
© NICTA 2011

Peter Höfner

A Process Algebra for
Wireless Mesh Networks

© NICTA 2011

What is the Problem?

• Wireless Mesh Networks
– key advantage: no backhaul wiring required
– quick and low cost deployment

• Applications
– public safety (e.g. CCTV)
– emergencies (e.g. earthquakes)
– mobile phone services
– transportation
– mining
– military actions/counter terrorism
– ...

© NICTA 2011

What is the Problem?

• WMNs promise to be fully
– self-configuring
– self-healing
– self-optimising

© NICTA 2011

What is the Problem?

• WMNs promise to be fully
– self-configuring
– self-healing
– self-optimising

• THIS IS NOT TRUE
(in reality)

• Limitations in reliability
and performance

• Limitations confirmed by
– end users (e.g. police)
– own experiments

• Cisco, Motorola, Firetide, ...
– industry

© NICTA 2011

What is the Problem?

“Our requirement was for a system breadcrumb type
deployment

over at least 4 nodes and maintain a throughput of
around 5Mbps-10Mbps to enable 'good' quality video
to be passed. The commercial devices failed to meet

our requirements [...]”Rick Loebler, Applied Technology Manager,
NSW Police Force

© NICTA 2011

Formal Methods for Mesh Networks

• Goal
– model, analyse, verify and increase the performance of wireless

mesh protocols
– develop suitable formal methods techniques

• Benefits
– more reliable protocols
– finding and fixing bugs
– better performance
– proving correctness
– reduce “time-to-market”

• Team (Formal Methods)
– Ansgar Fehnker, Rob van Glabbeek, Peter Höfner,

Annabelle McIver, Marius Portmann, Wee Lum Tan

© NICTA 2011

Process Algebra

© NICTA 2011

Process Algebra

• Desired Properties
– guaranteed broadcast
– prioritised unicast
– data structure

• Inspired by
– - Calculus
– - Calculus
– (LOTOS)

�
�

© NICTA 2011

Structure of WMNs

• User
– Network as a “cloud”

• Collection of nodes
– connect / disconnect / send / receive
– “parallel execution” of nodes

• Nodes
– data management

• data packets, messages, IP addresses ...
– message management (avoid blocking)
– core management

• broadcast / unicast / groupcast ...
– “parallel execution” of sequential processes

© NICTA 2011

Nodes (Sequential Process Expressions)

• Syntax of sequential process expressions

SP ::= X(exp1, . . . , expn) | [⇥]SP | [[var := exp]]SP | SP + SP |
�.SP | unicast(dest,ms).SP � SP

� ::= broadcast(ms) | groupcast(dests,ms) | send(ms) |
deliver(data) | receive(msg)

© NICTA 2011

Structual Operational Semantics I

• internal state determined by expression and valuation

�,broadcast(ms).p broadcast(�(ms))�����������⇥ �, p

�,groupcast(dests,ms).p groupcast(�(dests),�(ms))�����������������⇥ �, p

�,unicast(dest,ms).p � q unicast(�(dest),�(ms))��������������⇥ �, p

�,unicast(dest,ms).p � q ¬unicast(�(dest))�����������⇥ �, q

�, send(ms).p send(�(ms))��������⇥ �, p

�,deliver(data).p deliver(�(data))����������⇥ �, p

�, receive(msg).p receive(m)�������⇥ �[msg := m], p (⇥m � MSG)

© NICTA 2011

Structural Operational Semantics II

• internal state determined by expression and valuation

⇥, [[var := exp]]p ��⇥ ⇥[var := ⇥(exp)], p

⇥, p a�⇥ �, p�

⇥, p + q a�⇥ �, p�

⇥, q a�⇥ �, q�

⇥, p + q a�⇥ �, q�

⇥
⇥⇥ �

⇥, [⇤]p ��⇥ �, p

© NICTA 2011

Nodes (Parallel Processes)

• Syntax

• Operational Semantics

PP ::= �,SP | PP �� PP ,

P a�⇥ P �

P ⇤⇤Q a�⇥ P � ⇤⇤Q
(⇤a ⇥= receive(m))

Q a�⇥ Q�

P ⇤⇤Q a�⇥ P ⇤⇤Q�
(⇤a ⇥= send(m))

P receive(m)�������⇥ P � Q send(m)�����⇥ Q�

P ⇤⇤Q ��⇥ P � ⇤⇤Q�
(⇤m � MSG)

© NICTA 2011

Network

• node expressions:

• Operational Semantics (snippet)

M ::= ip : P : R | M⇥M

P broadcast(m)���������⇥ P �

ip :P :R R : *cast(m)��������⇥ ip :P � :R
P groupcast(D,m)�����������⇥ P �

ip :P :R R⇤D : *cast(m)����������⇥ ip :P � :R

P unicast(dip,m)���������⇥ P � dip ⇤ R

ip :P :R {dip} : *cast(m)����������⇥ ip :P � :R
P ¬unicast(dip)���������⇥ P � dip ⌅⇤ R

ip :P :R ��⇥ ip :P � :R

ip :P :R connect(ip,ip�)����������⇥ ip :P :R ⇧ {ip�} ip :P :R disconnect(ip,ip�)������������⇥ ip :P :R� {ip�}

© NICTA 2011

Network

• Operational Semantics (snippet II)

M R : *cast(m)��������⇥ M � N H¬K : listen(m)����������⇥ N �

M⌥N R : *cast(m)��������⇥ M �⌥N � N⌥M R : *cast(m)��������⇥ N �⌥M �

„
H � R

K ⇤R = ⇥

«

M H¬K : listen(m)����������⇥ M � N H�¬K� : listen(m)�����������⇥ N �

M⌥N (H⇤H�)¬(K⇤K�) : listen(m)������������������⇥M �⌥N �

M a�⇥ M �

M⌥N a�⇥ M �⌥N
N a�⇥ N �

M⌥N a�⇥ M⌥N �
(⌅a⇤{ip :deliver(d), �})

© NICTA 2011

Encapsulation

• Syntax

• Operational Semantics

N ::= [M]

M R : *cast(m)��������⇥M �

[M] ��⇥ [M �]
M {ip}¬K : listen(newpkt(d,dip))�������������������⇥M �

[M] ip :newpkt(d,dip)�����������⇥ [M �]

M ��⇥M �

[M] ��⇥ [M �]
M ip :deliver(d)��������⇥M �

[M] ip :deliver(d)��������⇥ [M �]

M connect(ip,ip�)����������⇥M �

[M] connect(ip,ip�)����������⇥ [M �]
M disconnect(ip,ip�)������������⇥M �

[M] disconnect(ip,ip�)������������⇥ [M �]

© NICTA 2011

A Bit of Theoretical Results

• process algebra is blocking (our model is non-blocking)
• process algebra is isomorphic to one without data

structure --- a process for every substitution instance
• generates same transition system

(up to strong bisimulation)
• resulting algebra is in de Simone format

(by this strong bisimulation and other semantic
equivalences are congruences)

• both parallel operators are associative
(follows by a meta result of Cranen, Mousavi, Reniers)

© NICTA 2011

A Formal Model for AODV

• AODV: Ad-hoc On-Demand Distance Vector Routing
Protocol
– Ad hoc (network is not static)
– On-Demand (routes are established when needed)
– Distance (metric is hop count)
– Vector (routing table has the form of a vector)
– Developed 1997-2001 by Perkins, Beldig-Royer and Das

(University of Cincinnati)
• Core components modelled

– no time
– no probability

© NICTA 2011

AODV - An Example

s is looking for a route to d

s

a

b to via

to via

d d

to via

to via

d

c

to via

c c

© NICTA 2011

AODV - An Example

s

a

b to via

to via

d d

to via

to via

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

to via

to via

to via

d d

d

c

to via

c c

© NICTA 2011

AODV - An Example

s broadcasts a route request

a

b

s

to via

to via

to via

to via

d d

d

c

to via

c c

?

?

© NICTA 2011

AODV - An Example

s broadcasts a route request

a

b

s

to via

s s

to via

to via

s s

to via

d d

d

c

to via

c c

?

?

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

to via

s s

to via

d d

d

c

to via

c c

?

?

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

s s

to via

to via

d d

d

c

to via

c c
?

??

© NICTA 2011

AODV - An Example

a,b forward the route request

a

b

s

to via

s s

to via

s s

to via

to via

d d

d

c

to via

c c

??

?

© NICTA 2011

AODV - An Example

a,b forward the route request

a

b

s

to via

s s

to via

s s

to via

d d

a a

s a

to via

a a

b b

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

s s

to via

d d

a a

s a

to via

a a

b b

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

c has information about d
c answers route request and sends reply

a

b

s

to via

s s

to via

a a

b b

to via

s s

to via

d d

a a

s a

d

c

to via

c c

!

© NICTA 2011

AODV - An Example

c has information about d
c answers route request and sends reply

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

!

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

!

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

!
to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a forwards route reply

a

b

s

to via

s s

to via

a a

b b

to via

s s

d c

c c

!

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a forwards route reply

a

b

s

to via

s s

to via

a a

b b

d a

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

a a

b b

d a

to via

s s

d c

c c

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

s s

d c

c c

to via

a a

b b

d a

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

s s

d c

c c

to via

a a

b b

d a

s has found a route to d

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

AODV - An Example

a

b

s

to via

s s

to via

s s

d c

c c

to via

a a

b b

d a

s has found a route to d

to via

d d

a a

s a

d

c

to via

c c

© NICTA 2011

Process Algebra - Snippet26 Modelling AODV with Process Algebra

Process 1 The basic routine
AODV(ip , rt , rreqs , store)

def=
1. receive(msg) .
2. /* depending on the message, the node calls different processes */
3. (
4. [msg = newpkt(data , dip)] /* new DATA packet */
5. PKT(data , dip , ip ; ip , rt , rreqs , store)
6. + [msg = pkt(data , dip , oip)] /* incoming DATA packet */
7. PKT(data , dip , oip ; ip , rt , rreqs , store)
8. + [msg = rreq(hops , rreqid , dip , dsn , oip , osn , sip)] /* RREQ */
9. /* update the route to sip in rt */

10. [[rt := update(rt , (sip,0,val,1,sip, /0))]] /* 0 is the sequence number “unknown” */
11. RREQ(hops , rreqid , dip , dsn , oip , osn , sip ; ip , rt , rreqs , store)
12. + [msg = rrep(hops , dip , dsn , oip , sip)] /* RREP */
13. /* update the route to sip in rt */
14. [[rt := update(rt , (sip,0,val,1,sip, /0))]]
15. RREP(hops , dip , dsn , oip , sip ; ip , rt , rreqs , store)
16. + [msg = rerr(dests , sip)] /* RERR */
17. /* update the route to sip in rt */
18. [[rt := update(rt , (sip,0,val,1,sip, /0))]]
19. RERR(dests , sip ; ip , rt , rreqs , store)
20.)
21. + [Let dip ⇥ vD(rt)⇤qD(store)] /* send a queued data packet if a valid route is known */
22. [[data := head(�queue(store , dip))]]
23. unicast(nhop(rt , dip) , pkt(data , dip , ip)) .
24. /* the queue is only updated if the transmission was successful. */
25. [[store := drop(dip , store)]]
26. AODV(ip , rt , rreqs , store)
27. � /* an error is produced and the routing table is updated */
28. [[dests := {(rip,inc(sqn(rt , rip))) |rip ⇥ vD(rt) ⌅ nhop(rt , rip) = nhop(rt , dip)}]]
29. [[rt := invalidate(rt , dests)]]
30. [[pre :=

�
{precs(rt , rip) |(rip,�) ⇥ dests}]]

31. groupcast(pre , rerr(dests , ip)) . AODV(ip , rt , rreqs , store)

stored data and a known route, an arbitrary destination is chosen and denoted by dip (Line 21).11

Moreover data is set to the first queued data packet from the application layer that should be sent
(data := head(�queue(store , dip))).12 This data packet is unicast to the next hop on the route to dip.
If the unicast is successful, the data packet data is removed from store (Line 25). Finally, the process
calls itself—stating that the node is ready for handling a new message or initiating the sending of another
packet towards a destination. In case the unicast is not successful, the data packet has not been trans-
mitted. Therefore data is not removed from store. Moreover, the node knows that the link to the next
hop on the route to dip is faulty and, most probably, broken. An error message is initiated. Generally,
route error and link breakage processing requires the following steps: (a) invalidating existing routing
table entries, (b) listing affected destinations, (c) determining which neighbours may be affected (if any),
and (d) delivering an appropriate AODV error message to such neighbours [23]. Therefore, the process
determines all destinations dests that have this unreachable node as next hop (Line 28) and marks these
routes as invalid (Line 29). In Line 30 the precursors (the neighbouring nodes listed as having a route
to one of the affected destinations passing through the broken link) are determined and, finally, an error
message is sent to them (Line 31).

11Although the word “let” is not part of the syntax, we add it to stress the nondeterminism happening here.
12Following the RFC, data packets waiting for a route should be buffered “first-in, first-out” (FIFO).

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

• Invariant proofs
• temporal properties
• Properties of AODV

– loop freedom

– route correctness

– route found

– packet delivery

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

• Invariant proofs
• temporal properties
• Properties of AODV

– loop freedom

– route correctness

– route found

– packet delivery

© NICTA 2011

Process Algebra

• New process algebra developed
• Language for formalising specs of network protocols
• Key features:

– guarantee broadcast
– prioritised unicast
– data handling

• Achievements
– full concise specification of AODV (RFC 3561)

(no time)
– formally verified loop-freedom (without timeouts)

• invariant proof
– found several ambiguities, mistakes, shortcomings
– found solutions for some limitations

© NICTA 2011

Conclusion/Future Work

• Extend formal methods to other protocols
– OSLR, DYMO, ...

• Add further necessary concepts
– time
– probability

© NICTA 2011

From imagination to impact

© NICTA 2011

From imagination to impact

