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Temporal Logics and Algebra

Introduction

® aims

- short introduction to temporal logics like LTL, CTL, CTL* ...
- derive algebraic semantics for CTL*

- short introduction to Neighbourhood Logic

- derive algebraic semantics for Neighbourhood Logic

- give a general scheme how to derive algebraic semantics

® this is a (utorial

® 45 minutes are far too short, continue on your own

-
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Preliminaries

® knowledge of sets, union, intersection, complementation
® some basics of propositional logic
® basic knowledge about graphs

-
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Temporal Logics and Algebra

Motivation
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why temporal logic
® temporal logic is everywhere
® describe temporal behaviour

® examples are: language, flow analysis, logics of programs,
philosophy, etc.

e
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Temporal Logics and Algebra

Motivation
Copyright 1997 Randy Glasbergen. www.glasbergen.com
“Algebra class will be important to you
later in life because there’s going to
be a test six weeks from now.”
why algebra

® simply and concise proofs
® cross reasoning possible (unification)

If logics are lifted to the same type of abstract algebra
® automated theorem proving with off-the-shelf software

-
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A Crash Course in Temporal Logic

® (emporal logics describe any system of rules for representing, and
reasoning about, propositions qualified in terms of time

® first studied in depth by Aristotle

® any logic which uses quantifier is a predicate logic;
any logic which uses time as a sequence of states is a femporal logic;

® temporal logic has found an important application in formal
verification

® can reason about time

® concrete temporal logics

- linear temporal logic (LTL) [Pnueli Manna 1977]
- computation tree logic (CTL) [Clarke Emerson 1981]

- CTL* [Emerson Halpern 1986]
- neighbourhood logic [Zhou Hansen 1998]

-
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Examples

® eventually, | will pass my PhD defense

® until | have passed my defense, | will be a grad student

® |'m always hungry

® after this and the next beer, | will only have two more beers

® as long as | stay in Doha | will not see my parents

® after program P has terminated, program Q is executed

® if each atomic program execution takes at mosto ms |,
the whole program does not need more than10 s to terminate.

® if P terminates the next program to be executed will need
variable x

-
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LTL - Linear Temporal Logic

® time is discrete and is characterised by points
® (computation) path is a (possible infinite) sequence of states
® future is not determined (consider several paths)
® base is a finite set of atomic propositions like
“I have a PhD”, “process 1253 is suspended”,
“program P is executed’, etc.

-
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LTL - Syntax

UV = 1L || V—->U | XU |TUD

e $atomic proposition
® the first three items should be known from propositional logic
® as usual

o= = p NP

(=) VY = p -9

® moreover

Fo = TUp Gy = =F=p Ry = =(=U—9)
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LTL - Semantics

LTL formulas are evaluated on paths

a state of a system satisfies an LTL formula if all paths from the given

state satisfy it

= X neXt: has to hold at the next state

— o U1 Until: p has to hold (at least) untilt

= G Globally: ¢ has to hold on the entire subsequent path

w
w
wE=Fop Finally: o eventually has to hold
w
w

= R Release: at first position in which is true, 1) ceases to be
true; it is required to be true until release occurs

proper definition can be found e.g. in [Emerson 1990]
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LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does
not hold

® whenever | receive an email | will send an answer
® if program P is executed once, it is executed infinitely often

® | smoked until | was 22
(assuming that the discrete states are years)

® an upwards travelling escalator at the third floor does not change
the direction when its passengers want to go to the fifth floor

-
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LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does

not hold G —|(started /\ ﬂready)

® whenever | receive an emaill | will send an answer

® |f program P is executed once, it is executed infinitely often

® | smoked until | was 22
(assuming that the discrete states are years)

® an upwards travelling escalator at the third floor does not change
the direction when its passengers want to go to the fifth floor
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LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does

not hold G —|(started /\ ﬂready)

® whenever | receive an email | will send an answer
G(receive — F answer)

® |f program P is executed once, it is executed infinitely often

® | smoked until | was 22
(assuming that the discrete states are years)

® an upwards travelling escalator at the third floor does not change
the direction when its passengers want to go to the fifth floor
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Temporal Logics and Algebra

LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does

not hold G _I(Started /\ ﬂready)

® whenever | receive an email | will send an answer
G(receive — F answer)

® |f program P is executed once, it is executed infinitely often
G(—P) Vv GF(P)

® | smoked until | was 22
(assuming that the discrete states are years)

® an upwards travelling escalator at the third floor does not change
the direction when its passengers want to go to the fifth floor

-
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LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does

not hold G _I(Started /\ ﬂready)

® whenever | receive an email | will send an answer
G(receive — F answer)

® if program P is executed once, it is executed infinitely often
G(—P) Vv GF(P)
® | smoked until | was 22
(assuming that the discrete states are years)
smoke U (age = 22 A\ —smoke)
® an upwards travelling escalator at the third floor does not change
the direction when its passengers want to go to the fifth floor
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Temporal Logics and Algebra

LTL - Examples and Practical Patterns

® it is iImpossible to get to a state where started, but ready does
not hold G —(started A —ready)

® whenever | receive an email | will send an answer
G(receive — F answer)

® if program P is executed once, it is executed infinitely often
G(—P) Vv GF(P)
® | smoked until | was 22
(assuming that the discrete states are years)
smoke U (age = 22 A\ —smoke)
® an upwards travelling escalator at the third floor does not change

the direction when its passengers want to go to the fifth floor
G(floor3 A buttonpresed5 A dirupwards — dirupwards U floorb)
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CTL - Branching Time Logic

® time is discrete
® LTL cannot express existential quantifiers
® clements are now trees of states
® future is not determined
(consider several paths of a trees or even several trees)
® base is again a finite set of atomic propositions

-
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Temgoral Logics and Algebra
CTL - Syntax

the syntax of quantifies an LTL formula

UV o= 1|0 |V—-T|EXVY)|EWUY)

® the all quantifier is defined, as usual, via de Morgan
AV = —-E-V

e formulas likeA(¢ U 1) are possible by the above relations
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CTL - Semantics

we only give examples, a proper definition is again in
[Emerson 1990]

t = E(Xred) there is a path w that satisfies
w = Xred
all pathsw satisfy

t = A(Xred) w = Xred

there is a path w that satisfies
t = E(black Ured) w = blacr:)k U red

all pathsw satisf
t = A(black Ured) w }p: black U rgd

A
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CTL - Examples and Practical Patterns

® whenever | receive an email | will send an answer
® |f a program executes f, it can always be terminated by the user

® all paths which have a ¢ along them have also av

-
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Temporal Logics and Algebra

CTL - Examples and Practical Patterns

® whenever | receive an email | will send an answer
AG(receive — AFanswer)

® |f a program executes f, it can always be terminated by the user

® all paths which have a ¢ along them have also av

-
RelMiCS 2009 -15- © Peter Hofner



Temporal Logics and Algebra

CTL - Examples and Practical Patterns

® whenever | receive an email | will send an answer
AG(receive — AFanswer)

® |f a program executes f, it can always be terminated by the user
AG(f — EXterminate)

® all paths which have a ¢ along them have also av

-
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CTL*

CTL”
LTL CTL

® time is discrete

® base is again finite set of atomic propositions

® unifies paths and state formulas

® if we can derive an algebraic semantics of CTL* we have also
one for CTL and LTL by restricting it to subsets

-
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CTL* - Minimal Syntax

1|®|X¥— X |EII,
> | II —II | XII | ITUIL.

2.
11

® as in LTL and CTL we can define the operators
/\7 \/7 _|7 A? G? F

® if we are able to give algebraic expressions for the minimal
syntax we can determine the derived operators
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Let’s Get Algebraic !

-
RelMiCS 2009 -18 - © Peter Hofner



Temporal Logics and Algebra

Graphs, Matrices and Relations

there is a close relationship between all these concepts

Q'Q 12346 R=1{(1,2), (2,4), (3,1),
1 X X
(3,4), (4,3), (4,5)}
2
° ° @ 3 X X
4 X X
3
graph adjacency matrix relation

-
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From Relations to Paths

® relations present graphs
® composition corresponds to path fusion
® relation stores only the starting and the ending points
® the intermediate points are lost
for example there is no difference between the result of

(1,2):(2,4)  and
(1,2)5(2,4)5(4,3) 5 (3,4)

-
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From Relations to Paths

® relations cannot express properties of paths or intermediate
states

® use paths (sequences of nodes) and sets of paths instead

® paths con be composed if the last node of the first
corresponds to the first one of the second

.8 X 8.2 = 2.5.Y

® as in the case of relations composition of paths can be lifted to
sets of paths

® moreover two sets of paths can be composed using set union

® both relations and paths form the same algebraic structure,
namely quantales
(a generalisation of relation relation algebra)

-
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An Example for Paths

T ={1.2, 24, 3.1,

(D—(2)
' 3.4, 4.3, 4.5}
=(0—)

® as in relations 7 determines all path of length 2
® |t stores all intermediate states

T? = {1.2.4, 2.4.3, 2.4.5, 3.1.2, 3.4.3, 3.4.5, 4.3.1, 4.3.4)

® use paths of length 1 to restrict and test elements
{1} x T° = {1.2.4}
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From Finity to Infinity

® using the above approach one can model union and
composition of finite paths

® but how to handle infinite paths?
(important for logics)

® if an infinite path is composed with an arbitrary one, the result
Is the infinite path

-
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Left Boolean Quantale

we now define the underlying algebra

® two operations: addition and composition

® addition: associative and commutative and idempotent with
neutral element O

® composition: associative, neutral element 1;

® annihilation: 0 - a = 0

® composition distributes over arbitrary sums

® the structure is also Boolean, i.e., we can define a
complement satisfying the de Morgan dualities and a meet
operator

© Peter Hofner
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Left Boolean Quantale

® 0 is the least element and | denotes the greatest element
(union of all elements)

® finite iteration (Kleene star) is defined as the least fixpoint of
l + a - x = x and denoted by a*

® infinite iteration is defined as the greatest fixedpoint of
a - x = x and denoted by a”

® an example for Boolean quantales are relation algebras

-
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The Boolean Left Quantale of Paths

® use sets of paths as elements
® addition is set union;
the neutral element is the empty set
® composition is defined as above;
the neutral element is the set of all states (paths of length 1)

® finite iteration A™ = U A
i>0
o A” usually contains infinite paths, however there maybe
some finite paths in it
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From Temporal Logics to Algebra
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From Temporal Logics to Algebra

e e e e
—

yel

()
ore =
‘ red =
blu =
(O h
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From Temporal Logics to Algebra

yel @, . 1}

(®
gre:{777}
® ed = { . . . )
L@ blu = { , }
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From Temporal Logics to Algebra

yel {6, }

(®
gre:{777}
® ed = { . . . )
L@ blu = { , }

RelMiCS 2009 -27 - © Peter Hofner




Temporal Logics and Algebra

From Temporal Logics to Algebra

yel {®O.6).c)
{, ., ,

O,
gre = }
® ed = { . . . )
L@ blu = { , }
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From Temporal Logics to Algebra

O, yel = {0
gre = {67‘7 ®}
S ® red = { , , , )
L@ blu = { , }
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From Temporal Logics to Algebra

O vl = OO
gre = {B@ @S}

® - 000
blu = { , }

£33

Z/
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From Temporal Logics to Algebra

O vl - OO
gre = {BO.@®)

® - 500®
i = (@@

£33

Z/
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From Finite to Algebra

(+) yel = {1,6,10}

gre = {2,4,8,10}
® red = {2,7,9,11}
blu = {3,5}

£33

Z/
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From Finite to Algebra

(+) yel = {1,6,10}

gre = {2,4,8,10}
® red = {2,7,9,11}
blu = {3,5}

£33

adjacent matrix as set of paths

A=1{1223, ..}

Z/
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Towards Algebraic Semantics

now we can characterise temporal formulas paths
in the example
® all (sub)paths of the above graph that are red at the second

state

® all (sub)paths that are yellow until they are green

U(Aj X gre N ﬂAk X yel) x A*

720 k<j
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Temporal Logics and Algebra

Towards Algebraic Semantics

now we can characterise temporal formulas paths
in the example
® all (sub)paths of the above graph that are red at the second

state
AXred x AF

® all (sub)paths that are yellow until they are green

U(Aj X gre N ﬂAk X yel) x A*

720 k<j
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Algebraic Semantics of CTL - Part |

let a be the representation of the transition system
(requirements fora will be discussed later)
concrete semantics generalises

to a function| |

[L] = 0,
[p] = p-T,
o —¢] = l¢] + [¥],
Xl = a-[g],
[eUY] = [isola - [¥] N[ N,ea” - [¢])
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The Existential Quantifier

to finish the algebraic semantics one has to find an algebraic
expression for E
® E describes the existence of a path
® idea: determine all paths satisfying it; take the first element
and continue it with an arbitrary path

-
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Domain

® aim characterise the “first element” of an arbitrary element of
an arbitrary Boolean quantale
® |n relation algebra:

"R={(t,t)|3s: (t,s) € R}

® in the algebra of paths:
T ={(p|Izr T Is:ps=t}

® in general domain can be defined via a Galois connection
a<psa<p-T
where p is an element of the maximal Boolean subset below 1
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Algebraic Semantics of CTL - Part Il

let a be the representation of the transition system
(requirements fora will be discussed later)
concrete semantics generalises

to a function| |

[L] = 0,
] = p-T,
o =¥l = [o] + [¥],
Xo] = a-[o],
[eUY] = [isola - [¥] M [ieia” - [e]),
[Ee] = '[¢]-T
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Properties

® we can now determine the derived operators. e.g.,

[Fe] =a™ - [|#]

® more properties and longer discussions can be found in
[Moller Hofner Struth 006]
® since X~y < = Xp the underlying transition a has to satisfy

Vb:a-b=a-b

® from that it is easy to derive semantics for CTL and LTL
(for more details see [Moller Hofner Struth 06])
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An Advantage of Algebra

® use of off-the-shelf automated theorem provers

® problem: quantales are higher-order structures; at the moment
theroem provers are only really good for first-order structures

® but one can use first-order logics to show parts of the
properties

® today, Dang shows how to encode quantales for higher-order
theorem provers

® | et's do a toy example: Show that

[EXEp] = [EXy]
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How We Derived the Semantics

® instead of looking at single states and paths (trees), we
worked with sets of states and paths

® abstract from concrete operations like set union and set
complement to abstract one

® most often there will be operations for choice, composition and
(in)finite iteration

® |f this is the case quantales seems to be one of the best
abstract algebras

-
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Points versus Intervals
Discrete versus Continuous

e LTL, CTL and CTL* are based points in time

® most temporal formalisms developed for program reasoning
do so

® however often intervals seem to be more realistic;
especially in the context of realtime systems

® if logics are point-based, time has to be discrete

® if logics are interval-based, time may be continuous

-
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NL - Neighbourhood Logic

® a “universal” interval-based logic
® developed by Zhou and Hansen [Zhou Hansen 1996]
® subsumes at least 10 other interval logics such as

- interval temporal logic (ITL)
[Halpern Manna Moszkowski 1983]
- interval logic (IL) [Dutere 1995]
- Allen’s interval logic [Allen1983]
- Venema'’s chopping logic [Venema 1991]
® interval-based; hence it allows continuous time

® used for the analysis of real-time and hybrid systems

-
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From CTL to NL (informal)

-
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From CTL to NL (informal)

—A——

/

AN

AN

e
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NL - Syntax

® the syntax includes temporal, functional variables etc which
we skip here for simplicity

® moreover we skip a detailed discussion of functions evaluating
Intervals

® the remaining language of NL formulas is defined by

d = OAD| D | ()P | OD | OO
® skipped details can be found in [Zhou Hansen 2004]
® from this minimal syntax one can again derive further

operators like
(\V/:U)gp — —I(Elaj)—lgp, ¥ = _'<>l_'907 r = _'<>?°_'90
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NL - Semantics

e < & 0

——x a ) 2 s —
u Y z Y z v
where u = y — 0 where v = 240

Y, 2] Fgy iff [y, 2] Fay e

Y, 2] Egy e VY iff [y, 2] gy e or [y,2] Egv ¥,

vy, 2| Ezy () iff |y,z] =71 ¢ for some V' that agrees with V

for all global variables u # x
Y, 2] Egy Owp iff 36>0:[y—0,yl Fave
y,Z :j,V<>r90 i 352027Z+5 NAZ
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NL - Getting Algebraic

® as before we do not use single elements
® that means instead looking at a single interval satisfying ¢
we look at a set

Io =ar {ly, 2] : . 2] = o}
® similar to paths we define operations on sets of intervals

- union as addition
- point-wise lifted interval composition as multiplication
- complement on sets
® this immedeately yields again a Boolean (left) quantale with

I ={[z,2]|Jy: [z, y] € I}
® one may add a right-open intervals|x, 00)

-
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Algebraic Semantics for NL (a snapshot)

e < & 0
——x a ) 2 s —
u Y z Y z v
where u = y — 0 where v = 240

Il ]
[Cwp] = o] T

[Crp] =T ']

where codomain ' is defined symmetrically to domain

-
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Algebraic Semantics for NL (a snapshot)

<>7"J<\>l90 <>T<J>\l90
y ’ :u oy .
| S \ P _
g g
O 0n] = T+ [T
[CrOrp] = ] - T

(the full algebraic semantics as well as a lot of properties can
be found in [Hofner Moller 2008])
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Algebraic Semantics for NL (a snapshot)

<>7“J<\>l90 <>T<J>\l90
y ’ :u oy .
| S \ P _
g g
O 0n] = T+ [T
[CrOrp] = ] - T

from an algebraic point of view this corresponds to| E¢]

(the full algebraic semantics as well as a lot of properties can
be found in [Hofner Moller 2008])
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CTL* vs. NL

® all presented logics can be algebraically characterised by
gquantales

® the resulting formulas coincide to some extent

® this shows a close relationship between the logics and allows
cross-reasoning

® this was not known before the algebraization

-
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How to find algebraic semantics
for temporal logics

® instead of looking at single elements, work with sets

® abstract from concrete operations like set union and set
complement to abstract one

® most often there will be operations for choice, composition and
(in)finite iteration

® |f this is the case quantales seems to be one of the best
abstract algebras

-
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Modal Logics

® |ike for temporal logics there are ways for modal logics
® Moller started to look at these logics [Moller 2008]

® there seem to be the same schemata lying behind

® there is a lot of more work to do

-
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