
An Algebra of Product Families

An Algebra of Product Families

Peter Höfner

joint work with

R. Khedri, B. Möller

August, 2009

McMaster University, August 2009 –1– c©Peter Höfner



An Algebra of Product Families

Introduction

Product lines and product families

• originally from hardware industry

• studying the commonality/variability

• allow several variants of products

• reduction of development and maintenance costs

• adoption to software development [Parnas76]

• found its way into the software development process
Lucent Technologies: decrease in development time and costs 60% to 70%
[WeissLai99]

McMaster University, August 2009 –2– c©Peter Höfner



An Algebra of Product Families

Introduction

View reconciliation
captering all requirements is not possible in one model

• hardware and software

• components

• middleware

McMaster University, August 2009 –3– c©Peter Höfner



An Algebra of Product Families

Introduction

Problems

• different notions

• no precise definition

Solutions

• an algebraic foundation

• sets of integration constraints

• link features in different views

McMaster University, August 2009 –4– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Terminology

• feature: elementary basic unit

• product: composition of elementary features

• product family: collection of products

McMaster University, August 2009 –5– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Example
small company with family of three product lines:

Product line Mandatory Optional Commonalities

MP3 Player – Play MP3 files – Record MP3 files

– Audio equaliser
(a eq)

– Video algorithms
(v alg)

– Dolby surround
(dbs)

(p mp3) (r mp3)

DVD Player – Play DVD – Play music CD
– View pictures

from picture CD
– Burn CD
– Handle additional

DVDs

Hard Disk
Recorder

– MP3 player
– organise MP3 files

McMaster University, August 2009 –6– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Definition
a product family algebra (S, +, 0, ·, 1) is an idempotent and commutative
semiring
its elements are called product families

S ↔ abstract product families

a + b ↔ union/choice of product families a, b

0 ↔ empty product family

a · b ↔ all possible combinations of a-products with b-products

1 ↔ family containing only the empty product with no features

McMaster University, August 2009 –7– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Required axioms

• (S, +, 0) commutative and idempotent monoid

• (S, ·, 1) monoid

• · distributes over +

• 0 is an annihilator, i.e., 0 · a = 0 = a · 0

McMaster University, August 2009 –8– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Example continued

MP3 players is described algebraically as

mp3 player = p mp3 · (r mp3 + 1) · a eq · v alg · dbs

term a + 1 expresses optionality of a; abbreviated by opt[a].
distributivity yields

p mp3 · r mp3 · a eq · v alg · dbs + p mp3 · a eq · v alg · dbs

⇒ mp3 player is a family consisting of exactly two products

McMaster University, August 2009 –9– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Concrete models

• bag model
– product families: finite sets of finite bags (multisets) of basic features
– +: set union
– · : bag union
– products: singleton sets of finite bags

• set model
– product families: finite sets of finite sets of basic features
– forgets multiplicity of basic features in a product

McMaster University, August 2009 –10– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Definition
algebra feature-generated iff every element is a finite sum of finite products of
features

representation in sum-of-products form corresponds to or/and trees of features
(FODA)
can also be viewed as a commutative variant of the well known Backus-Naur
form of grammars

McMaster University, August 2009 –11– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Base construct description algebraic counterpart
(feature diagram)

A , A Mandatory and
optional feature

A and opt[A], resp.

A B , A B ,. . .

Multiple Features A ·B, A · opt[B]

A B Alternative A + B

A B Or-group A + B + A ·B

McMaster University, August 2009 –12– c©Peter Höfner



An Algebra of Product Families

Product Family Algebra

Principle of Family Induction

given a predicate P (x) on feature-generated algebra S

• if P holds for 0 and all products (induction base)

• and is preserved by addition, i.e.,
P (b) ∧ P (c) ⇒ P (b + c) (induction step)

• then ∀ a ∈ S : P (a)

soundness shown by straightforward induction on cardinality

McMaster University, August 2009 –13– c©Peter Höfner



An Algebra of Product Families

Refinement

Example

Given the product family dvd player

dvd player = p dvd · a eq · v alg · dbs · opt[p mp3]

an “older” product family of DVD players does not support dbs and v alg

old dvd player = p dvd · opt[p mp3] · a eq

each product of dvd player has at least the same features as a product of
old dvd player

dvd player v old dvd player

we call dvd player a refinement of old dvd player

McMaster University, August 2009 –14– c©Peter Höfner



An Algebra of Product Families

Refinement

Definition
inclusion ordering: a ≤ b ⇔df a + b = b
refinement relation: a v b ⇔df ∃ c : a ≤ b · c

• for product p the relation a v p means that all products in a have p as a
subproduct

• v is a preorder

McMaster University, August 2009 –15– c©Peter Höfner



An Algebra of Product Families

Refinement

Theorem
some useful properties for arbitrary product families a, b and product p

(a) a ≤ b⇒ a v b

(b) a · b v b

(c) a v a + b

(d) a v b⇒ a + c v b + c

(e) a v b⇒ a · c v b · c
(f) a v 0⇔ a ≤ 0

(g) 0 v a v 1

(h) a + b v c⇔ a v c ∧ b v c

(i) p v a + b⇔ p v a ∨ p v b

McMaster University, August 2009 –16– c©Peter Höfner



An Algebra of Product Families

A Haskell-Prototype

• checks the adequacy of our definitions

• implements the bag model

• features are simply encoded as strings;
bags are represented as ordered lists

• normalise expressions into a sum-of-products-form

• bag model is isomorphic to natural number:
(atomic) features correspond to a primes
products correspond to natural numbers
(allows efficient algorithms)

McMaster University, August 2009 –17– c©Peter Höfner



An Algebra of Product Families

Requirements: Implications and Exclusions

a multi-view approach also needs integration constraints

• often they link presence of a feature in one view to that of another feature
in the same or another view

• can link subproducts or subfamilies as well

• common informal formulations:

“if a member of a product family has subproduct p1

it also must have subproduct p2”

“if a member of a product family has subproduct p1

it must not have subproduct p2”

McMaster University, August 2009 –18– c©Peter Höfner



An Algebra of Product Families

Requirements: Implications and Exclusions

Definition
the requirement relation is defined in family-induction style

a
0→ b ⇔df TRUE

a
p→ b ⇔df (p v a⇒ p v b)

a
c+d
−−−→ b ⇔df a

c→ b ∧ a
d→ b

for elements a, b, c, d and product p of a feature-generated algebra

• informally, a
e→ b means that if e has a then it also has b

i.e., a implies b within e

• e→ is again a preorder

• a
e→ b coincides with a

e→ lcm(a, b)

• in the bag model, lcm(p, q) is the “smallest” bag refined by p and q

McMaster University, August 2009 –19– c©Peter Höfner



An Algebra of Product Families

Requirements: Implications and Exclusions

Example

assume a vehicle built from the following features:
speed indicator, steering wheel, wheel, axis, engine,
standard transmission and automatic transmission

• engine
car−→ speed indicator:

every motorised car has also a speed indicator

• engine · wheel car−→ steering wheel:
there is at least one steering wheel if the vehicle has at least one engine

McMaster University, August 2009 –20– c©Peter Höfner



An Algebra of Product Families

Requirements: Implications and Exclusions

Example continued

• (steering wheel) · (steering wheel)
car−→ 0 only one steering wheel is

allowed

• wheel2n+1 car−→ wheel2n+2

a car has to have an even number of wheels

• engine
car−→ standard transmission + automatic transmission

every motorised car has a standard transmission or an automatic one

• 1
car−→ engine

each car has (at least) one engine

McMaster University, August 2009 –21– c©Peter Höfner



An Algebra of Product Families

Requirements: Implications and Exclusions

Theorem
some useful properties

(a) b
a→ b + c.

(b) b · c a→ b.

(c) b
a→ c⇒ b

a→ c + d.

(d) b
a→ d⇒ b · c a→ d.

(e) If p is a product, then b
p→ c⇒ b + d

p→ c + d.

(f) a
e→ b ∧ c

e→ d⇒ a · c e→ b ∧ a · c e→ d.

(g) a + b
e→ c⇔ a

e→ c ∧ b
e→ c.

McMaster University, August 2009 –22– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

algebraically, this can be tackled as follows:

• take two product lines a and b and a set of implication clauses of the form

c
a·b−→ d

• write a and b in sum-of-products form

• the term a · b denotes all possible combinations of products from a with
products from b

• multiply out

• from the resulting sum remove all products violating the implication
clauses

• this method is implemented in our prototype

McMaster University, August 2009 –23– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

Example

a company builds (simplified) computers

• basic computers have a hard disc and a screen

• a second screen can be added

• a printer and/or a scanner can be added

• it is possible to have more than one extension

abbreviations: hd, scr, prn and scn

hw = hd · scr · opt[scn, prn, scr]

McMaster University, August 2009 –24– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

Example continued

another company provides two different software packages

• drivers for hard disks, screens and printers

• drivers for hard disks, screens and scanners

sw = hd drv · scr drv · prn drv + hd drv · scr drv · scn drv

McMaster University, August 2009 –25– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

Example continued

the multi-view reconciliation Problem asks for all products satisfying the
following requirements

hd
hw · sw
−−−→ hd drv

scr
hw · sw
−−−→ scr drv

prn
hw · sw
−−−→ prn drv

scn
hw · sw
−−−→ scn drv

each hardware component needs an appropriate driver

the above procedure determine all admissable products and elimates all
inconsistent products

McMaster University, August 2009 –26– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

Example continued

some detailed observations about the result set:

• there is no machine with scanner and printer
due to the fact that there is no software package with drivers for both
components

• there are two different versions of the hardware product consisting of hard
disk and screen(s) only;
they offer software for scanners and printers, resp.

• such products can be seen as hardware with an upgrade option: the
customer can add a hardware component without changing the software

McMaster University, August 2009 –27– c©Peter Höfner



An Algebra of Product Families

Multi-View Reconciliation

• symmetrically to the combination of product lines, one can extract a view
of a product family:

• simply project to the respective feature set F

• using a feature algebra homomorphism that sends all features outside F to
the empty product 1

McMaster University, August 2009 –28– c©Peter Höfner



An Algebra of Product Families

Conclusion

algebraic approach

• conflict resolution between views performed without modification on the
initial views (separation of concerns)

• each view can be specified independently of the others

• very simple but effective mathematical background

• axiomatics purely first-order, hence automated reasoning (e.g., using
Prover9) is possible and has been done

• prototypical implementation of some useful models of feature algebra in
Haskell

unmentioned work

• more examples and case studies
e.g., product line of driver assisting systems with more than 40.000
products

• reduction of up to 75%

McMaster University, August 2009 –29– c©Peter Höfner



An Algebra of Product Families

Outlook

• algebraic model of features is at a high level of abstraction

• from a software perspective, a feature could be a requirement
scenario/use-case or a partial description of the functionality

• our current research aims at deriving concrete specifications of the
members of a family from its abstract feature algebra specification and the
concrete specifications of its basic features

• this step would join the ongoing research efforts for formal model driven
software development techniques

• the feature algebra model of a family and the specifications of the family’s
features would be the initial models of the sought transformation into
concrete form

McMaster University, August 2009 –30– c©Peter Höfner


	Introduction

