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Relations

e one of the most ubiquitous concepts in mathematics and computing
e origins in the late 19th century
1941: The calculus of (binary) relations (A.Tarski)

first-order, equational axioms
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Relation Calculi

Applications
e program semantics  (Dijkstra, Hoare,. . .)
o refinement calculus  (Back, Scott,. . .)
e verification
Relation-based Formal Methods
e Alloy (Jackson)
e B (Abrial)
e Z (Spivey)

e algebraic approach to functional programming
(Bird, de Moor)

Further Applications

e data bases, graphs, preference modelling, modal reasoning, linguistics,
hardware verification, design of algorithms, ...
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Relations

a binary relation R on a set A is a subset of A x A
(a set of ordered pairs)

e operations
— union RU S
— intersection RN S
— complement R

— relative product R; S
(a,b) € R; S < 3e. (a,¢) € R and (c,b) € §
— converse R (a,b) € R< (bya) € R

° (2A2 U,;, 7, 7, 1a) is called proper relation algebra of all binary relations

) 7 ; b b
o expressiveness of the calculus of binary relations is that of the
three-variable fragment of first-order logic
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Relation algebra

Definition
A relation algebra is a structure (A, +,;,7, 7, 1) satisfying the axioms
(e+y)+z=z+y+z), z+ty=y+z, z=T+y+IT+y,
(wyhiz=z(y;2) .,  (@Hyhz=z2z+ty;z, wl=z,

K

=z, (z+y)y=2+79 , LTY+T=7 .

e meet can be definedasx-y=7T+7

e a partial order isgiven by s <y <z +y=y

e a relation algebra is representable iff it is isomorphic to a proper one
e too weak to prove some truths about binary relations

e but: translation into logic can introduce quite complex expressions with
nested quantifiers and destroy the inherent algebraic structure

e equational theory is undecidable
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On Automating the Calculus of Relations

e interactive proof-checkers  (von Oheimb, Kahl)

e special-purpose proof systems, e.g.,
— tableaux calculi  (Maddux)
— Rasiowa-Sikorski calculus  (Orlowska)

e translation into the (undecidable) fragment of predicate logic
(SPASS 3.0)

Why not use off-the-shelf theorem provers combined with Tarski’s
equational axioms?
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Results and Experience

e more than 100 theorems proved as base library
e most of them without difficulties

e some needed restriction of axioms or additional hypothesis
Axiom selection systems seem necessary (e.g., SRASS)

o Prover9/Waldmeister perform best
(evaluation of more than 10 ATP systems)

e a comparison between our approach and translation into predicate logic is
still missing
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Simulation Laws for Data Refinement

e program refinement investigates the stepwise transformation of abstract
specifications to executable code

e data refinement is a variant that considers the transformation of abstract
data types (ADTs) into concrete ADTs

Abstract ADTs
e observed through the effects of their operations on states
e operations are usually modelled as binary relations
o further operations model the initialisation and finalisation of ADTs
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Simulations

Definition (de Roever, Engelhardt)

Let x, y and z be elements of some relation algebra.
e x U-simulates y with respect to z (z Cf y) if Z;2;2 < g,
e x L-simulates y with respect to z (x CF y) if ;2 < y; 2,
o x U-simulates y with respect to z (z Chy)ifx < zy; 2,
e x L-simulates y with respect to z (z Cty)ifa;2 < 25y

(z is the abstraction relation; C the simulation relation)
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Data Refinement

Theorem (soundness of simulations)

e L- and L-simulations are sound for data refinement
e U-simulations are sound if the simulation relation is total (1 < x; %)

o U-simulations are sound if the simulation relation is a function (&;x < 1)

Remarks

e the proof uses structural induction
e the entire induction cannot be treated by ATP systems

e but: all base cases and induction steps can be proven fully automatically
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Stepwise Proof for L-simulation

base cases
e 0C3;0and1C% 1
(Prover9: < 10s)
o the case of atomic operations holds by assumption
induction step
Let sf CF st and s5 C7 s5.
e composition: s7;s5 CF s7;85
(Prover9: < 35s)
o choice: si + s5 C7 s7 + s5
(Prover9: < 2s using an additional distributivity law)
e jteration: (s7)* Cf (s1)*
(Prover9: < 15s)

(* is the reflexive, transitive closure and can be axiomatised in first-order logic)

I I
1JCAR '08 -11- (@©Peter Hofner




On Automating the Calculus of Relations
I I

Stepwise Proof for L-simulation

final step Let i <:%; %, z; f¢ < f* and s° Cf s
o %8 fC<dY st fe
(Prover9: < 15s)
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Conclusion

e combination of relation algebra and ATP systems is feasible
e ATP systems can speed up finding proofs / counterexamples
(We found flaws in the soundness proof for U and U-simulations)

e alternative higher-order, special-purpose, translational and finitist
approaches

e examples suggest that formal methods become more automatic
e practical verification tasks often require the integration of algebraic
techniques into a wider context:

Most induction proofs require higher-order reasoning, but the base case
and the induction step can often be discharged algebraically.
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Outlook

e results hopefully pave the way for interesting applications in relational
software development methods like B, Z or Alloy

e relations are not only used for ADTs, e.g.,
weakest liberal precondition (wlp(z,p) = z;P) or
weakest precondition

o find ways of combining the abstract pointfree level with the concrete data

e integration of ordered chaining techniques (Bachmair, Ganzinger) into
modern ATP systems would make relational reasoning more efficiently

e a combination with hypothesis learning techniques seems indispensable for
tackling more complex applications and larger specifications
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