Automated Analysis of
AODYV using UPPAAL

A. Fehnker, R. van Glabbeek, P. Hofner,
A. Mclver, M. Portmann, W.-L. Tan

£ UNSW

THEVRSTY!\EWSOUTWALB

NICTA Members

; A0 UNSW = @
il . = > Regions Development {
S5 Australian Government i A AN 4
“?i?"éf. X . o ASTRALARN SATORAL UNVERSTY e - b
wEgged= " Department of Broadband, Communications

and the Digital Economy e
v BV The Usiversity of Sydocy & Griffith S AS—E
Australian Research Council Al - 'n . ’ Queernians Wy um%w g_______ OrQuneo

NICTA Partners

What is the Problem?

* Wireless Mesh Networks (WWMNSs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response,
disaster recovery

— transportation

— mining

— smart grid
 Limitations in reliability

and performance

© NICTA 2011

Formal Methods for Mesh Networks

 Goal

— model, analyse, verify, improve and increase the performance of
wireless mesh protocols

— develop suitable formal methods techniques

* Benefits
— more reliable protocols
— finding and fixing bugs
— better performance
— proving correctness
— reduce “time-to-market”

© NICTA 2011

* Routing protocol for WMNSs

* Ad hoc (network is not static)
* On-Demand (routes are established when needed)
» Distance-Vector

* Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

 RFC by the IETF MANET working group
 pbasis of upcoming IEEE 802.11s

© NICTA 2011

Ad Hoc On-Demand Distance Vector Pro 0C

 AODV control messages
— route request (RREQ)
— route reply (RREP)
— route error message (RERR)

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— If unicast fails or link break is detected
SEND RERR

© NICTA 2011

UPPAAL Model Checker

 \Well established model checker
 Uses networks of timed automata
* Has been used for protocol verification

» Synchronisation mechanisms
— binary handshake synchronisation (unicast communication)
— broadcast synchronisation (broadcast communication)

« Common data structures

— arrays, structs, ...
— C-like programming language

* Provides mechanisms for time and probability

Modelling AODV in UPPAAL

« Systematically derived from process-algebraic model
models all parts of the official specification (except time)

* Allows interplay
* |[ncreases trust

* Process algebra AWN
— developed specifically for WMN routing protocols
— easlily readable

— three necessary features:
data structures, local broadcast, conditional unicast

© NICTA 2011

Process Algebra AWN

Table 1 Excerpt of AWN spec for AODV. A few cases for RREQ handling.

d
AODV(ip,sn,rt,rreqs,store) L
. /*depending on the message on top of the message queue, the node calls different processes™/

=

2. ...

3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A (oip, rreqid) € rreqgs]

4. /*silently ignore RREQ), i.e. do nothing, except update the entry for the sender™/
5. [rt := update(rt, (sip, 0,val, 1,sip))] . /*update the route to sip*/

6. AODV(ip,sn,rt,rreqs,store)

7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A (oip, rreqid) & rreqs) A dip = ip |
8. /*answer the RREQ with a RREP*/

9. [rt := update(rt, (oip, osn, val, hops + 1,sip))] /*update the routing table*/

10. [rregs := rreqs U {(oip,rreqid)}] /*update the array of already seen RREQ™*/
11. [sn := max(sn,dsn)] /*update the sqn of ip*/

12. [rt := update(rt, (sip, 0,val, 1l,sip))] /*update the route to sip*/

13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .

14. AODV(ip,sn,rt,rreqs,store)

15. 4+ [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A(oip, rreqid) ¢ rreqs) Adip # ip A

(dip & vD(rt) V sqn(rt,dip) < dsn V sqnf(rt,dip) = unk)]
16. /*forward RREQ*/
17. [rt := update(rt, (oip, osn, val, hops + 1,sip))] /*update routing table*/
18. [rregs := rreqs U {(oip, rreqid)}] /*update the array of already seen RREQ*/
19. [rt := update(rt, (sip, 0,val, 1,sip))] /*update the route to the sender*/
20. broadcast(rreq(hops + 1,rreqid,dip,max(sqn(rt,dip), dsn),oip,osn,ip)) .

21. AODV(ip,sn,rt,rreqs,store)
22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) A ...]
23. e

© NICTA 2011

UPPAAL Model

Table 2 Excerpt of UPPAAL model. A few cases for RREQ handling.

H R R R R e
o b W NN = O

16.
17.
18.
19.
20.

21.
22.

© W N O U AN

aodv -> aodv {

guard nextmsg()==RREQ && rreqs[msglocal[0].oip] [msglocal[0].rreqid];

sync taulip]l?;

assign sipupdate(), deletemsg(); I,

aodv -> aodv {

guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip] [msglocal[0].rreqid]&&msglocal[0] .dip==ip;
sync rreplip] [oipnhop()]!;

assign updatert (msglocal[0].oip,msglocal[0].osn,1,msglocal[0] .hops+1,msglocal[0].sip),
rreqgs [msglocal [0] .oip] [msglocal[0] .rreqid]=1,

sn=max (sn,msglocal[0] .dsn),

sipupdate(),

msgglobal=createrep(0,msglocal[0] .dip,sn,msglocal[0] .oip,ip), deletemsg(); 1,

. aodv -> aodv {
. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip] [msglocal[0].rreqid]&&msglocal[0].dip!=ip

&& (!'rt[msglocall0] .dip].flag || msglocal[0].dsn>rt[msglocall[0].dip].dsn
|| rt[msglocal[0].dip].dsn==0);

sync rreqlip]l!;

assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0] .hops+1l,msglocal[0].sip),
rreqs [msglocal [0] .oip] [msglocal[0] .rreqid]=1,
sipupdate(),
msgglobal=createreq(msglocal[0] .hops+1,msglocal[0] .rreqid,msglocal[0] .dip,
max (msglocal[0] .dsn, rt[msglocallO].dip].dsn),msglocal[0].oip,msglocal[0].osn,ip),
deletemsg(); 1},

© NICTA 2011

UPPAAL Model - Nodes of a Network

* Each node is modelled by a timed-automaton

* Additional (local) data structure

— routing table
— unique name

» Data sending via shared variables

© NICTA 2011

UPPAAL Model - Topology

» Topology modelled by adjacency matrix
* Topology change by additional timed-automaton

» Synchronisation only if two nodes are connected

© NICTA 2011

Experiments Set-Up

« Exhaustive search
— different properties
— all topologies up to 5 nodes (one topology change)
— 2 route discovery processes
— 17400 scenarios

— variants of AODV (4 models)

» Larger topologies possible, but only for a few scenarios

© NICTA 2011

Experiments — 3 Properties

* Route Discovery
— if two nodes are connected, does AODYV find a route?

A[] ((topology.final && emptybuffers()) imply
(node (OIP) .rt [DIP] .nhop!=0))

* Route Optimality

— no non-optimal route has been established after the protocol has
been terminated

 Total Optimality

— no non-optimal route found at all

© NICTA 2011

* Route discovery and route optimality do not hold
— sanity check
— found within seconds

— shows power of model checking
* route discovery (2004)
* route optimality (2010)

© NICTA 2011

A

=

B
rreq[B] rreq[B] ™
== i,
_ rreq[C]
rreq[B] rreq[B]
= »
rreq[C]

g8 &8 8

Quantity Results

* Potential failure in route discovery

— static topology: 47.3%
— dynamic topology (add link): 42.5%
— dynamic topology (remove link): 73.3%

 AODV repeats route request

* Other solution: Modify AODV
—e.g., Forward Route Reply

© NICTA 2011

4 Variants of AODV

e Standard AODV

— as reference

* Forwarding all route replies
— increase the chance of route discovery

* Replying to improving requests
— decrease number of sub-optimal routes

» Recovering from failed replies

— further increase for route discovery
— variant should considered with care

© NICTA 2011

Experimental Results

Qe

NICTA

Property 1 Property 2 Property 3 Property 1& 2 all properties
model 1 52.7% 93.2% 50.7% 50.0% 13.5%
.= | model 2 100.0% 93.2% 47.5% 93.2% 47.5%
£ | model 3 | 100.0% 99.1% 47.5% 99.1% 47.5%
model 4 100.0% 99.1% 47.5% 99.1% 47.5%
Property 1 Property 2 Property 3 Property 1& 2 all properties
2 | model 1 57.5% 90.8% 49.1% 53.3% 18.1%
2 | model 2 | 100.0% 90.6% 16.2% 90.6% 16.2%
< | model 3 100.0% 97.8% 46.2% 97.8% 46.2%
“ | model 4 100.0% 96.3% 46.2% 96.3% 46.2%
Property 1 Property 2 Property 3 Property 1& 2 all properties
. model 1 26.7% 90.5% 59.7% 26.2% 6.0%
2 « | model 2 53.0% 89.4% 57.1% 51.2% 28.9%
5.5 | model 3 53.0% 93.1% 57.1% 52.8% 28.9%
- model 4 75.4% 94.0% 54.0% 73.8% 41.0%

© NICTA 2011

* Intel Core2 CPU 2.13GHz processor with 2GB RAM
* Uppaal 4.0.13.
» 70400 instances (17600 for each model)

 4th variant (largest state space)

— average of 9400 states
— largest model has 475.000 states, median is 2.700
—took on average 1.73 seconds, at most 81 seconds

» Larger topologies possible

 An automated, systematic and rigorous analysis of
reasonable rich routing protocols is feasible

* Probabilistic/Statistical Model Checking

— equip links and topology with probabilities
— allows quantitative analysis

» Use process algebra AWN to analyse variants
—e.g. loop freedom

 Add time such as time outs to AWN and UPPAAL-model

 Automatic translation from AWN to UPPAAL

© NICTA 2011

