
An Extension for Feature Algebra

An Extension for Feature Algebra

Peter Höfner Bernhard Möller

October, 2009

FOSD 2009, October 2009 –1– c©Peter Höfner

An Extension for Feature Algebra

Introduction

Feature-oriented Software Development

• general programming paradigm

• provides formalisms, methods, languages, and tools

• builds variable, customisable, and extensible software

Feature Algebra

• algebraic framework

• captures many of the common ideas of FOSD

• formal foundation of architectural metaprogramming

• automatic feature-based program synthesis

aim: full congruence between tools for FOSD and feature algebra

FOSD 2009, October 2009 –2– c©Peter Höfner

An Extension for Feature Algebra

A Standard Model

class

enterclear

top

method field

Calc

e1

e0

e2

packageUtil

Feature Structure Trees (Forests)

• capture the hierarchical module structure of a system

• can be encoded using strings of node labels

Base =def { Util, Util :: Calc, Util :: Calc :: top,
Util :: Calc :: clear, Util :: Calc :: enter,
Util :: Calc :: e0, Util :: Calc :: e1,
Util :: Calc :: e2 }

FOSD 2009, October 2009 –3– c©Peter Höfner

An Extension for Feature Algebra

A Standard Model

add

Calc

Util

enterclear

top

Calc

e1

e0

e2

Util

entercleartop

add

e1

e0

e2

Calc

Util

• order of treebranches does not matter

• feature tree superimposition (addition) can be defined as set union

• feature algebra also comprises modifications which in the concrete model
are tree rewriting functions
(e.g. renaming a node, i.e., renaming a class)

(in the paper we introduce another model that respects the ordering;
(based on lists of maximal paths)

FOSD 2009, October 2009 –4– c©Peter Höfner

An Extension for Feature Algebra

Feature Frameworks

Feature Algebra

• a tuple (M, I, +, ◦, ·, 0, 1) satisfying some axioms like distributivity and

i + j + i = j + i

I ↔ set of introductions
M ↔ set of modifications
+ ↔ superimposition
◦ ↔ composition
· ↔ application

i ≤ j ⇔def i + j = j ↔ subsumption relation (preorder)

• closely related to the Deep calculus

• definition contains only first-order equational axioms

• predestined for automatic theorem proving

FOSD 2009, October 2009 –5– c©Peter Höfner

An Extension for Feature Algebra

Idempotence

Calc

Util

add

enterclear

add

Calc

e1

e0

e2

Util

enterclear

add

e1

e0

e2

Calc

Util

• feature algebras are idempotent

• “duplicating a feature has no effect”

• formally: i + j + i = j + i

• for the standard models this fits perfectly

• does not consider feature oriented programming at code level

FOSD 2009, October 2009 –6– c©Peter Höfner

An Extension for Feature Algebra

Feature Frameworks

FeatureHouse

• concrete tool for performing the operations of a feature algebra

• developed by Apel, Kästner and Lengauer

• composition of features written in various languages
(Java, C#, C, Haskell, and JavaCC)

FOSD 2009, October 2009 –7– c©Peter Höfner

An Extension for Feature Algebra

Extending the Model

enter

e1clear

top

e1entercleartop

clear count

Calc

e2

e0

Calc

e2

e0

merged bodies

count

Calc

Util Util Util

enter

• each terminal node is extended by a code fragment

• if two instances occur, the code parts have to be merged

• order of combination does matter

• Java example: “updating a function foo with an increment statement”

Bar::foo
void foo(int a) {

a++;
original(a);

}

FOSD 2009, October 2009 –8– c©Peter Höfner

An Extension for Feature Algebra

The Lost Idempotence

Bar::foo
void foo(int a) {

a++;
original(a);
}

⊕

Bar::foo
void foo(int a) {

a++;
original(a);
}

=

Bar::foo
void foo(int a) {

a++;
a++;
original(a);

}

• update using FeatureHouse

• no details how FeatureHouse merges code and applies overriding

• the idempotence is lost

FOSD 2009, October 2009 –9– c©Peter Höfner

An Extension for Feature Algebra

Consequence

Mismatch between FeatureHouse and the simple definition
of feature algebra

aim: find a more sophisticated and adequate algebra

FOSD 2009, October 2009 –10– c©Peter Höfner

An Extension for Feature Algebra

Consequence

Mismatch between FeatureHouse and the simple definition
of feature algebra

aim: find a more sophisticated and adequate algebra

FOSD 2009, October 2009 –10– c©Peter Höfner

An Extension for Feature Algebra

Extended Feature Algebra

let C be an abstract set of code fragments

• consider pairs (i, c) where
i is an introduction corresponding to a maximal path in the forest and
c ∈ C is the code fragment contained in the leaf

• pairs (i, c) are denoted by i[c]

• add an update or override operation | : C × C → C such that | is
associative and refines i + j + i = j + i to

i[a] + j[c] + i[b] = j[c] + i[a|b]

• the original definition can be retrieved by choosing C as containing only
the empty code fragment

• the subsumption relation will no longer be a pre-order, but still transitive

FOSD 2009, October 2009 –11– c©Peter Höfner

An Extension for Feature Algebra

Refine the Model with Update

• identify the “common part” of two given implementations

• determine which part of a method body has to be overridden

• determine which part has to be preserved

• highly dependent on the respective language

• define abstract interfaces:

int min5(int a) {
int b=5;
if(a<b) return a;
else return b;

}

int min5(int a) {
int b;
}

• a precise definition of the abstract interface will need to reflect also nested
scopes

FOSD 2009, October 2009 –12– c©Peter Höfner

An Extension for Feature Algebra

Refine the Model with Update

X ‡ U = {x ∈ X | ai(x) ∈ U} restriction

X − U = {x ∈ X | ai(x) 6∈ U} removal

• ‡ determines for a set X whose corresponding abstract interfaces lie in a
given set U

• the operator − selects its relative complement

X|Y =def (Y − ai(X)) ∪X

where ai(X) =def {ai(x) |x ∈ X}.
abstraction to the level of feature algebra is possible
automated reasoning still possible

FOSD 2009, October 2009 –13– c©Peter Höfner

An Extension for Feature Algebra

Conclusion & Outlook

• further step towards an algebraic theory of FOSD

• experience with feature algebra and FeatureHouse

• two concrete models for feature algebra

• models and FeatureHouse do not coincide

• extended feature algebra is introduced

• additional operators can be modeled

• ongoing work

• all introduced operators like update need further investigation

• check whether the extension is adequate

FOSD 2009, October 2009 –14– c©Peter Höfner

An Extension for Feature Algebra

Appendix

FOSD 2009, October 2009 –15– c©Peter Höfner

An Extension for Feature Algebra

Feature Algebra

a tuple (M, I, +, ◦, ·, 0, 1) such that

• (I, +, 0) is a monoid satisfying the additional axiom of distant
idempotence, i.e., i + j + i = j + i.

• (M, ◦, 1) is a groupoid operating via · on I, i.e., ◦ is a binary inner
operation on M and 1 is an element of M such that furthermore

• · is an external binary operation from M × I to I
• (m ◦ n) · i = m · (n · i)
• 1 · i = i

• 0 is a right-annihilator for · , i.e., m · 0 = 0

• · distributes over +, i.e., m · (i + j) = (m · i) + (m · j)
• the natural preorder is defined by i ≤ j ⇔def i + j = j

I ↔ set of introductions (abstraction of feature trees)
M ↔ set of modifications (rewrite functions)
+ ↔ feature tree superimposition
· ↔ application of a modification to an introduction
◦ ↔ modification composition

FOSD 2009, October 2009 –16– c©Peter Höfner

