A Process Algebra for Wireless Mesh Networks

Peter Höfner

What is the Problem?

- Wireless Mesh Networks
- key advantage: no backhaul wiring required
- quick and low cost deployment
- Applications
- public safety (e.g. CCTV)
- emergencies (e.g. earthquakes)
- mobile phone services
- transportation
- mining
- military actions/counter terrorism
- ...

What is the Problem?

- WMNs promise to be fully
- self-configuring
- self-healing
- self-optimising

What is the Problem?

- WMNs promise to be fully
- self-configuring
- self-healing
- self-optimising
- THIS IS NOT TRUE (in reality)
- Limitations in reliability and performance
- Limitations confirmed by
- end users (e.g. police)
- own experiments
- Cisco, Motorola, Firetide, ...
- industry

What is the Problem?

"Our requirement was for a system breadcrumb type deployment
over at least 4 nodes and maintain a throughput of around 5Mbps-10Mbps to enable 'good' quality video to be passed. The commercial devices failed to meet our requiremekeobler Applied Technology Manager,

Formal Methods for Mesh Networks

- Goal
- model, analyse, verify and increase the performance of wireless mesh protocols
- develop suitable formal methods techniques
- Benefits
- more reliable protocols
- finding and fixing bugs
- better performance
- proving correctness
- reduce "time-to-market"
- Team (Formal Methods)
- Ansgar Fehnker, Rob van Glabbeek, Peter Höfner, Annabelle Mclver, Marius Portmann, Wee Lum Tan

Process Algebra

```
+ [ (oip,rreqid) & rreqs ] /* the RREQ is new to this node */
    /* update the route to oip in rt */
    |rt:= update(rt,(oip,osn,valid, hops + 1,sip,\emptyset))\rrbracket
    /* update rreqs by adding (oip, rreqid) */
    \llbracketrreqs := rreqs \cup{(oip,rreqid)}\rrbracket
    (
        [ dip = ip ] /* this node is the destination node */
        /* update the sqn of ip by setting it to max(sqn(rt,ip),dsn) */
        |rt:= update(rt,(ip,dsn,valid, 0,ip,0))|
        /* unicast a RREP towards oip of the RREQ; next hop is sip */
        unicast(sip,rrep(0,dip,sqn(rt, ip),oip,ip)). AODV(ip,rt,rreqs,queues)
        -/* If the packet transmission is unsuccessful, a RERR message is generated */
        |dests:={(rip,rsn)|(rip,rsn,valid,*,sip,*)\inrt}|
        |pre:= \bigcup{precs(rt,rip)|(rip,*)\in dests}|
        |for all (rip,*) \in dests: invalidate(rt, rip)|
        groupcast(pre, rerr(dests,ip)).AODV(ip,rt,rreqs,queues)
    + [ dip f ip] /* this node is not the destination node */
        (
            [ dip}\in\textrm{ab}(\textrm{rt})\wedge\textrm{dsn}\leq\operatorname{sqn}(rt,\operatorname{dip})\wedge\operatorname{sqn}(rt,dip)\not=0] /* valid route to dip that i
            fresh enough */
                /* update rt by adding sip to precs(rt, dip) */
                |r:= addpre( }\mp@subsup{\sigma}{\mathrm{ rowece}}{}(\textrm{rt},\operatorname{dip}),{sip}); rt:= update(rt,r)
```


Process Algebra

- Desired Properties
- guaranteed broadcast
- prioritised unicast
- data structure
- Inspired by
$-\pi$-Calculus
$-\omega$ - Calculus
- (LOTOS)

Structure of WMNs

- User
- Network as a "cloud"
- Collection of nodes
- connect / disconnect / send / receive
- "parallel execution" of nodes
- Nodes
- data management
- data packets, messages, IP addresses ...
- message management (avoid blocking)
- core management
- broadcast / unicast / groupcast ...
- "parallel execution" of sequential processes

Nodes (Sequential Process Expressions)

- Syntax of sequential process expressions

$$
\begin{aligned}
S P::= & X\left(\exp _{1}, \ldots, \exp _{n}\right)|[\varphi] S P| \llbracket \mathrm{var}:=\exp \rrbracket S P|S P+S P| \\
& \alpha \cdot S P \mid \operatorname{unicast}(\text { dest, } m s) \cdot S P \mid S P \\
\alpha::= & \operatorname{broadcast}(m s) \mid \operatorname{groupcast}(\text { dests, ms })|\operatorname{send}(m s)| \\
& \text { deliver }(\text { data }) \mid \operatorname{receive}(\mathrm{msg})
\end{aligned}
$$

Structual Operational Semantics I

- internal state determined by expression and valuation

$$
\begin{aligned}
& \xi, \operatorname{broadcast}(m s) \cdot p \xrightarrow[\text { broadcast }(\xi(m s))]{ } \xi, p \\
& \xi, \operatorname{groupcast}(d e s t s, m s) . p \xrightarrow{\operatorname{groupcast}(\xi(\text { dests }), \xi(m s))} \xi, p \\
& \xi \text {, unicast }(d e s t, m s) . p \triangleright q \xrightarrow{\text { unicast }(\xi(d e s t), \xi(m s))} \xi, p \\
& \xi \text {, unicast }(\text { dest, } m s) . p \triangleright q \xrightarrow{\neg \text { unicast }(\xi(\text { dest }))} \xi, q \\
& \xi, \operatorname{send}(m s) . p \xrightarrow{\operatorname{send}(\xi(m s))} \xi, p \\
& \xi \text {, deliver (data). } p \xrightarrow{\text { deliver }(\xi(\text { data })} \xi, p \\
& \xi, \text { receive }(\mathrm{msg}) . p \xrightarrow{\text { receive }(m)} \xi[\mathrm{msg}:=m], p
\end{aligned}
$$

Structural Operational Semantics II

- internal state determined by expression and valuation

$$
\begin{gathered}
\xi, \llbracket \operatorname{var}:=\exp \rrbracket p \xrightarrow{\tau} \xi[\operatorname{var}:=\xi(e x p)], p \\
\frac{\xi, p \xrightarrow{a} \zeta, p^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, p^{\prime}} \frac{\xi, q \xrightarrow{a} \zeta, q^{\prime}}{\xi, p+q \xrightarrow{a} \zeta, q^{\prime}} \\
\frac{\xi \xrightarrow{\varphi} \zeta}{\xi,[\varphi] p \xrightarrow{\tau} \zeta, p}
\end{gathered}
$$

Nodes (Parallel Processes)

- Syntax

$$
P P::=\xi, S P \mid P P\langle\langle P P
$$

- Operational Semantics

$$
\begin{gathered}
\frac{P \xrightarrow{a} P^{\prime}}{P\left\langle\left\langle Q \xrightarrow{a} P^{\prime}\langle/ Q\right.\right.} \quad(\forall a \neq \text { receive }(m)) \\
\frac{Q \xrightarrow{a} Q^{\prime}}{P\left\langle\left\langleQ \xrightarrow { a } P \left\langle\left\langle Q^{\prime}\right.\right.\right.\right.} \quad(\forall a \neq \operatorname{send}(m)) \\
\xrightarrow[{P 《\left\langleQ \xrightarrow { \tau } P ^ { \prime } \left\langle\left\langle Q^{\prime}\right.\right.\right.}]{P \xrightarrow{\text { receive }(m)} P^{\prime} \quad Q \text { send }(m)} Q^{\prime}
\end{gathered}(\forall m \in \mathrm{MSG})
$$

Network

- node expressions:

$$
M::=\quad i p: P: R \quad \mid \quad M \| M
$$

- Operational Semantics (snippet)

$$
\begin{gathered}
\frac{P \xrightarrow{\text { broadcast }(m)} P^{\prime}}{i p: P: R \xrightarrow[R: * \operatorname{cast}(m)]{ } i p: P^{\prime}: R} \\
\frac{P \xrightarrow[\text { unicast }(d i p, m)]{ } P^{\prime} \quad d i p \in R}{i p: P: R \xrightarrow{\{d i p\}:{ }^{*} \operatorname{cast}(m)} i p: P^{\prime}: R} \\
i p: P: R \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} i p: P: R \cup\left\{i p^{\prime}\right\}
\end{gathered}
$$

$$
\frac{P \xrightarrow{\operatorname{groupcast}(D, m)} P^{\prime}}{i p: P: R \xrightarrow{R \cap D: *^{*} \operatorname{cast}(m)} i p: P^{\prime}: R}
$$

$$
\xrightarrow[{i p: P: R \xrightarrow{\tau} \underset{\longrightarrow}{\neg \text { unicast }(d i p)} P^{\prime} \quad P^{\prime}:} R]{\text { dip } \notin R}
$$

$$
i p: P: R \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} i p: P: R-\left\{i p^{\prime}\right\}
$$

Network

- Operational Semantics (snippet II)

$$
\begin{aligned}
& \xrightarrow[{M \| N \xrightarrow{M \xrightarrow{R: *^{*} \operatorname{cast}(m)} M^{\prime} \| N^{\prime}} M^{\prime} \quad N \xrightarrow{H \neg K: \operatorname{listen}(m)} N^{\prime}}]{N\left\|\xrightarrow{R: *^{*} \operatorname{cast}(m)} N^{\prime}\right\| M^{\prime}}\binom{H \subseteq R}{K \cap R=\emptyset} \\
& \xrightarrow[{M \xrightarrow{H \neg K: \operatorname{listen}(m)} M^{\prime} \quad N \xrightarrow{H^{\prime} \neg K^{\prime}: \operatorname{listen}(m)} N^{\prime}}]{M\left\|N \xrightarrow{\left(H \cup H^{\prime}\right) \neg\left(K \cup K^{\prime}\right): \text { listen }(m)} M^{\prime}\right\| N^{\prime}} \\
& \frac{M \xrightarrow{a} M^{\prime}}{M\left\|N \xrightarrow{a} M^{\prime}\right\| N} \quad \frac{N \xrightarrow{a} N^{\prime}}{M\|N \xrightarrow{a} M\| N^{\prime}} \quad(\forall a \in\{i p: \operatorname{deliver}(d), \tau\})
\end{aligned}
$$

Encapsulation

- Syntax $\mathrm{N}::=[\mathrm{M}]$
- Operational Semantics

$$
\frac{M \xrightarrow{R: * \operatorname{cast}(m)} M^{\prime}}{[M] \xrightarrow{\tau}\left[M^{\prime}\right]}
$$

$$
\frac{M \frac{\{i p\} \neg K: \operatorname{listen}(\text { newpkt }(d, \text { dip }))}{\longrightarrow}}{[M] \xrightarrow{\text { ip: newpkt }(d, \operatorname{dip})}\left[M^{\prime}\right]} M^{\prime}
$$

$$
\frac{M \xrightarrow{\tau} M^{\prime}}{[M] \xrightarrow{\tau}\left[M^{\prime}\right]}
$$

$$
\frac{M \xrightarrow{i p: \operatorname{deliver}(d)} M^{\prime}}{[M] \xrightarrow{i p: \operatorname{deliver}(d)}\left[M^{\prime}\right]}
$$

$$
\frac{M \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)} M^{\prime}}{[M] \xrightarrow{\text { connect }\left(i p, i p^{\prime}\right)}\left[M^{\prime}\right]}
$$

$$
\frac{M \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)} M^{\prime}}{[M] \xrightarrow{\text { disconnect }\left(i p, i p^{\prime}\right)}\left[M^{\prime}\right]}
$$

A Bit of Theoretical Results

- process algebra is blocking (our model is non-blocking)
- process algebra is isomorphic to one without data structure --- a process for every substitution instance
- generates same transition system (up to strong bisimulation)
- resulting algebra is in de Simone format (by this strong bisimulation and other semantic equivalences are congruences)
- both parallel operators are associative (follows by a meta result of Cranen, Mousavi, Reniers)

A Formal Model for AODV

- AODV: Ad-hoc On-Demand Distance Vector Routing Protocol
- Ad hoc (network is not static)
- On-Demand (routes are established when needed)
- Distance (metric is hop count)
- Vector (routing table has the form of a vector)
- Developed 1997-2001 by Perkins, Beldig-Royer and Das (University of Cincinnati)
- Core components modelled
- no time
- no probability

AODV - An Example

s is looking for a route to d

AODV - An Example

NICTA

AODV - An Example

NICTA

AODV - An Example

s broadcasts a route request

AODV - An Example

s broadcasts a route request

AODV - An Example

AODV - An Example

AODV - An Example

a, b forward the route request

AODV - An Example

a, b forward the route request

AODV - An Example

NICTA

AODV - An Example

NICTA

AODV - An Example

c has information about d
c answers route request and sends reply

AODV - An Example

c has information about d
c answers route request and sends reply

AODV - An Example

NICTA

AODV - An Example

AODV - An Example

a forwards route reply

AODV - An Example

a forwards route reply

AODV - An Example

NICTA

AODV - An Example

AODV - An Example

s has found a route to d

AODV - An Example

s has found a route to d

Process Algebra - Snippet

```
Process 1 The basic routine
AODV(ip,rt,rreqs, store) \stackrel{def}{=}
    receive(msg).
    /* depending on the message, the node calls different processes */
    (
        [msg = newpkt(data, dip)] /* new DATA packet */
            PKT(data,dip,ip;ip,rt,rreqs,store)
        +[msg = pkt(data, dip,oip)] /* incoming DATA packet */
            PKT(data,dip,oip;ip,rt,rreqs,store)
        +[msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)] /* RREQ */
            /* update the route to sip in rt */
            |rt := update(rt,(sip,0,val,1, sip,\emptyset))\rrbracket /* 0 is the sequence number "unknown" */
            RREQ(hops,rreqid,dip,dsn,oip,osn,sip;ip,rt,rreqs,store)
            +[msg = rrep(hops,dip,dsn,oip,sip)] /* RREP */
            /* update the route to sip in rt */
            |rt := update(rt,(sip,0,val, 1,sip,\emptyset))\rrbracket
            RREP(hops,dip,dsn,oip,sip;ip,rt,rreqs,store)
            +[msg = rerr(dests, sip)] /* RERR */
                /* update the route to sip in rt */
            |rt := update(rt, (sip, 0,val, 1, sip,\emptyset))\rrbracket
            RERR(dests,sip;ip,rt,rreqs,store)
    )
    +[ Let dip }\in\textrm{vD}(\textrm{rt})\cap\textrm{qD}(\mathrm{ store ) ] /* send a queued data packet if a valid route is known */
    |data := head(\sigmaqueue(store, dip))\rrbracket
    unicast(nhop(rt,dip),pkt(data,dip,ip)).
            /* the queue is only updated if the transmission was successful. */
            |store:= drop(dip,store)\rrbracket
            AODV(ip,rt,rreqs,store)
    - /* an error is produced and the routing table is updated */
        \llbracketdests:={(rip,inc(sqn(rt, rip)))|rip GvD(rt) ^ nhop(rt, rip)=nhop(rt, dip)}\rrbracket
        |rt:= invalidate(rt, dests)\rrbracket
        |pre:= \bigcup{precs(rt,rip)|(rip,*)\in dests}\rrbracket
        groupcast(pre,rerr(dests,ip)).AODV(ip,rt,rreqs, store)
```


Ad Hoc On-Demand Distance Vector Protocol

- Invariant proofs
- temporal properties
- Properties of AODV
- loop freedom
- route correctness
- route found
- packet delivery

Ad Hoc On-Demand Distance Vector Protocol

- Invariant proofs
- temporal properties
- Properties of AODV
- loop freedom
- route correctness
- route found
- packet delivery

Process Algebra

- New process algebra developed
- Language for formalising specs of network protocols
- Key features:
- guarantee broadcast
- prioritised unicast
- data handling
- Achievements
- full concise specification of AODV (RFC 3561) (no time)
- formally verified loop-freedom (without timeouts)
- invariant proof
- found several ambiguities, mistakes, shortcomings
- found solutions for some limitations

Conclusion/Future Work

- Extend formal methods to other protocols
- OSLR, DYMO, ...
- Add further necessary concepts
- time
- probability

From imagination to impact

From imagination to impact

