
www.data61.csiro.au

Modelling	and	Verification	of	
Protocols	for	Wireless	Networks
(Lecture7)

Peter	Höfner
(Lecture	at	University	of	Twente,	Jan/Feb	2017)

last	update:	Feb	2,	2017

http://www.data61.csiro.au


(c)	2017						P.	Höfner

• nothing	new	
• a	quick	overview	of	what	we	have	done	
• open	research	challenges	

• Q&As	(Questions	and	Answers)

2

Contents	of	this	Lecture	
What	should	you	have	learnt



Summary



(c)	2017						P.	Höfner4

Modelling	and	Verifying	  
Wireless	Networks

12 Peter Höfner

Fig. 3 Different layers of Formal Methods.

Formal

Description

Language

Semantics

P

e

n

-

a

n

d

-

P

a

p

e

r

P

r

o

o

f

I

n

t

e

r

a

c

t

i

v

e

V

e

r

i

fi

c

a

t

i

o

n

M

o

d

e

l

C

h

e

c

k

i

n

g

formal analysis

tools

AWN’s structural

operational semantics

syntax of AWN

body would understand all three layers, this is wishful thinking: most likely only
trained experts working in the area of formal methods will understand the full spec-
trum. But, for specifying a protocol in a precise and unambiguous manner, which
also avoids underspecification, this is not necessary. To achieve this goal, only the
syntax together with a good intuition about its semantics is required—neither a full
understanding of the formal semantics nor of the formal analysis tools is needed.

I believe that state-of-the-art formal description languages are simple enough to
be used by any network researcher and software engineer. These languages can be
used to specify and analyse rather complicated protocols. To achieve more automa-
tion in the analysis, they often offer tool support, such as model checking.

So, the question remains why despite of the maturity of formal description lan-
guages and formal methods for analysing them, the description of real protocols
is still overwhelmingly informal. As Zave pointed out, this drags down industrial
productivity and impedes research progress [46]. It is my belief that three ingredi-
ents are still missing: (1) Better (easy to use) tool support: better tools and faster
computers allow more and more automation. However, the use of tools often re-
quires special knowledge (how to use the tool) or a special input format (e.g. timed
automata). (2) Code generation: it is often believed that the combination of for-
mal specification followed by implementation requires more time (and hence more
money) than just implementing the protocol straight away. If entire (or at least parts
of) implementations could be generated out of formal specifications automatically,
one could gain even more advantages from formal methods. (3) Training: to use for-
mal methods, engineers working in industry must be aware of them; this can only be
achieved by training. Current research tackles the first two items, the last one may
be the hardest to achieve.

Acknowledgements Special thanks goes to all collaborators who contributed to the AODV case
study; in particular Timothy Bourke, Ansgar Fehnker, Robert J. van Glabbeek, Annabelle McIver,



(c)	2017						P.	Höfner5

• AWN	
• Layered	approach	

• engineers	only	need	to	understand	node-level	
• about	10	primitives,	including	3	different	sending	mechanisms	
• easy	to	use?	

• Formal	Semantics	
• needed	for	formal	reasoning 
(pretty	complicated,	becomes	“ugly”	when	adding	time)	

• various	tool	support	
• Model	Checking	(quick	feedback,	“in-complete”	guarantees)	
• Isabelle/HOL	(full	verification)

Summary



(c)	2017						P.	Höfner6

• slides	should	be	taken	with	a	grain	of	salt	
• first	time	I	taught	this	course	(hence	typos,	etc)	
• some	of	the	work	is	work	in	progress	(mistakes,	etc)

Be	careful



(c)	2017						P.	Höfner7

• AWN	is	not	the	only	modelling	language	
• process	calculi	

• and	many	others	
• including	tool	support	
• (no	uniform	input	language)

Disclaimer

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 122

Process algebra Message loss Type of broadcast Connectivity model
CBS [88] ’91 enforced synchr. global broadcast symmetric
bp [22] ’99 enforced synchr. subscription-based broadcast symmetric
CBS# [74] ’06 enforced synchr. local bc. dynamic top. n[P,S] op. sem. symmetric
CWS [69] ’06 enforced synchr. local bc. static topology n[P]cl,r node symmetric
CMAN [40] ’07 lossy broadcast local bc. dynamic top. bpcs

l node symmetric
CMN [66] ’07 lossy broadcast local bc. dynamic top. n[P]µl,r node symmetric
w [94] ’07 lossy broadcast local bc. dynamic top. P : G node symmetric
RBPT [34] ’08 lossy broadcast local bc. dynamic top. JPKl op. sem. asymmetric
bAp [42] ’09 lossy broadcast local bc. dynamic top. bpcl network asymmetric
by [9] ’11 lossy broadcast local bc. dynamic top. P op. sem. asymmetric
AWN here ’11 enforced synchr.

with guar. receipt
local bc. dynamic top. ip:P:R node asym./sym.

Table 9: Process algebras modelling broadcast communication

trative burden is shifted to the broadcast actions—they are annotated with the range of possible receivers.
This enables us to model groupcast and unicast actions, which are not treated in CBS# and CWS, in the
same way as broadcast actions. However, the price to be payed for this convenience is that our actions
arrive(m), which are synchronisations of (non)receive actions of multiple components, need to be an-
notated with the locations of all these components. Moreover, this set of locations is partitioned into the
ones that are in and out of transmission range of the message m. It does not appear possible to model our
groupcast in the style of CBS# and CWS.

Conditional Unicast Our novel conditional unicast operator chooses a continuation process dependent
on whether the message can be delivered. This operator is essential for the correct formalisation of
AODV and other network protocols. In practice such an operator may be implemented by means of an
acknowledgement mechanism; however, this is typically done at the link layer, from which the AODV
specification [79], and hence our formalism, abstracts. One could formalise a conditional unicast as a
standard unicast in the scope of a priority operator [16]; however, our operator allows an operational
semantics within the de Simone format. Of the other process algebras of Table 9, only the w-calculus,
bAp and the broadcast psi-calculi model unicast at all, next to broadcast; they do not have anything
comparable to the conditional unicast.

Data Structures Although our treatment of data structures follows the classical approach of universal
algebra, and is in the spirit of formalisms like µCRL [46], we have not seen a process algebra that
freely mixes in imperative programming constructs like variable assignment. Yet this helps to properly
capture AODV and other routing protocols. This mixture should make the syntax of AWN on the level
of sequential processes easy to read for anybody who has some experience in programming, thus making
it easier to implement protocol specifications written in AWN.

Other Process Algebras for WMNs In [31] CMN is extended with mechanisms for unicast and mul-
ticast/groupcast communication; the paper focuses on power-consumption issues. Process calculi in the
same spirit as the ones above, but focusing on security aspects and trust, appear in [43, 68]. Probabilistic
and stochastic calculi for WMNs, based on similar design principles as the process algebras discussed
above, are proposed in [97, 38, 29, 60, 98, 10, 11, 30]. An extended and improved version of CWS



(c)	2017					P.	Höfner8

Vision	-		Practical	Protocol	Engineering

Design
Verification / 
Improvement

Implementation



(Research)	Challenges



(c)	2017						P.	Höfner10

• AWN	
• extension	with	time	available	
• probability	would	be	useful	

• applications	
• probabilistic	protocols,	e.g.	CSMA	(Carrier	sense	multiple	access)	protocol	

• quantitative	analysis	
• what’s	the	probability	that	a	route	is	found	in	n	time	steps

Probability



(c)	2017						P.	Höfner11

• so	far	protocols	are	compared	by	test-bed	experiments	(or	simulations)	
• limited	set	of	network	topologies	
• contradicting	results	

• wishful:	catalogue	of	formally	defined	protocol	measurements	
• packet	overhead	
• time	until	route	is	found	….	

• problem:	depends	on	topology	and	mobility

Comparing	Protocols



(c)	2017						P.	Höfner12

• Model	Checking	Approaches	usually	have	to	take	the	topology	into	account	
• often	connectivity	matrix	or	something	alike	

• How	to	systematically	list/use	all	topology	
• use	symmetries	in	topologies	
• can	reduction	techniques	for	“equivalent”	nodes	be	used	

• How	to	model	mobility	(link	changes)	
• encode	concrete	mobility	models	
• choose	some	mobile	and	some	stationary	nodes  
(how	to	list	them	systematically)	

• one	approach	by	Fokkink	allows	arbitrary	topologies	(or	a	given	size);	 
but	did	require	the	development	of	a	new	model	checking	algorithm

Handling	Topology



(c)	2017						P.	Höfner13

• Great	formalisms	available	

• today’s	practice	in	industry	differs	a	lot	(cf.	TORA	spec)	

• how	do	we	convince	industry	to	be	more	formal?  
(not	necessary	use	of	formal	methods)

Getting	the	Technology	Out



Q&A


