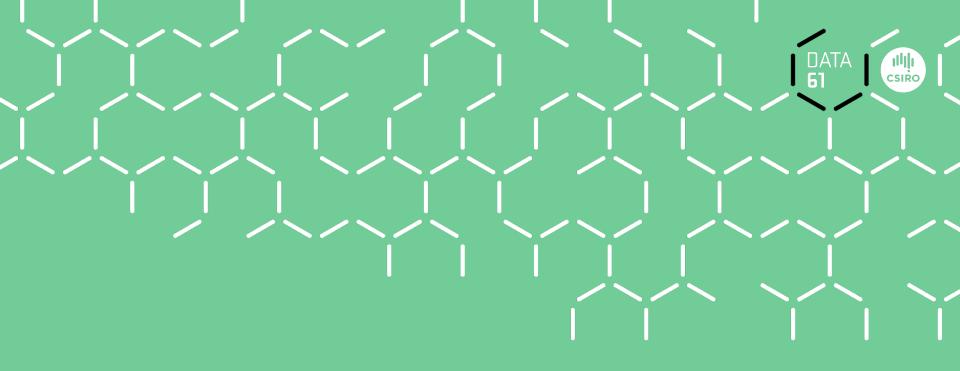
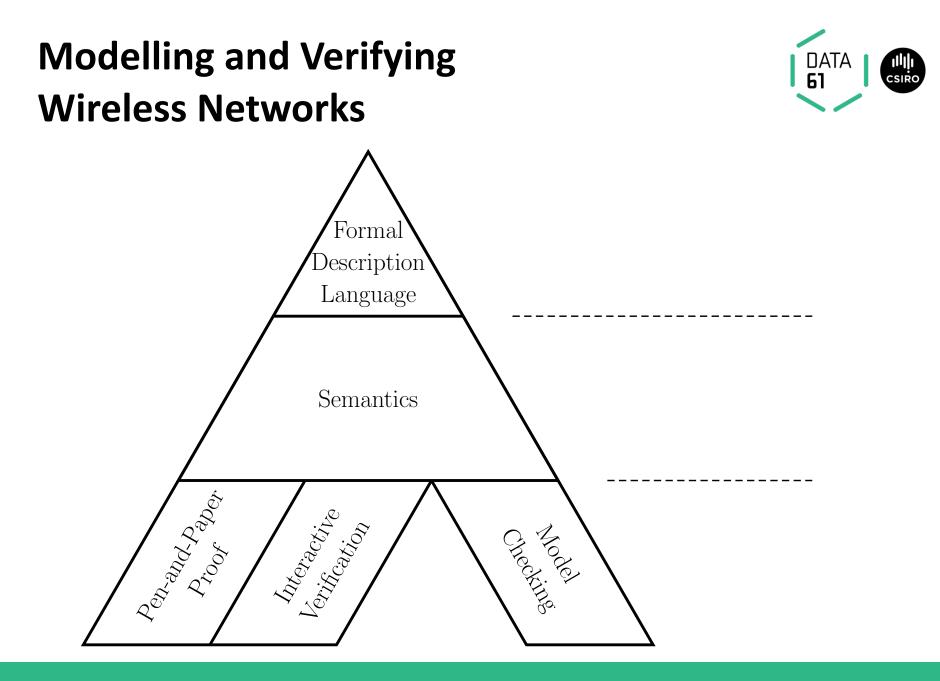

Modelling and Verification of Protocols for Wireless Networks (Lecture7)

Peter Höfner (Lecture at University of Twente, Jan/Feb 2017)

DATA


last update: Feb 2, 2017

Contents of this Lecture


What should you have learnt

- nothing new
 - a quick overview of what we have done
 - open research challenges
- Q&As (Questions and Answers)

Summary

engineers only need to understand node-level

AWN

- about 10 primitives, including 3 different sending mechanisms
- easy to use?

Layered approach

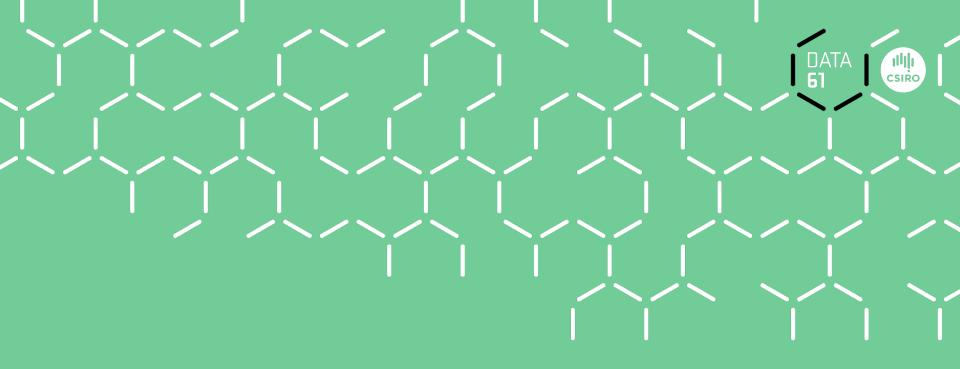
- Formal Semantics
 - needed for formal reasoning (pretty complicated, becomes "ugly" when adding time)
- various tool support
 - Model Checking (quick feedback, "in-complete" guarantees)
 - Isabelle/HOL (full verification)

Summary

Be careful

- slides should be taken with a grain of salt
 - first time I taught this course (hence typos, etc)
 - some of the work is work in progress (mistakes, etc)

Disclaimer


• AWN is not the only modelling language

• process calculi

Process algebra	Message loss	Type of broadcast		Connectivity model		
CBS	enforced synchr.	global broadcast				symmetric
$b\pi$	enforced synchr.	subscription-based broadcast				symmetric
CBS#	enforced synchr.	local bc.	dynamic top.	n[P,S]	op. sem.	symmetric
CWS	enforced synchr.	local bc.	static topology	$n[P]_{l,r}^c$	node	symmetric
CMAN	lossy broadcast	local bc.	dynamic top.	$\lfloor p \rfloor_l^{\sigma}$	node	symmetric
CMN	lossy broadcast	local bc.	dynamic top.	$n[P]_{l,r}^{\mu}$	node	symmetric
ω	lossy broadcast	local bc.	dynamic top.	P: G	node	symmetric
RBPT	lossy broadcast	local bc.	dynamic top.	$\llbracket P \rrbracket_l$	op. sem.	asymmetric
$bA\pi$	lossy broadcast	local bc.	dynamic top.	$\lfloor p \rfloor_l$	network	asymmetric
$b\psi$	lossy broadcast	local bc.	dynamic top.	P	op. sem.	asymmetric
AWN	enforced synchr.	local bc.	dynamic top.	ip:P:R	node	asym./sym.
	with guar. receipt					

- and many others
- including tool support
- (no uniform input language)

Vision - Practical Protocol Engineering Verification / Design Improvement re RREQ, i.e. do nothing, date(rt, (sip, 0, val, 1, sip))] . *upo sp,sn,rt,rreqs,store) $g = rreq(hops, rreqid, dip, dsn, oip, osn, sip) \land (q)$ answer the RREQ with a RREP*/ [rt := update(rt, (oip, osn, val, hops + 1, sip))] $rreqs := rreqs \cup \{(oip, rreqid)\}$ /*upda rray of he $:= \max(sn, dsn)$ /*update the sqn of ip* [rt := update(rt, (sip, 0, val, 1, sip))] /*update the route unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqs,store) $+ [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) \land (oip, rreqid)$ $(dip \notin vD(rt) \lor sqn(rt,dip) < dsn \lor sqnf(rt,dip) = unk)$ *forward RREQ*/ [rt := update(rt, (oip, osn, val, hops + 1, sip))] /*update $rreqs := rreqs \cup \{(oip, rreqid)\} / *update the array/$:= update(rt, (sip, 0, val, 1, sip))] /*update the dcast(rreg(hops + 1, rregid, dip, max(sqn(rt, d* ,r,rreqs,store ∽aid dip, d n, oip osn, s p)♪ Implementation

(Research) Challenges

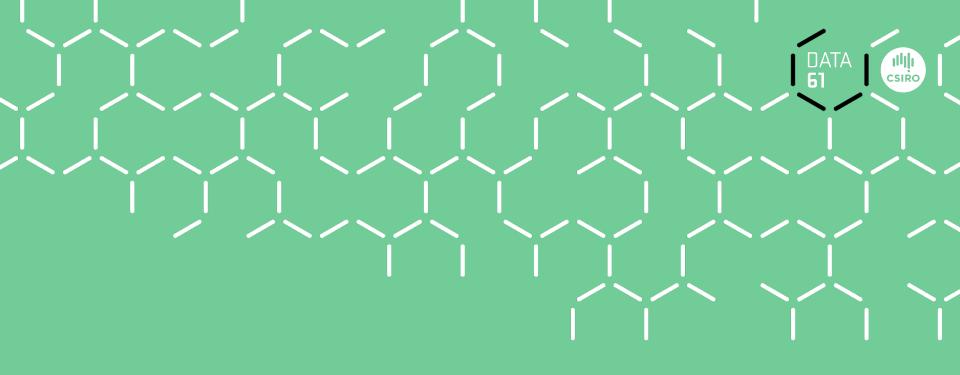
Probability

- AWN
 - extension with time available
 - probability would be useful
- applications
 - probabilistic protocols, e.g. CSMA (Carrier sense multiple access) protocol
- quantitative analysis
 - what's the probability that a route is found in *n* time steps

Comparing Protocols

- so far protocols are compared by test-bed experiments (or simulations)
 - limited set of network topologies
 - contradicting results
- wishful: catalogue of formally defined protocol measurements
 - packet overhead
 - time until route is found
 - problem: depends on topology and mobility

Handling Topology



- Model Checking Approaches usually have to take the topology into account
 - often connectivity matrix or something alike
- How to systematically list/use all topology
 - use symmetries in topologies
 - can reduction techniques for "equivalent" nodes be used
- How to model mobility (link changes)
 - encode concrete mobility models
 - choose some mobile and some stationary nodes (how to list them systematically)
 - one approach by Fokkink allows arbitrary topologies (or a given size); but did require the development of a new model checking algorithm

Getting the Technology Out

- Great formalisms available
- today's practice in industry differs a lot (cf. TORA spec)
- how do we convince industry to be more formal? (not necessary use of formal methods)

