).
By Proposition 7.1 this message was sent before, say in state N†; by Proposition 7.8 the sender of
this message is x (sip).
By Invariant (13), with ipc := x (sip) = nhip, oipc := x (oip) = dip, osnc := x (osn) and hopsc :=
x (hops), and using that ipc = nhip 6= dip = oipc, we get that

sqnnhip
N† (dip) = sqn

ipc
N†(oipc) > osnc = x (osn) , or

sqnnhip
N† (dip) = x (osn) ^ dhopsnhip

N† (dip) x (hops) ^ flagnhip
N† (dip) = val .

Now we can state and prove the property:

opaodv i |= (otherwith (op=) {i} (orecvmsg (�� m. msg-fresh � m ^ msg-zhops m)),

other quality-increases {i} !) onl �
P

(�(�, -).

8 dip. let nhip = the (nhop (rt (� i)) dip) in

dip 2 vD (rt (� i)) \ vD (rt (� nhip)) ^ nhip 6= dip ! rt (� i) <
dip

rt (� nhip))

23 / 34

Mechanizing a Process Algebra for Network Protocols 25

It follows easily that existing invariants can be made open: most invariants can be
shown in the basic context but still exploited in the more complicated one.

Lemma 4.3 Given an invariant A ||= (I !) P where trans A = seqp-sos � , and any

predicate F, there is an open invariant A’ |= (�- -. I, other F {i} !) (�(�, p). P (� i, p))

where trans A’ = oseqp-sos � i, provided that init A = {(� i, p) | (�, p)2 init A’}.

Open step invariance and a similar transfer lemma are defined similarly. The meta
theory for basic invariants is also readily adapted, in particular,

Theorem 4.4 To show A |= (S, U !) onl � P, in addition to the conditions and the

obligations (init) and (step) of Theorem 3.10, suitably adjusted, it suffices,

(env) for arbitrary (�, p)2 oreachable A S U and l2 labels � p,

to assume both P (�, l) and U � �’, and then to show P (�’, l).

This theorem (together with its counter part for open step invariance) is declared
to the tactic described in Section 3.2 and proofs proceed as before, but with the
new obligation to show invariance over interleaved steps.

We finally have sufficient machinery to state and prove Invariant (5) at the
level of a sequential process:

optoy i |= (otherwith nos-inc {i} (orecvmsg msg-ok), other nos-inc {i} !)
(�(�, -). no (� i)  no (� (nhid (� i)))) , (10)

where nos-inc ⇠ ⇠’ = no ⇠  no ⇠’, So, given that the variables no in the environment
never decrease and that incoming pkts reflect the state of the sender, there is a
relation between the local node and the next hop. Similar invariants occur in proofs
of realistic protocols [4].

4.3 Lifting open invariants

The preceding two sections provide enough machinery to state and show global
invariants at the level of sequential processes, that is, over automata like optoy i in
Invariant (10). It still remains to extend such results to models of entire networks,
and ultimately to re-establish them in the original model of Section 2.

Our approach is sketched in Figure 15. We prove as many invariants as possible
in the closed sequential model (seqp-sos) as described in Section 3.2. These invari-
ants are extended to the open sequential model (oseqp-sos) using Lemma 4.3 where
they support proofs of the forms of global invariants described in Section 4.2. In-
variants that cannot be stated in seqp-sos, because they interrelate the states of
multiple nodes, are proved directly in oseqp-sos using Theorem 4.4 and its counter
part for open step invariance. Once established in oseqp-sos, global invariants can
be lifted successively over the composition operators of the open model (oparp-sos,
onode-sos, opnet-sos, ocnet-sos), using the lemmas described in this section, and then
transferred into the closed complete model (cnet-sos), using the lemma described in
the next section. Figure 15 shows, in grey, examples of the forms of invariants at
each stage. The goal is to show a property P over an entire arbitrary network in
the closed model (at top-left). This property is built from invariants P1 expressed
relative to a single node, possibly in relation to the rest of the network (P 0

1). At

(c)	2017						P.	Höfner35

Overall	Proof	structureLifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (�i. paodv i hh qmsg) n) ||= P

opaodv i ||= P

0
1

lift
opaodv i hh qmsg ||= P

0
2

lift
hi : opaodv i hh qmsg : R

i

i
o

||= P

0
3

lift
opnet (�i. opaodv i hh qmsg) n ||= P

0
4

liftoclosed (opnet (�i. opaodv i hh qmsg) n) ||= P

0
5

transfer

26 / 34Liftingandtransfer

cnet-sosocnet-sos

pnet-sosopnet-sos

node-sosonode-sos

parp-sosoparp-sos

seqp-sososeqp-sos

closed(pnet(�i.paodvihhqmsg)n)||=P

opaodvi||=P0
1

lift
opaodvihhqmsg||=P0

2

lift
hi:opaodvihhqmsg:Riio||=P0

3

lift
opnet(�i.opaodvihhqmsg)n||=P0

4

lift oclosed(opnet(�i.opaodvihhqmsg)n)||=P0
5

transfer

26/34

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (�i. paodv i hh qmsg) n) ||= P

opaodv i ||= P

0
1

lift
opaodv i hh qmsg ||= P

0
2

lift
hi : opaodv i hh qmsg : R

i

i
o

||= P

0
3

lift
opnet (�i. opaodv i hh qmsg) n ||= P

0
4

liftoclosed (opnet (�i. opaodv i hh qmsg) n) ||= P

0
5

transfer

26 / 34

Lifting and transfer

cnet-sos ocnet-sos

pnet-sos opnet-sos

node-sos onode-sos

parp-sos oparp-sos

seqp-sos oseqp-sos

closed (pnet (�i. paodv i hh qmsg) n) ||= P

opaodv i ||= P

0
1

lift
opaodv i hh qmsg ||= P

0
2

lift
hi : opaodv i hh qmsg : R

i

i
o

||= P

0
3

lift
opnet (�i. opaodv i hh qmsg) n ||= P

0
4

liftoclosed (opnet (�i. opaodv i hh qmsg) n) ||= P

0
5

transfer

26 / 34

(c)	2017						P.	Höfner36

• the	‘open’	model	is	used	only	in	the	proof	

• was	more	complicated	as	anticipated	

• fully	mechanised	

• no	liveness	yet	

• Advantages	
• proof	certificate	
• ideal	for	analysing	variants 
(replay	proof)

Summary

(c)	2017						P.	Höfner37

• T.	Bourke,	R.J.	van	Glabbeek,	P.	Höfner:	Mechanizing	a	Process	Algebra	for	
Network	Protocols.	In	Journal	of	Automated	Reasoning	56(3):309-341,	Springer,	
2016.	doi:	10.1007/s10817-015-9358-9

References

http://dx.doi.org/10.1007/s10817-015-9358-9

