A Process Algebra for
Wireless Mesh Networks

A. Fehnker, R. van Glabbeek, P. Hofner,
A. Mclver, M. Portmann, W.-L. Tan

NICTA Members

T </ ANU UNSW > e (G
s . R b Vejone opment 4
f i . ’2 Aust Government _ 7 >
7 {\.174 e USRI OF MW RO AN o-d

Tl ASTRALAN SATORAL USRS TY

% "-‘5;:'1" e Department of Broadband, Communications

and the Digital Econom —
2 Y !’_ .'.f.'. The Usiversity of Sydney & &VJJS;J\‘!’J}& m T Uvwry

Australian Research Council The P e > e = Queeastont ot ey & gy NP 44T R

NICTA Partners

What is the Problem?

* Wireless Mesh Networks (WWMNSs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response,
disaster recovery

— transportation
— mining
— smart grid

© NICTA 2011

What is the Problem?

* WWMNs promise to be fully
— self-configuring
— self-healing
— self-optimising

© NICTA 2011

What is the Problem?

 WMNs promise to be fully
— self-configuring
— self-healing
— self-optimising
* DOES NOT WORK
(in reality)
 Limitations in reliability
and performance
 Limitations confirmed by

— end users (e.g. police)

— own experiments
 Cisco, Motorola, Firetide, ...

— industry

© NICTA 2011

What is the Problem?

“Our requirement was for a system breadcrumb type
deployment over at least 4 nodes and maintain a
throughput of around 5Mbps-10Mbps to enable 'good’
quality video to be passed. The commercial devices
failed to meet our requirements [...]"

Rick Loebler, Applied Technology Manager,
NSW Police Force

© NICTA 2011

Formal Methods for Mesh Networks

 Goal

— model, analyse, verify, improve and increase the performance of
wireless mesh protocols

— develop suitable formal methods techniques

* Benefits
— more reliable protocols
— finding and fixing bugs
— better performance
— proving correctness
— reduce “time-to-market”

© NICTA 2011

Process Algebra

+ [(oip, rreqid) ¢ rregs | /* the RREQ is new to this node */
/* update the route to oipinrt */
[[rt := update(rt,(oip,osn,valid hops+ 1,8ip,0))]}
/* update rregs by adding (oip, rreqid) */
[rregs := rreqs U{{oip,rreqid)}}
(
[dip=ip] /* this node is the destination node */
/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]l
/* unicast a RREP towards oip of the RREQ: next hopis sip */
unicast(sip,rrep(0,dip.sqn(rt,ip).oip.ip)). AODV(ip.rt, rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn) | (rip,rsn,valid,* sip,*) € rt}]|
[pre:= U{precs(rt,rip)| (rip,*) € dests}}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcast(pre ,rerr(dests . ip)). AODV(ip.rt . rregs.queues)
+ [dip # ip] /* this node is not the destination node */
(
[dip € aD(rt) Adsn < sgn(rt,dip) Asqn(rt,dip) # 0] /* valid route to dip that is
fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r := addpre(o,,...(rt,dip), {sip}): rt := update(rt,r)]

© NICTA 2011

Process Algebra - Achievements

* New: Algebra of Wireless Network (AWN)

— language for formalising specifications of network protocols

— key features:
« guarantee local broadcast
 conditional unicast
 data handling

» Case study
— full concise specification of AODV (without time)
— classification of ambiguities and contradictions in the official specification (RFC)
— verified/disproved properties, e.g. loop-freedom
— found other shortcomings such as optimality
— proposed improvements for some limitations
* evaluation using model checking (TACAS 2012)

© NICTA 2011

Process Algebra

* |Inspired by
— CCS, CSP, ACP, LOTOS, mCRL, 7- Calculus
— w - Calculus

© NICTA 2011

Structure of WMNSs

e User
— Network as a “cloud”

e Collection of nodes
— connect / disconnect / send / receive
— “parallel execution” of nodes

 Nodes

— data management
« data packets, messages, |IP addresses ...

— message management (avoid blocking)

— core management
* broadcast / unicast / groupcast ...

— “parallel execution” of sequential processes

© NICTA 2011

« Syntax of sequential process expressions

SP = X(expy,...,exp,) | [p]SP | [var := exp]SP | SP+ SP |
«.SP | unicast(dest, ms).SP » SP
« = broadcast(ms) | groupcast(dests,ms) | send(ms) |

deliver(data) | receive(msg)

© NICTA 2011

Structual Operational Semantics |

* internal state determined by expression and valuation

broadcast(£(ms)). 5 D

¢, broadcast(ms).p

¢, groupcast(dests, ms).p groupcast(§(dests) §(ms)), ¢

unicast(£(dest),&£(ms))> S D

¢, unicast(dest, ms).p » q
—unicast(&(dest))\é- q

¢, unicast(dest, ms).p » g

¢, send(ms).p SrdElms)), ¢ o,

¢, deliver(data).p deliver(§(data)), ¢

receive(m)> €[

¢, receive(msg).p msg := m|, p (Vm € MSG)

© NICTA 2011

Structural Operational Semantics Il

* internal state determined by expression and valuation

§, [var := exp]p — ¢[var := {(exp)], p

E&p— C,p £, — (¢
Ept+q—Cp &Ept+qg—(q
¢ 5 ¢

& [olp — ¢p

© NICTA 2011

Nodes (Parallel Processes)

« Syntax
PP == &,SP | PP (PP,

» Operational Semantics

P = P’
(Va # receive(m))
P{Q— P (Q
Q— Q'
(Va # send(m))
P{Q—P{Q

J2 receive(fm)> p! Q send(’m)> Q/
P{Q— P {(Q

(¥m € MSG)

© NICTA 2011

* node expressions:
M:= dp:P:R | M|M

* Operational Semantics (snippet)

P broadcast(fm)> p! P groupcast(D,Tn)> P!
w:P: R Rt : east(m), w: PR w:P: R ROD : Teast(m), w: P R
P unicast(dz’p,’m)> p! d’Lp c R P —lunicast(dip)> p! dzp Q/ R

w:P:R tdip} : “east(m), w: PR ip:P:R " ip: P': R

Z]?PR connect(z’p,ip')> ZpPR U {’Lp/} ZpPR disconnect(ip,z'p/)> szR . {’Lp/}

© NICTA 2011

» Operational Semantics (snippet Il)

M R:*cast(’m)> M’ N H—lK:listen(m)> N’ HCR
MHN R:*cast(”rn)> M/HN/ NHM R:*cast(?n)> N/HM/ (KﬂR = @)

M H—J(:listen(m)> M N H’—|K’:listen(m)> N

MHN (HUH")-~(KUK'): listen(m)> M,HN,

M —% M N % N/
M|N -% M'|N M||N -% M|N’

(Va €{ip: deliver(d), T})

© NICTA 2011

Encapsulation

* Syntax N ::= [M]

» Operational Semantics

Y, R:*cast(m)) A M {ip}—ll{:listen(newpkt(d,dz’p))> M
[M] L[M/] [M] z’p:newpkt(al,al?lp)> [M/]
MLM/ M z'p:deliver(d)) M

(M] = [M1] - [M] e [

M connect(ip,ip’)> M/ M disconnect(z’p,z’p’)> M

[M] connect(ip,ip’)> [M’] [M] disconnect(z’p,z’p’)> [M,]

© NICTA 2011

A Bit of Theoretical Results

* process algebra is blocking (our model is non-blocking)

* process algebra is isomorphic to one without data
structure --- a process for every substitution instance

* generates same transition system
(up to strong bisimulation)

* resulting algebra is in de Simone format
(by this strong bisimulation and other semantic
equivalences are congruences)

* both parallel operators are associative
(follows by a meta result of Cranen, Mousavi, Reniers)

A Formal Model for AODV

« AODV: Ad-hoc On-Demand Distance Vector Routing
Protocol
— Ad hoc (network is not static)
— On-Demand (routes are established when needed)
— Distance (metric is hop count)

— Vector (routing table has the form of a vector)

— Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

* Core components modelled
—no time
— no probability

© NICTA 2011

AODV - An Example

i

s is looking for a route to d

Process Algebra - Snippet

Process 1 The basic routine

AODV(ip,rt,rreqgs,store) déf
1. receive(msg) .
2 /* depending on the message, the node calls different processes */
.0 (
4 [msg = newpkt(data, dip)] /* new DATA packet */
5. PKT(data,dip,ip;ip,rt,rreqgs,store)
6 + [msg = pkt(data, dip, oip)] /* incoming DATA packet */
7 PKT(data,dip,oip;ip,rt,rreqs,store)
8 + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)] /* RREQ */
9 /* update the route to sip in rt */

10. [rt :=update(rt, (sip,0,val,l,sip,0))] /* 0 is the sequence number “unknown” */
11. RREQ(hops,rreqid,dip,dsn,oip,osn,sip;ip,rt,rreqgs, store)
12. + [msg = rrep(hops, dip, dsn, oip, sip)] /* RREP *#/

13. /* update the route to sip in rt */

14. [rt :=update(rt, (sip,0,val,l,sip,0))]l

15. RREP(hops,dip,dsn,oip,sip;ip,rt,rreqgs,store)

16. + [msg = rerr(dests, sip)] /* RERR *#/

17. /* update the route to sip in rt */

18. [rt :=update(rt, (sip,0,val,l,sip,0))]

19. RERR(dests,sip;ip,rt,rreqgs,store)

20.)

21. + [Let dip € vD(rt) NgD(store)] /* send a queued data packet if a valid route is known */
2. [[data:=head(0ogueue(store, dip))ll
23. unicast(nhop(rt,dip), pkt(data,dip,ip)).

24. /* the queue is only updated if the transmission was successful. */

2s. [store := drop(dip, store)]|

26. AODV(ip,rt,rreqs,store)

27. » /* an error 1s produced and the routing table is updated */

28. [dests := {(rip,inc(sqn(rt, rip)))|rip € vD(rt) A nhop(rt,rip) =nhop(rt,dip)}]
29. [rt := invalidate(rt, dests)]|

30. [pre := U{precs(rt, rip)|(rip,*) € dests}]

31. groupcast(pre,rerr(dests,ip)) . AODV(ip,rt,rreqgs, store)

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

* |nvariant proofs
» temporal properties
* Properties of AODV

— loop freedom
— route correctness

— route found

Y X <<

— packet delivery

© NICTA 2011

Process Algebra

* New process algebra developed
» Language for formalising specs of network protocols

» Key features:
— guarantee broadcast
— prioritised unicast
— data handling

 Achievements

— full concise specification of AODV (RFC 3561)
(no time)

— formally verified loop-freedom (without timeouts)
* invariant proof

— found several ambiguities, mistakes, shortcomings
— found solutions for some limitations

© NICTA 2011

Conclusion/Future Work

» Extend formal methods to other protocols
— OSLR, DYMO, ...

* Add further necessary concepts

—time
— probability

© NICTA 2011

