Qe

Formal Methods for SII\ICS%
Wireless Mesh Networks s R

Peter Hofner

Aachen
February 13, 2012

NICTA Members

)
! I . == ¥
AL Australian Government UNSW “
2 p UNVIRNTY OF MW SO0 WAL . SR

Tl ASTRALAN SATORAL UV TY

Cepartment of Wate and
Regrons Deveopment

g o Department of Broadband, Communications

and the Digital Economy Bl B . BT et
: . 2o & yimn ¥
Australian Research Council e~ > e = Queeastont — —

' NICTA Partners

What is the Problem?

* Wireless Mesh Networks (WWMNSs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response,
disaster recovery

— transportation

— mining

— smart grid
 Limitations in reliability

and performance

© NICTA 2011

Formal Methods for Mesh Networks

 Goal

— model, analyse, verify and increase the performance of wireless
mesh protocols

— develop suitable formal methods techniques

» Benefits
— more reliable protocols
— finding and fixing bugs
— better performance
— proving correctness
— reduce “time-to-market”

* Team (Formal Methods)

— Ansgar Fehnker, Rob van Glabbeek, Peter Hofner,
Annabelle Mclver, Marius Portmann, Wee Lum Tan

© NICTA 2011

Formal Methods for Mesh Networks

 Main Methods used so far

— process algebra
— model checking

— routing algebra

Network Process Calculus

/% update the sqn of ip by setting it to max(sqn(rt, ip).dsn) */

W l" ‘ a [rt := update(rt, (ip.dsn,valid,0,ip.0))]

/% unicast a RREP towards oip of the RREQ: next hop is sip */
‘ unicast(sip,rrep(0,dip,sqn(rt,ip),oip,.ip)) . aodv(ip,rt . rreqs,.queues)
» /*If the packet ission is ful, a RERR is d*/
H H _i [dests := {(rip,rsn)|(rip,rsn,valid, = sip,*) € rt}]
llpre := U{precs(rt,rip)|(rip,*) € dests}] M d I
[forall (rip,*) € dests : invalidate(rt,rip)] o e

groupcast(pre , rerr(dests, ip)) . aodv(ip,rt,rreqs,queues)

e !

. Checking
LSRN ¥

(textual) Specification

.. The route is only updated if the new sequence number is either

(i) higher than the destination sequence number in the route
table, or
(ii) the sequence numbers are equal, but the hop count (of the
new information) plus one, is smaller than the existing hop
count in the routing table, or
(1ii) the sequence number is unknown.

This route MAY now be used to send any queued data packets and fulfills
any outstanding route requests. ...

(RFC 3561)

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protoce

* Routing protocol for WMNSs

* Ad hoc (network is not static)

* On-Demand (routes are established when needed)
* Distance (metric is hop count)

 Vector (routing table has the form of a vector)

* Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

© NICTA 2011

Ad Hoc On-Demand Distance Vector Pro 0C

 AODV control messages
— route request (RREQ)
— route reply (RREP)
— route error message (RERR)

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— If unicast fails or link break is detected
SEND RERR

© NICTA 2011

AODV - An Example

i

s is looking for a route to d

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

ODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

AODV - An Example

s has found a route to d

Ad Hoc On-Demand Distance Vector Protool

* Properties of AODV

— route correctness
— loop freedom
— route discovery

— packet delivery

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

* Properties of AODV

— route correctness
— loop freedom v (atleast for some interpretations)
— route discovery <

— packet delivery <

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

* Properties of AODV

— route correctness
— loop freedom

— route discovery

% ’N SN

— packet delivery >}

 so far only simulation and test-bed evaluations

— Important, valid methods
— limitations

© NICTA 2011

* resource intensive, time-consuming, no generality

Ad Hoc On-Demand Distance Vector Protoce

* Properties of AODV

— route correctness
— loop freedom v (at least for some interpretations)
— route discovery <

— packet delivery <

 so far only simulation and test-bed evaluations

— Important, valid methods
— limitations
* resource intensive, time-consuming, no generality

© NICTA 2011

* Request for Comments (de facto standard)

sequence number field is set to false. The route is only updated if
the new sequence number is either

(1) higher than the destination sequence number in the route
table, or

(11i) the sequence numbers are equal, but the hop count (of the
new information) plus one, is smaller than the existing hop

count in the routing table, or

(1ii) the sequence number is unknown.

© NICTA 2011

Formal Methods for Mesh Networks

 Main Methods used so far

— process algebra
— model checking

— routing algebra

Network Process Calculus

/% update the sqn of ip by setting it to max(sqn(rt, ip).dsn) */

W l" ‘ a [rt := update(rt, (ip.dsn,valid,0,ip.0))]

/% unicast a RREP towards oip of the RREQ: next hop is sip */
‘ unicast(sip,rrep(0,dip,sqn(rt,ip),oip,.ip)) . aodv(ip,rt . rreqs,.queues)
» /*If the packet ission is ful, a RERR is d*/
H H _i [dests := {(rip,rsn)|(rip,rsn,valid, = sip,*) € rt}]
llpre := U{precs(rt,rip)|(rip,*) € dests}] M d I
[forall (rip,*) € dests : invalidate(rt,rip)] o e

groupcast(pre , rerr(dests, ip)) . aodv(ip,rt,rreqs,queues)

e !

. Checking
LSRN ¥

(textual) Specification

.. The route is only updated if the new sequence number is either

(i) higher than the destination sequence number in the route
table, or
(ii) the sequence numbers are equal, but the hop count (of the
new information) plus one, is smaller than the existing hop
count in the routing table, or
(1ii) the sequence number is unknown.

This route MAY now be used to send any queued data packets and fulfills
any outstanding route requests. ...

(RFC 3561)

© NICTA 2011

Process Algebra

+ [(oip, rreqid) ¢ rregs | /* the RREQ is new to this node */
/* update the route to oipinrt */
[[rt := update(rt,(oip,osn,valid hops+ 1,8ip,0))]}
/* update rregs by adding (oip, rreqid) */
[rregs := rreqs U{{oip,rreqid)}}
(
[dip=ip] /* this node is the destination node */
/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]l
/* unicast a RREP towards oip of the RREQ: next hopis sip */
unicast(sip,rrep(0,dip.sqn(rt,ip).oip.ip)). AODV(ip.rt, rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn) | (rip,rsn,valid,* sip,*) € rt}]|
[pre:= U{precs(rt,rip)| (rip,*) € dests}}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcast(pre ,rerr(dests . ip)). AODV(ip.rt . rregs.queues)
+ [dip # ip] /* this node is not the destination node */
(
[dip € aD(rt) Adsn < sgn(rt,dip) Asqn(rt,dip) # 0] /* valid route to dip that is
fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r := addpre(o,,...(rt,dip), {sip}): rt := update(rt,r)]

© NICTA 2011

Process Algebra

» Desired Properties

— guaranteed broadcast
— prioritised unicast
— data structure

* |Inspired by
— 7r- Calculus

— w- Calculus
— (LOTOS)

© NICTA 2011

Structure of WMNSs

e User
— Network as a “cloud”

* Collection of nodes
— connect / disconnect / send / receive
— “parallel execution” of nodes

* Nodes

— data management
« data packets, messages, |IP addresses ...
— message management (avoid blocking)

— core management
* broadcast / unicast / groupcast ...

— “parallel execution” of sequential processes

© NICTA 2011

« Syntax of sequential process expressions

SP = X(expy,...,exp,) | [p]SP | [var := exp]SP | SP+ SP |
«.SP | unicast(dest, ms).SP » SP
« = broadcast(ms) | groupcast(dests,ms) | send(ms) |

deliver(data) | receive(msg)

© NICTA 2011

Structual Operational Semantics |

* internal state determined by expression and valuation

broadcast(£(ms)). 5 D

¢, broadcast(ms).p

¢, groupcast(dests, ms).p groupcast(§(dests) §(ms)), ¢

unicast(£(dest),&£(ms))> S D

¢, unicast(dest, ms).p » q
—unicast(&(dest))\é- q

¢, unicast(dest, ms).p » g

¢, send(ms).p SrdElms)), ¢ o,

¢, deliver(data).p deliver(§(data)), ¢

receive(m)> €[

¢, receive(msg).p msg := m|, p (Vm € MSG)

© NICTA 2011

A Bit of Theoretical Results

* process algebra is blocking (our model is non-blocking)

* process algebra is isomorphic to one without data
structure --- a process for every substitution instance

* resulting algebra is in de Simone format
(by this strong bisimulation and other semantic
equivalences are congruences)

* both parallel operators are associative
(follows by a meta result of Cranen, Mousavi, Reniers)

Process Algebra

* New process algebra developed
» Language for formalising specs of network protocols

» Key features:
— guarantee broadcast
— prioritised unicast
— data handling

 Achievements

— full concise specification of AODV (RFC 3561)
(no time)

— formally verified loop-freedom (without timeouts)
* invariant proof

— found several ambiguities, mistakes, shortcomings
— found solutions for some limitations

© NICTA 2011

Model Checking

Pandidl?
frepyid|

fecVMsg=aus 4 -

id!=0
initnode()

recvmsg.sr0d==id

jﬁ{rwmsg.dsw]dnmg sndd,
) rg@mg_sndd]d?amsj sndd,
notifyAlIRErr kDjd]recvmsg.dstid}=",

initall? KDjd]recvmsg.sndde!

notifyRErr (

—

8l

rreq[B] req[B]

——— 1
msq srod] i) 88 recmsgtE

isconnectes rfidJrecy
o tfic[recvmsg.S700
replrtidre)
sg.dstd].reomw .
:% :gmmsg.sndd}d?msq sndd
kD[d][recvrﬂSO»dsﬂ;»
kDfd]recvmsg-STo
3 CA
recvmsgs 3 e
aux:mCVﬂSQ

CA

rreq[C]

CA

rreq[B]

rreq[C]"™"

88888

7 ’ rre p[A][B] BA

rrep[A][B] **

10

88800880 ee-

© NICTA 2011

Model Checking

* Model checking routing algorithms
— executable models

 Complementary to process algebra
— find bugs and typos in model of process algebra
— check properties of specification applied to particular topology
— easy adaption in case of change
— automatic verification

* Achievements
— implemented process algebra specification of AODV
— found/replayed shortcomings

© NICTA 2011

UPPAAL Model Checker

 \Well established model checker
 Uses networks of timed automata
* Has been used for protocol verification

» Synchronisation mechanisms
— binary handshake synchronisation (unicast communication)
— broadcast synchronisation (broadcast communication)

« Common data structures

— arrays, structs, ...
— C-like programming language

* Provides mechanisms for time and probability

Experiments Set-Up

* Exhaustive search
— various properties
— all different topologies up to 5 nodes (one topology change)
— 2 route discovery processes
— 17400 scenarios

— variants of AODV (4 models)

© NICTA 2011

Results: Route Discovery (2004)

* Route discovery fails in a linear 3-node topology

En En

aodv

1‘ aodv aodv

_ rreq[a] |rreq[a] -
rreq[s] | |

aodv

rrep[d][a]

.
<=
aodv ’
|< rreq[a] Irreq@

© NICTA 2011

Results: Route Discovery

» exhaustive search
(potential failure in route discovery)

— static topology: 47.3%
— dynamic topology (add link): 42.5%
— dynamic topology (remove link): 73.7%

 AODV repeats route request
» Other solution: forward route reply

© NICTA 2011

Routing Algebra

A
B
C
D
E

A B C D

o QT ~

“routes” to B

« standard matrix operations

 further abstraction possible
(semirings, test, domain, modules ...)

© NICTA 2011

routing table of A

* Routing table entries (no sequence number so far)
(nhip, hops)

» Choice: (A4,5) + (B,2) = (B, 2)
» Multiplication: (A,5) - (B,2) = (A, 7)

— destination and source must coincide

e [dea: back to Backhouse, Carré, Griffin, Sobrinho

© NICTA 2011

e
(/)
©
@)

d
(qV]
@)
|

@)

D

e
(/p)
)
)
O
()
| -
()

e
D)
@)
| -

<C
o

topology

routing table

sender

updated routing table

© NICTA 2011

Conclusion/Future Work

e So far concentrated on AODV

— well known
— |ETF standard

« Extend formal methods to other protocols
— OSLR, DYMO, ...

* Add further necessary concepts
—time
— probability (links, measurements)
— define quality of protocols

© NICTA 2011

