
Formal Methods
for

Wireless (Mesh) Protocols
Peter Höfner
03/04/2012

NICTA Copyright 2011 From imagination to impact

Project Structure

• Formal Methods for Routing Protocols
of Wireless Mesh Networks (WMNs)

• Part of “Mesh Protocols”
• Across research groups

– close cooperation with Software Systems Research Group
• Across research labs

– NRL, QRL

• start November 2010

2

NICTA Copyright 2011 From imagination to impact

Project Team
• Formal Methods for WMNs @ NRG

– Annabelle McIver
– Marius Portmann
– Wee Lum Tan

• Formal Methods for WMNs @ SSRG
– Rob van Glabbeek
– Peter Höfner

• ~2.5 FTEs

3

NICTA Copyright 2011 From imagination to impact

Today’s Protocol Development
• “Rough Consensus and Running Code” (Trial and Error)

– start with a good idea
– build a protocol out of it (implementation)

• run tests (over several years)
• find limitations, flaws, etc...
• fix problems

– build a new version of the protocol
– at some point people agree on an RFC

4

Beauvais Cathedral
(~300 years to build, at least 2 collapses)

NICTA Copyright 2011 From imagination to impact

Research Challenges

• Is there a method which is more reliable and cost-efficient?

• Is there a way to compare variants of protocols or different protocols?

• New engineering methods required
(or finetune/extend existing ones)

5

The original design was so boldly conceived that
it was found structurally impossible to build.

NICTA Copyright 2011 From imagination to impact

Problems
• Standards (IETF RFCs) are not precise

– written in English
– ambiguous (sometimes incomplete)
– no formal specification or reasoning

• Compliant implementations
– have different behaviours
– are not compatible
– have serious flaws

• Traditional evaluation techniques: simulation, test-bed experiments
– expensive, time-consuming
– limited to (a small number of) specific scenarios
– protocol errors still found even after years of intensive evaluation

(e.g. [MiskovicKnightly10])
– barely any guarantee for properties such as route discovery

6

NICTA Copyright 2011 From imagination to impact

Internet Engineering Task Force (IETF)

7

• “Formal languages are useful tools for specifying parts of protocols.
However, as of today, there exists no well-known language that is able to
capture the full syntax and semantics of reasonably rich IETF protocols.“
 [IETF]

• IETF’s requirements (for formal languages)
– relatively easy to extract code
– complete specification
– implementation independent

NICTA Copyright 2011 From imagination to impact

Research Aims
• Provide complete and practical formal methods for mesh protocols

– expressive power
(mobility, dynamic topology, types of communication, link failures...)

– usable / intuitive
– description language + proof methodology

• Specification, verification and analysis of mesh protocols
– formalise relevant standard protocols
– analyse the protocols w.r.t. key requirements, e.g. loop freedom
– analyse compliant implementations

• Development of improved protocols
– assured protocol correctness
– improve reliability
– improve performance

8

NICTA Copyright 2011 From imagination to impact

Key Research Outcomes (Summary)
• New languages and proof methodologies

– process algebra AWN
– routing algebra

• Modelling of AODV
– process algebra: complete and detailed model (without time)
– model checking: encoding of AWN specification
– routing algebra: modelled parts of AODV

• Analysing/Verifying AODV
– process algebra: proof methodology, invariant proofs
– model checking: automatic finding of problematic behaviour

e.g., no route discovery guarantee
– analysed (all interpretations of) AODV

9

NICTA Copyright 2011 From imagination to impact

Formalisation of AODV

10

6 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

Table 1 Excerpt of AWN spec for AODV. A few cases for RREQ handling.

AODV(ip,sn,rt,rreqs,store)
def
=

1. /*depending on the message on top of the message queue, the node calls di↵erent processes*/

2. . . .
3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ (oip, rreqid) 2 rreqs]

4. /*silently ignore RREQ, i.e. do nothing, except update the entry for the sender*/

5. [[rt := update(rt, (sip, 0, val, 1, sip))]] . /*update the route to sip*/
6. AODV(ip,sn,rt,rreqs,store)
7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ (oip, rreqid) 62 rreqs) ^ dip = ip]

8. /*answer the RREQ with a RREP*/

9. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update the routing table*/

10. [[rreqs := rreqs [{(oip, rreqid)}]] /*update the array of already seen RREQ*/

11. [[sn := max(sn, dsn)]] /*update the sqn of ip*/
12. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to sip*/
13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .

14. AODV(ip,sn,rt,rreqs,store)
15. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)^(oip, rreqid) 62 rreqs)^ dip 6= ip^

(dip 62 vD(rt) _ sqn(rt,dip) < dsn _ sqnf(rt,dip) = unk)]

16. /*forward RREQ*/

17. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update routing table*/

18. [[rreqs := rreqs [{(oip, rreqid)}]] /*update the array of already seen RREQ*/

19. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to the sender*/

20. broadcast(rreq(hops + 1,rreqid,dip,max(sqn(rt, dip), dsn),oip,osn,ip)) .

21. AODV(ip,sn,rt,rreqs,store)
22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) ^ . . .]

23. . . .

Connections between nodes are determined by a connectivity graph, which is
specified by a Boolean-valued function isconnected. This graph presents one
particular topology and is not derived from our AWN specification, since the
specification is valid for all topologies. Communication is modelled as an atomic
synchronised transition between a sender, on an !-edge, with a receiver, on a
matching ?-edge. The guard of the sender depends on local data, e.g. bu↵er
and routing table, while the guard of the receiver is isconnected. This means
that in broadcast communication the sender will take the transition regardless of
isconnected, while disconnected nodes will not synchronise. In unicast commu-
nication the transition is blocked if the intended recipient is not connected, but
there is a matching broadcast transition that sends an error message in this case.
When the transition is taken, the sender copies its message to a global variable
msgglobal, and the receiver copies it subsequently to its local bu↵er msglocal.

AODV uses unicast for RREP and PKT messages, and broadcast for RERR
and RREQ messages. To model unicast, the UPPAAL model has one binary
handshake channel for every pair of nodes. For example, rrep[i][j] is used for
transitions modelling the sending of a route reply from node i to j. To model
broadcast, we use one broadcast channel for every node. For example, rreq[i]
is used for the route requests of node i. To model new packets from i to j,
generated by the user layer, the model contains a channel newpkt[i][j].

The AWNmodel of Table 1 is an excerpt of the AODV specification presented
in [5]—the full specification and a detailed explanation can be found there. The
excerpt presented here di↵ers slightly from the original model:1 (1) we abstract

1 It can be shown that the model presented here behaves identical to the AWN model
in [4]; in other words, they are behavioural equivalent.

NICTA Copyright 2011 From imagination to impact

Loop Freedom
• Idea (Common belief):

Sequence numbers guarantee loop freedom if increased monotonically

• Case study: AODV (Ad hoc On-demand Distance Vector) routing protocol
– RFC 3561:

– “Proofs”
• [PerkinsRoyer97]: proof sketch; missing cases - no error handling
• [ZhouEtAl09]: over abstraction; it is not a proof for AODV

11

“One distinguishing feature of AODV is its use of a
destination sequence number for each route entry. The
destination sequence number is created by the destination to
be included along with any route information it sends to
requesting nodes. Using destination sequence numbers ensures
loop freedom and is simple to program.”

NICTA Copyright 2011 From imagination to impact

Loop Example

12

• Loop freedom does not only depend on sequence numbers, but also on
– error handling
– self entries

• Loop freedom of AODV is not guaranteed by the RFC
– depends on the interpretation of the RFC
– depends on the experience of the software engineer

• Some compliant implementations, such as ns2-AODV, contain loops

• Details
– 2 nodes moving
– 4 route requests

NICTA Copyright 2011 From imagination to impact

Research Outcomes (Process Algebra)
• Algebra for Wireless Networks (AWN)

– novel treatment of data structures, conditional unicast und local broadcast
(w.r.t. to previous process algebras such as LOTOS)

– formalisation and (dis)proof of key aspects of routing protocols,
e.g. loop freedom, packet delivery

• Case study
– Ad-hoc On Demand Distance Vector Protocol (AODV)

• model the standard
• first formal and complete proof of loop freedom

(for particular interpretations)
• analysed more key properties such as packet delivery or route discovery

– Analysed variants/interpretations of AODV
• all reasonable interpretations of the standard (RFC) analysed

(more than 128)
• Publications

13

[1] A Process Algebra for Wireless Mesh Networks. In European Symposium on Programming (ESOP 2012),
 Lecture Notes in Computer Science, Springer, 2012. (to appear)
[2] A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV.
 Technical report 5513, NICTA, 2012

NICTA Copyright 2011 From imagination to impact

Ambiguities and Loop Freedom

14

1. Updating the Unknown Sequence Number in Response to a Route Reply
1a. the destination sequence number (DSN) is copied from the

RREP message (Sect 6.7)
decrement of sequence numbers and loops

1b. the routing table is not updated when the information in-
side is “fresher” (Sect. 6.1)

loop free

2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a. no update occurs loop free, but opportunity to improve routes is missed.
2b. overwrite any routing table entry by an update with an

unknown DSN
decrement of sequence numbers and loops

2c. use the new entry with the old DSN loop free

3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)
3a. update when incoming sequence number is unknown supports Interpretations 2b or 2c above
3b. update when existing sequence number is unknown decrement of sequence numbers and loops
3c. update when no existing sequence number is known supports Interpretation 2a above

4. (Dis)Allowing Self-Entries
4a. allow self-entries loop free if used with appropriate invalidate
4b. disallow self-entries; if self-entries would occur, ignore mess. loop free
4c. disallow self-entries; if self-entries would occur, forward loop free

5. Storing the Own Sequence Number
5a. store sequence number as separate value loop free
5b. store sequence number inside routing table excludes non-trivial self-entries (4b–c)

6. Invalidating Routing Table Entries in Response to a RERR message
6a. copy DSN from RERR message (Sect. 6.11) decrement of sequence numbers and loops

(when allowing self-entries (Interpretation 4a))
6b. no action if the DSN in the routing table is larger than the

one in the RERR mess. (Sect. 6.1 & 6.11)
loops (when allowing self-entries)

6c. take the maximum of the DSN of the routing table and the
one from the RERR message

loops (when allowing self-entries)

6d. take the maximum of the increased DSN of the routing
table and the one from the RERR mess.

loop free

Table 2: Analysis of Di↵erent Interpretations of the RFC 3561 (AODV)

tion 6.7 above, but leads to routing loops in the same
way. The remaining possibility is that Part (iii) refers
to the sequence number in the routing table, but only
deals with the case that that number is truly unknown,
i.e. has the value 0 (and the sequence-number-status
flag has the value unk). This reading is consistent with
interpretation (a) above. However, it implies that the
routing table may not be updated if the existing entry
has a known sequence number whereas the route dis-
tilled from the incoming information does not. This is
in contradiction to the quote above from Section 6.5.10

As we have seen in the example of Section 3, self-
entries can yield problems. There are only two possibil-
ities for any specification of AODV—either allow or dis-
allow them. The RFC does mention self-entries explic-
itly (see above). If self-entries are allowed this might, in
combination with other assumptions, yield loops. There
are two possibilities to disallow self-entries: (a) if a node
receives a route reply and would create a self-entry, it
silently ignores the message. This interpretation has
the disadvantage that replies are lost. (b) The alter-
native is that the node who would create a self-entry
does forward the message without updating its routing
table. Both variants by themselves do not yield weird
or unwanted behaviour.

10An IETF Internet draft—published after the RFC—
rephrases the above statement as follows: “the sequence num-

ber in the routing table is unknown.” [17, Sect. 6.2].

As discussed before, Kernel-AODV and AODV-UIUC
store the node’s own sequence number in an optimal self-
route. By this, non-trivial self-entries are ruled out and
loops are avoided.

The last ambiguity we want to discuss is the invalida-
tion of routing table entries in response to a RERR mes-
sage. The RFC states that the sequence number should
be“copied from the incoming RERR ”[18, Sect. 6.11].
In particular, this part of the RFC prescribes the re-
placement of an existing destination sequence number
in a routing table entry with one that may be strictly
smaller, which contradicts Sect. 6.1 of the RFC. To
make the process of invalidation consistent with Sect. 6.1
of the RFC, one could use two possible variants instead.
The first, strictly following Sect. 6.1, aborts the invali-
dation attempt if the destination sequence number pro-
vided by the incoming RERR message is smaller than
the one already in the routing table. The second still
invalidates in these circumstances, but prevents a de-
crease in the destination sequence number by taking
the maximum of the stored and the incoming number.
It can be shown that each of these variants can yield
loops, when used in conjunction with self-entries. There
is only one reasonable solution to avoid routing loops in
these circumstances. Instead of copying or ignoring the
sequence number from the incoming RERR message,
one can use the maximum of the increased destination
sequence number of the routing table and the one from

8

NICTA Copyright 2011 From imagination to impact

Research Landscape (w.r.t. AWN)

15

Approach Description Features Point of difference

AWN process algebra for WMNs

(specification language + proof
methodology)

broadcast
unicast
data structure
translation to UPPAAL

WMN primitives
readable

LOTOS

(CCS, CSP, ACP)

general-purpose process algebra first algebra with data no assignment

broadcast not a primitive
(encoding less readable)

ESTELLE based on abstract data types and
finite automata

everything is a data
structure
(e.g., communication)

only testing and static
analysis available

Model checking

(e.g. UPPAAL)

method to check properties in a
given scenarios (topology)

formal semantics

automatic and executable
scenarios

not designed for WMN

Petri nets model of concurrency graphical and intuitive
interpretation

explicit concurrency

no specification language

specification much larger
(hence less readable)

SysML general-purpose modelling and
specification languages

based on UML usually no proof
methodology

SDL general-purpose modelling and
specification languages

based on finite automata

graphical version

usually no proof
methodology

NICTA Copyright 2011 From imagination to impact

Key Research Outcomes (Summary)
• New languages and proof methodologies

– process algebra AWN
– routing algebra

• Modelling of AODV
– process algebra: complete and detailed model (without time)
– model checking: encoding of AWN specification
– routing algebra: modelled parts of AODV

• Analysing/Verifying AODV
– process algebra: proof methodology, invariant proofs
– model checking: automatic finding of problematic behaviour

e.g., no route discovery guarantee
– analysed (all interpretations of) AODV

16

NICTA Copyright 2011 From imagination to impact

Vision

• Provide practical methods and tools for WMN protocols that
– are used for specification and analysis/verification
– have high usability and are intuitive

• help (network) researchers/engineers to achieve their tasks and to tackle their problems

– have expressive power to model wireless networks (e.g. broadcast)
– are unambiguous and concise

• Key Goals
– understand, formalise, analyse and solve network problems;

• e.g. what is meant by loop freedom

– remove ambiguities, increase interoperability
– higher level of assurance

• Reduce “time-to-market”

17

NICTA Copyright 2011 From imagination to impact

Vision - Practical Protocol Engineering

18

Design Verification /
Improvement

Implementation

NICTA Copyright 2011 From imagination to impact

Future Work

19

• Extend languages and proof methodologies
– process algebra, model checking: time, probability
– routing algebra: complete expressive power

• Proof automatisation
– process algebra: Isabelle/HOL
– routing algebra: Prover9

• Specification vs. Implementation
– check real implementations against (correct) specification

• Application of developed formal methods to new protocols
– adaptive, modular protocols for WMNs

file://localhost/Users/peterhoefner/Desktop/review/SSRG_Review_Mesh_v2.key
file://localhost/Users/peterhoefner/Desktop/review/SSRG_Review_Mesh_v2.key

NICTA Copyright 2011 From imagination to impact

Links / Engagement

20

• Within NICTA
– software systems research group

• proof automatisation (Isabelle/HOL)
• Academic cooperation

– Cambridge, Stanford, Stony Brook, Nijmegen, ...
• Industry partner

– Firetide
• current main focus on channel allocation

NICTA Copyright 2011 From imagination to impact

Global research competitive position

21

Research Group Key staff Scale of effort Point of difference

NICTA

Mesh protocols

Rob van Glabbeek
Peter Höfner

2 researchers rigorous formal methods
application to relevant
protocols

Cambridge University
Metarouting

Timothy G. Griffin 4 researchers and
students

focus on analysis of
internet protocols (BGP)

AT&T Labs Research Pamela Zave numbers vary focus on higher-level
protocols (e.g. SIP)

Stony Brook University Scott A. Smolka

C.R. Ramakrishnan

3 researchers no close collaboration with
network engineers

University of Pennsylvania
NetDB@Penn

Boon Thau Loo 2 researchers and
8 PhD students

distributed systems,
analysis of BGP,
no wireless

Radboud University
Model-Based System Develop.,

Frits Vaandrager 4 researchers and
students

no focus on networks, no
close collaboration with
network engineers

NICTA Copyright 2011 From imagination to impact

Selected Publications

22

Title Conference Year

Sequence Numbers Do Not Guarantee Loop Freedom
—AODV Can Yield Routing Loops—

submitted to Sigcomm 2012 2012

A Process Algebra for Wireless Mesh Networks European Symposium on Programming
(ESOP 12)

2012

Automated Analysis of AODV using AODV Tools and Algorithms for the Construction and
Analysis of Systems
(TACAS 12)

2012

A Process Algebra for Wireless Mesh Networks
used for
Modelling Verifying and Analysing AODV.

Technical Report, NICTA 2012

Modelling and Analysis of AODV in UPPAAL Workshop on Rigorous Protocol Engineering
(W-Ripe 11, ICNP-workshop)

2011

Towards an Algebra of Routing Tables Relational and Algebraic Methods in Computer
Science
(RAMiCS 11)

2011

NICTA Copyright 2011 From imagination to impact

Questions, Comments ?

23

