
© NICTA 2011

A. Fehnker, R. van Glabbeek, P. Höfner,
A. McIver, M. Portmann, W.-L. Tan

Automated Analysis of
AODV using UPPAAL

© NICTA 2011

What is the Problem?

• Wireless Mesh Networks (WMNs)
– key features: mobility, dynamic topology, wireless multihop backhaul
– quick and low cost deployment

• Applications
– public safety
– emergency response,

disaster recovery
– transportation
– mining
– smart grid
– ...

• Limitations in reliability
and performance

© NICTA 2011

Formal Methods for Mesh Networks

• Goal
– model, analyse, verify, improve and increase the performance of

wireless mesh protocols
– develop suitable formal methods techniques

• Benefits
– more reliable protocols
– finding and fixing bugs
– better performance
– proving correctness
– reduce “time-to-market”

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

• Routing protocol for WMNs

• Ad hoc (network is not static)
• On-Demand (routes are established when needed)
• Distance-Vector

• Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

• RFC by the IETF MANET working group
• basis of upcoming IEEE 802.11s

© NICTA 2011

Ad Hoc On-Demand Distance Vector Protocol

• AODV control messages
– route request (RREQ)
– route reply (RREP)
– route error message (RERR)

• Main Mechanism
– if route is needed

 BROADCAST RREQ
– if node has information about a destination

 UNICAST RREP
– if unicast fails or link break is detected

 SEND RERR

© NICTA 2011

UPPAAL Model Checker

• Well established model checker
• Uses networks of timed automata
• Has been used for protocol verification

• Synchronisation mechanisms
– binary handshake synchronisation (unicast communication)
– broadcast synchronisation (broadcast communication)

• Common data structures
– arrays, structs, ...
– C-like programming language

• Provides mechanisms for time and probability

© NICTA 2011

Modelling AODV in UPPAAL

• Systematically derived from process-algebraic model
models all parts of the official specification (except time)

• Allows interplay
• Increases trust

• Process algebra AWN
– developed specifically for WMN routing protocols
– easily readable
– three necessary features:

data structures, local broadcast, conditional unicast

© NICTA 2011

Process Algebra AWN
6 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

Table 1 Excerpt of AWN spec for AODV. A few cases for RREQ handling.

AODV(ip,sn,rt,rreqs,store)
def
=

1. /*depending on the message on top of the message queue, the node calls di↵erent processes*/

2. . . .
3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ (oip, rreqid) 2 rreqs]

4. /*silently ignore RREQ, i.e. do nothing, except update the entry for the sender*/

5. [[rt := update(rt, (sip, 0, val, 1, sip))]] . /*update the route to sip*/
6. AODV(ip,sn,rt,rreqs,store)
7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ (oip, rreqid) 62 rreqs) ^ dip = ip]

8. /*answer the RREQ with a RREP*/

9. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update the routing table*/

10. [[rreqs := rreqs [{(oip, rreqid)}]] /*update the array of already seen RREQ*/

11. [[sn := max(sn, dsn)]] /*update the sqn of ip*/
12. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to sip*/
13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .

14. AODV(ip,sn,rt,rreqs,store)
15. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)^(oip, rreqid) 62 rreqs)^ dip 6= ip^

(dip 62 vD(rt) _ sqn(rt,dip) < dsn _ sqnf(rt,dip) = unk)]

16. /*forward RREQ*/

17. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update routing table*/

18. [[rreqs := rreqs [{(oip, rreqid)}]] /*update the array of already seen RREQ*/

19. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to the sender*/

20. broadcast(rreq(hops + 1,rreqid,dip,max(sqn(rt, dip), dsn),oip,osn,ip)) .

21. AODV(ip,sn,rt,rreqs,store)
22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ . . .]

23. . . .

Connections between nodes are determined by a connectivity graph, which is
specified by a Boolean-valued function isconnected. This graph presents one
particular topology and is not derived from our AWN specification, since the
specification is valid for all topologies. Communication is modelled as an atomic
synchronised transition between a sender, on an !-edge, with a receiver, on a
matching ?-edge. The guard of the sender depends on local data, e.g. bu↵er
and routing table, while the guard of the receiver is isconnected. This means
that in broadcast communication the sender will take the transition regardless of
isconnected, while disconnected nodes will not synchronise. In unicast commu-
nication the transition is blocked if the intended recipient is not connected, but
there is a matching broadcast transition that sends an error message in this case.
When the transition is taken, the sender copies its message to a global variable
msgglobal, and the receiver copies it subsequently to its local bu↵er msglocal.

AODV uses unicast for RREP and PKT messages, and broadcast for RERR
and RREQ messages. To model unicast, the UPPAAL model has one binary
handshake channel for every pair of nodes. For example, rrep[i][j] is used for
transitions modelling the sending of a route reply from node i to j. To model
broadcast, we use one broadcast channel for every node. For example, rreq[i]
is used for the route requests of node i. To model new packets from i to j,
generated by the user layer, the model contains a channel newpkt[i][j].

The AWNmodel of Table 1 is an excerpt of the AODV specification presented
in [5]—the full specification and a detailed explanation can be found there. The
excerpt presented here di↵ers slightly from the original model:1 (1) we abstract

1 It can be shown that the model presented here behaves identical to the AWN model
in [4]; in other words, they are behavioural equivalent.

© NICTA 2011

UPPAAL Model
Automated Analysis of AODV using UPPAAL 7

Table 2 Excerpt of UPPAAL model. A few cases for RREQ handling.
1. . . .
2. aodv -> aodv {
3. guard nextmsg()==RREQ && rreqs[msglocal[0].oip][msglocal[0].rreqid];
4. sync tau[ip]?;
5. assign sipupdate(), deletemsg(); },
6. aodv -> aodv {
7. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip==ip;
8. sync rrep[ip][oipnhop()]!;
9. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),

10. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
11. sn=max(sn,msglocal[0].dsn),
12. sipupdate(),
13. msgglobal=createrep(0,msglocal[0].dip,sn,msglocal[0].oip,ip), deletemsg(); },
14. aodv -> aodv {
15. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip!=ip

&& (!rt[msglocal[0].dip].flag || msglocal[0].dsn>rt[msglocal[0].dip].dsn
|| rt[msglocal[0].dip].dsn==0);

16. sync rreq[ip]!;
17. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),
18. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
19. sipupdate(),
20. msgglobal=createreq(msglocal[0].hops+1,msglocal[0].rreqid,msglocal[0].dip,

max(msglocal[0].dsn, rt[msglocal[0].dip].dsn),msglocal[0].oip,msglocal[0].osn,ip),
21. deletemsg(); },
22. . . .

from precursors, an additional data structure that is maintained by AODV (2)
the model in [5] uses 6 di↵erent processes; here processes are inlined into the body
of the main AODV process. This reduces the number of processes to one and
yields an automaton with one control location; (3) the model in [5] uses nesting of
conditions and updates, while this model has been flattened to correspond more
closely with the limitations of the UPPAAL syntax—in UPPAAL the guards are
evaluated before any update, AWN has no such restriction.

Table 1 depicts three of the cases in the AWN model for handling route re-
quests. In each, a condition is checked, the routing tables and local data are up-
dated, and it returns to the main AODV process AODV(ip, sn, rt, rreqs, store).
Table 2 shows the corresponding edges from the UPPAAL model, one edge for
every case. Like the AWN model, which goes from the process AODV to AODV, the
UPPAAL model will go from control location aodv to itself (Lines 2, 6 and 14).

Each edge evaluates a guard in Lines 3, 7 and 15 in Table 2. These line num-
bers, and the line numbers mentioned in the remainder of this section correspond
to the same line number in Table 1. Whenever the AWN specification uses set
membership ((oip, rreqid)2 rreqs), the UPPAAL model uses a 2-dimensional
Boolean array rreqs to encode membership; whenever the AWN model uses a
flag to denote a known sequence number (sqnf(rt,dip)= unk), the UPPAAL
model compares with a distinguished value (rt[msglocal[0].dip].dsn==0).

Depending on whether a case requires no transmission, unicast, or broadcast,
the UPPAAL model synchronises on a tau, a binary, or a broadcast channel
(Lines 4, 8 and 16). The tau channel for internal transitions allows for optimi-
sations; it could have been left empty. We discuss this later in this section.

After synchronisation the state is updated. For all route request messages we
update the routing table for the sender sip (Lines 5, 12 and 19). The fact that

© NICTA 2011

UPPAAL Model - Nodes of a Network

• Each node is modelled by a timed-automaton
• Additional (local) data structure

– routing table
– unique name
– ...

• Data sending via shared variables

© NICTA 2011

UPPAAL Model - Topology

• Topology modelled by adjacency matrix
• Topology change by additional timed-automaton

• Synchronisation only if two nodes are connected

© NICTA 2011

Experiments Set-Up

• Exhaustive search
– different properties
– all topologies up to 5 nodes (one topology change)
– 2 route discovery processes
– 17400 scenarios
– variants of AODV (4 models)

• Larger topologies possible, but only for a few scenarios

© NICTA 2011

Experiments - 3 Properties

• Route Discovery
– if two nodes are connected, does AODV find a route?

• Route Optimality
– no non-optimal route has been established after the protocol has

been terminated

• Total Optimality
– no non-optimal route found at all

A[]((topology.final && emptybuffers()) imply

(node(OIP).rt[DIP].nhop!=0))

© NICTA 2011

Results

• Route discovery and route optimality do not hold
– sanity check
– found within seconds
– shows power of model checking

• route discovery (2004)
• route optimality (2010)

A B C

1

2

3

4

5

6

7

8

9

10

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv aodv

rreq[B] BA rreq[B] BA

rreq[C] CA

rreq[B] rreq[B]CA CA

rreq[C] BA

rrep[A][B] BA

rrep[A][B] CA

© NICTA 2011

Quantity Results

• Potential failure in route discovery
– static topology: 47.3%
– dynamic topology (add link): 42.5%
– dynamic topology (remove link): 73.3%

• AODV repeats route request
• Other solution: Modify AODV

– e.g., Forward Route Reply

© NICTA 2011

4 Variants of AODV

• Standard AODV
– as reference

• Forwarding all route replies
– increase the chance of route discovery

• Replying to improving requests
– decrease number of sub-optimal routes

• Recovering from failed replies
– further increase for route discovery
– variant should considered with care

© NICTA 2011

Experimental Results

Property 1 Property 2 Property 3 Property 1& 2 all properties

s
t
a
t
i
c

model 1 52.7% 93.2% 50.7% 50.0% 13.5%

model 2 100.0% 93.2% 47.5% 93.2% 47.5%

model 3 100.0% 99.1% 47.5% 99.1% 47.5%

model 4 100.0% 99.1% 47.5% 99.1% 47.5%

Property 1 Property 2 Property 3 Property 1& 2 all properties

a
d
d
l
i
n
k

model 1 57.5% 90.8% 49.1% 53.3% 18.1%

model 2 100.0% 90.6% 46.2% 90.6% 46.2%

model 3 100.0% 97.8% 46.2% 97.8% 46.2%

model 4 100.0% 96.3% 46.2% 96.3% 46.2%

Property 1 Property 2 Property 3 Property 1& 2 all properties

r
e
m
o
v
e

l
i
n
k

model 1 26.7% 90.5% 59.7% 26.2% 6.0%

model 2 53.0% 89.4% 57.1% 51.2% 28.9%

model 3 53.0% 93.1% 57.1% 52.8% 28.9%

model 4 75.4% 94.0% 54.0% 73.8% 41.0%

© NICTA 2011

UPPAAL Statistics

• Intel Core2 CPU 2.13GHz processor with 2GB RAM
• Uppaal 4.0.13.
• 70400 instances (17600 for each model)
• 4th variant (largest state space)

– average of 9400 states
– largest model has 475.000 states, median is 2.700
– took on average 1.73 seconds, at most 81 seconds

• Larger topologies possible

• An automated, systematic and rigorous analysis of
reasonable rich routing protocols is feasible

© NICTA 2011

Further Work

• Probabilistic/Statistical Model Checking
– equip links and topology with probabilities
– allows quantitative analysis

• Use process algebra AWN to analyse variants
– e.g. loop freedom

• Add time such as time outs to AWN and UPPAAL-model

• Automatic translation from AWN to UPPAAL

© NICTA 2011

From imagination to impact

