Formal Methods
for

Wireless (Mesh) Protocols

Peter Hofner
03/04/2012

NICTA Funding and Supporting Members and Partners

] Australian Government g Australian

. oS> National
Department of Broadband, Communications University THE NIVERSTY OF NEW SOUTH WALES
and the Digital Economy

. . THEUNIVERSITY OF sgee QUT THE UNIVERSITY
Australian Research Council SYDNEY Quﬁand &')J &\III'\IIEEISIth ‘g' OF QUEENSLAND

AAAAAAAAA

Government

Project Structure

* Formal Methods for Routing Protocols
of Wireless Mesh Networks (WMNSs)

* Part of “Mesh Protocols”
* Across research groups

 Across research labs

« start November 2010

Project Team

* Formal Methods for WMNs @ NRG
— Annabelle Mclver
— Marius Portmann
— Wee Lum Tan

« Formal Methods for WMNs @ SSRG
— Rob van Glabbeek
— Peter Hofner

« ~25FTEs

Today's Protocol Development e

NICTA

* “Rough Consensus and Running Code” (Trial and Error)
— start with a good idea
— build a protocol out of it (implementation)
* run tests (over several years)
* find limitations, flaws, etc...
* fix problems
— build a new version of the protocol
— at some point people agree on an RFC

X
o\ |
-

R

Beauvais Cathedral
(~300 years to build, at least 2 collapses)

Research Challenges Oe

NICTA

* |s there a method which is more reliable and cost-efficient?

 Is there a way to compare variants of protocols or different protocols?

 New engineering methods required
(or finetune/extend existing ones)

The original design was so boldly conceived that
it was found structurally impossible to build.

Problems e

« Standards (IETF RFCs) are not precise NICTA
— written in English
— ambiguous (sometimes incomplete)
— no formal specification or reasoning

« Compliant implementations
— have different behaviours
— are not compatible
— have serious flaws

 Traditional evaluation techniques: simulation, test-bed experiments
— expensive, time-consuming
— limited to (a small number of) specific scenarios

— protocol errors still found even after years of intensive evaluation
(e.g. [MiskovicKnightly10])

— barely any guarantee for properties such as route discovery

Internet Engineering Task Force (IETF)

* “Formal languages are useful tools for specifying parts of protocols.
However, as of today, there exists no well-known language that is able to
capture the full syntax and semantics of reasonably rich IETF protocols.”

[IETF]

« |IETF’s requirements (for formal languages)

Research Aims e

NICTA

* Provide complete and practical formal methods for mesh protocols

— expressive power
(mobility, dynamic topology, types of communication, link failures...)

— usable / intuitive
— description language + proof methodology

* Specification, verification and analysis of mesh protocols
— formalise relevant standard protocols
— analyse the protocols w.r.t. key requirements, e.g. loop freedom
— analyse compliant implementations

« Development of improved protocols
— assured protocol correctness
— Improve reliability
— Improve performance

Key Research Outcomes (Summary) Oe

NICTA

 New languages and proof methodologies
— process algebra AWN
— routing algebra
* Modelling of AODV
— process algebra: complete and detailed model (without time)
— model checking: encoding of AWN specification
— routing algebra: modelled parts of AODV
« Analysing/Verifying AODV
— process algebra: proof methodology, invariant proofs

— model checking: automatic finding of problematic behaviour
e.d., no route discovery guarantee

— analysed (all interpretations of) AODV

Formalisation of AODV Yo

NICTA
Table 1 Excerpt of AWN spec for AODV. A few cases for RREQ handling.

d
AODV(ip,sn,rt,rreqgs,store) L/

. /*depending on the message on top of the message queue, the node calls different processes™/

=

2. ...

3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A (oip,rreqid) € rreqgs]

4. /*silently ignore RREQ), i.e. do nothing, except update the entry for the sender™/
5. [rt := update(rt, (sip, 0,val, 1,sip))] . /*update the route to sip™/

6. AODV(ip,sn,rt,rreqs,store)

7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A (oip, rreqid) &€ rreqs) A dip = ip |
8. /*answer the RREQ with a RREP*/

9. [rt := update(rt, (oip, osn, val, hops + 1,sip))] /*update the routing table*/

10. [rreqgs := rreqs U {(oip, rreqid)}] /*update the array of already seen RREQ™/
11. [sn := max(sn,dsn)] /*update the sqn of ip*/

12. [rt := update(rt, (sip, 0,val, 1,sip))] /*update the route to sip™*/

13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .

14. AODV(ip,sn,rt,rreqs,store)

15. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A(oip, rreqid) ¢ rreqs) Adip # ip A

(dip € vD(rt) V sqn(rt,dip) < dsn V sqnf(rt,dip) = unk)]
16. /*forward RREQ*/
17. [rt := update(rt, (oip, osn, val,hops + 1,sip))] /*update routing table*/
18. [rregs := rreqs U {(oip, rreqid)}] /*update the array of already seen RREQ™/

19. [rt := update(rt, (sip, 0,val, 1,sip))] /™ update the route to the sender*/
20. broadcast(rreq(hops + 1,rreqid,dip,max(sqn(rt,dip), dsn),oip,osn,ip)) .
21. AODV(ip,sn,rt,rreqs,store)

22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) A ...]
23. “ e

Loop Freedom

* Idea (Common belief):
Sequence numbers guarantee loop freedom if increased monotonically

« Case study: AODV (Ad hoc On-demand Distance Vector) routing protocol

“One distinguishing feature of AODV is its use of a
destination sequence number for each route entry. The
destination sequence number is created by the destination to
be included along with any route information it sends to
requesting nodes. Using destination sequence numbers ensures

loop freedom and is simple to program.”

Loop Example Yo

+ Loop freedom does not only depend on sequence numbers, but alsoon I\ ICTA
— error handling
— self entries
* Loop freedom of AODV is not guaranteed by the RFC
— depends on the interpretation of the RFC
— depends on the experience of the software engineer
« Some compliant implementations, such as ns2-AODV, contain loops

* Details @ @

— 2 nodes moving o
— 4 route requests

12

Research Outcomes (Process Algebra) e

» Algebra for Wireless Networks (AWN) NICTA

— novel treatment of data structures, conditional unicast und local broadcast
(w.r.t. to previous process algebras such as LOTOS)

— formalisation and (dis)proof of key aspects of routing protocols,
e.g. loop freedom, packet delivery

« Case study
— Ad-hoc On Demand Distance Vector Protocol (AODV)
* model the standard

* first formal and complete proof of loop freedom
(for particular interpretations)

» analysed more key properties such as packet delivery or route discovery
— Analysed variants/interpretations of AODV

+ all reasonable interpretations of the standard (RFC) analysed
(more than 128)

 Publications

[1] A Process Algebra for Wireless Mesh Networks. In European Symposium on Programming (ESOP 2012),
Lecture Notes in Computer Science, Springer, 2012. (to appear)

[2] A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV.
Technical report 5513, NICTA, 2012

13

Ambiguities and Loop Freedom ®

-

N

\\

sy, =
|

y
\
S

(

|

1. Updating the Unknown Sequence Number in Response to a Route Reply

la.| the destination sequence number (DSN) is copied from the | decrement of sequence numbers and loops
RREP message (Sect 6.7)
1b.| the routing table is not updated when the information in- | loop free
side is “fresher” (Sect. 6.1)
2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a.| no update occurs loop free, but opportunity to improve routes is missed.
2b.| overwrite any routing table entry by an update with an | decrement of sequence numbers and loops
unknown DSN
2c.| use the new entry with the old DSN loop free
3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)
3a.| update when incoming sequence number is unknown supports Interpretations 2b or 2c above
3b.| update when existing sequence number is unknown decrement of sequence numbers and loops
3c.| update when no existing sequence number is known supports Interpretation 2a above
4. (Dis)Allowing Self-Entries
4a.| allow self-entries loop free if used with appropriate invalidate
4b.| disallow self-entries; if self-entries would occur, ignore mess. | loop free
4c.| disallow self-entries; if self-entries would occur, forward loop free
5. Storing the Own Sequence Number
ba.| store sequence number as separate value loop free
5b.| store sequence number inside routing table excludes non-trivial self-entries (4b—c)
6. Invalidating Routing Table Entries in Response to a RERR message
6a.| copy DSN from RERR message (Sect. 6.11) decrement of sequence numbers and loops
(when allowing self-entries (Interpretation 4a))
6b.[no action if the DSN in the routing table is larger than the | loops (when allowing self-entries)
one in the RERR mess. (Sect. 6.1 & 6.11)
6¢c. | take the maximum of the DSN of the routing table and the | loops (when allowing self-entries)
one from the RERR message
6d.| take the maximum of the increased DSN of the routing | loop free

table and the one from the RERR mess.

Table 2: Analysis of Different Interpretations of the RFC 3561 (AODYV)

™ A
H A\
7\

Research Landscape (w.r.t. AWN)

AWN

LOTOS
(CCS, CSP, ACP)

ESTELLE

Model checking
(e.g. UPPAAL)

Petri nets

SysML

SDL

process algebra for WMNs

(specification language + proof
methodology)

general-purpose process algebra

based on abstract data types and
finite automata

method to check properties in a
given scenarios (topology)

model of concurrency

general-purpose modelling and
specification languages

general-purpose modelling and
specification languages

broadcast

unicast

data structure
translation to UPPAAL

first algebra with data

everything is a data
structure
(e.g., communication)

formal semantics

automatic and executable
scenarios

graphical and intuitive
interpretation

explicit concurrency

based on UML

based on finite automata
graphical version

WMN primitives
readable

no assignment

broadcast not a primitive
(encoding less readable)

only testing and static
analysis available

not designed for WMN

no specification language

specification much larger
(hence less readable)

usually no proof
methodology

usually no proof
methodology

Key Research Outcomes (Summary) Oe

NICTA

 New languages and proof methodologies
— process algebra AWN
— routing algebra
* Modelling of AODV
— process algebra: complete and detailed model (without time)
— model checking: encoding of AWN specification
— routing algebra: modelled parts of AODV
« Analysing/Verifying AODV
— process algebra: proof methodology, invariant proofs

— model checking: automatic finding of problematic behaviour
e.d., no route discovery guarantee

— analysed (all interpretations of) AODV

16

Vision Oe

NICTA
 Provide practical methods and tools for WMN protocols that

— are used for specification and analysis/verification

— have high usability and are intuitive
* help (network) researchers/engineers to achieve their tasks and to tackle their problems

— have expressive power to model wireless networks (e.g. broadcast)
— are unambiguous and concise

« Key Goals

— understand, formalise, analyse and solve network problems;

* e.g. what is meant by loop freedom \\
— remove ambiguities, increase interoperability

N

— higher level of assurance
 Reduce “time-to-market”

17

V

1ISION -

Design

£ = rreq(hops rreqld dip, dsn, oip, osn, sip) A (g

answer the RREQ with a RREP/

[rt := update(rt, (oip, osn, val, hops + 1, sip

eqs := ITeqs U {(oip,rreqid)}] /*updafm

= max(sn,dsn)] /*update the sqn of ip

[[rt = update(rt, (sip, 0, val, 1,sip))] /*update the route 1}
unicast (nhop(rt, 01p),rrep(0 d1p,sn oip,ip)) .
AODV(ip,sn,rt,rreqs,store)

+ [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A(oip, rreqig

(dip & vD(rt) V sqn(rt,dip) < dsn V sqnf(rt,dip) = unk)]

/*forward RREQ*/

[rt := update(rt, (oip, osn, val, hops + 1,sip))] /*updat

reqs := rreqs U {(oip, rreqid)}] /*update the array,

= update(rt, (sip, 0, val, 1,sip))] /*update the

Jcast(rreq(hops + 1,rreqid,dip,max(sn(rt, d

Implementation

Practical Protocol Engineering

Verification /
Improvement

Future Work e

NICTA

« Extend languages and proof methodologies
— process algebra, model checking: time, probability
— routing algebra: complete expressive power

* Proof automatisation
— process algebra: Isabelle/HOL
— routing algebra: Prover9

« Specification vs. Implementation
— check real implementations against (correct) specification

» Application of developed formal methods to new protocols
— adaptive, modular protocols for WMNSs

19

file://localhost/Users/peterhoefner/Desktop/review/SSRG_Review_Mesh_v2.key
file://localhost/Users/peterhoefner/Desktop/review/SSRG_Review_Mesh_v2.key

Links / Engagement e

+ Within NICTA NICTA
— software systems research group
 proof automatisation (Isabelle/HOL)
« Academic cooperation
— Cambridge, Stanford, Stony Brook, Nijmegen, ...
* Industry partner
— Firetide
 current main focus on channel allocation

20

Global research competitive position

NICTA
Mesh protocols

Cambridge University
Metarouting

AT&T Labs Research

Stony Brook University

University of Pennsylvania
NetDB@Penn

Radboud University
Model-Based System Develop.,

Rob van Glabbeek
Peter Hofner

Timothy G. Griffin

Pamela Zave

Scott A. Smolka
C.R. Ramakrishnan

Boon Thau Loo

Frits Vaandrager

2 researchers

4 researchers and
students

numbers vary

3 researchers

2 researchers and
8 PhD students

4 researchers and
students

rigorous formal methods
application to relevant
protocols

focus on analysis of
internet protocols (BGP)

focus on higher-level
protocols (e.g. SIP)

no close collaboration with
network engineers

distributed systems,
analysis of BGP,
no wireless

no focus on networks, no
close collaboration with
network engineers

Selected Publications

Sequence Numbers Do Not Guarantee Loop Freedom submitted to Sigcomm 2012

—AODV Can Yield Routing Loops—

A Process Algebra for Wireless Mesh Networks

Automated Analysis of AODV using AODV

A Process Algebra for Wireless Mesh Networks
used for
Modelling Verifying and Analysing AODV.

Modelling and Analysis of AODV in UPPAAL

Towards an Algebra of Routing Tables

European Symposium on Programming
(ESOP 12)

Tools and Algorithms for the Construction and
Analysis of Systems
(TACAS 12)

Technical Report, NICTA

Workshop on Rigorous Protocol Engineering
(W-Ripe 11, ICNP-workshop)

Relational and Algebraic Methods in Computer
Science
(RAMICS 11)

2012

2012

2012

2012

2011

2011

NICTA

Questions, Comments ?

23

