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Motivation

» feature-orientation
— feature-oriented software development (FOSD)
— feature-oriented domain analysis (FODA)
— feature-oriented programming (FOP)

e main idea

— level-based design,
l.e., the idea that each program can be successively built up by
adding more and more levels

— feature: increment in functionality or in the software development.
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Motivation

* applications
— network protocols, data structures, software product lines ...

* support by software systems

— Ahead Tool Suite (Batory)

— Colored IDE (Kastner)

— Feature House (Apel, Lengauer)
— GenVoca (Batory)

 several case studies
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Motivation

* little understanding of the structures (mathematics) behind

* algebraic models

— Feature Algebra (Apel, Kastner, Lengauer, Moller)
* model for FeatureHouse

* based on common ideas of FO
(introductions, refinements and quantification)

e central element; feature structure forrest

— Coloring Algebra (Batory, Hofner, Kim)
« model inspired by Colored IDE
* models feature composition and interaction
» standard model use variation points

» goals
— understand underlying algebraic structures
— gain better understanding for FO



Color'ing Algebra - Example

» example (fire and flood control)

fire x flood = (fire- flood) + fire+ flood

— feature composition (combine properties)
disjoint union of features

— feature interaction (repair)
set of changes that are needed to make features work together

— full interaction (combine single features with their repairs)

— fire - flood indicates an interaction between the features fire
and flood and resolves their conflicts
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Coloring Algebra - Composition

» feature composition +
» adding a feature twice removes it (similar to a switch)

* Definition:
(F,+,0) is a commutative group that satisfies involution
ft(g+h)=(f+9)+h
ftg=9+ /]
f+0=17f
f+f=0
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Coloring Algebra - Interaction

» feature interaction -
 describes conflicts and “repairs”

» Definition:
(F,-,0) iIs a commutative group that satisfies involution

fg)

~
)
S
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Coloi'ng AIgeBra

 Definition:
a Coloring Algebra (CA) is a structure (£, +, -,0) such that
(F,+,0) is a (commutative) involutive group and
(F,-) Is a commutative, involutive semigroup.
Moreover, interaction distributes over composition

* hence, a CA s a special ring

 for a given CA, full composition is defined as
fxg= (-9 +f+g
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1/2 Representation Theorem

 feature composition
— every element has order 2 (involution)
— any finite 2-group is a power of Zo
— By the Kronecker Basis Theorem there is exactly one finite model

satisfying the axioms for the cardinalities 2, 4, 8§, ....
(no model otherwise)

* Representation Theorem
Every finite algebra satisfying the axioms for feature composition is
iIsomorphic to a model that can be obtained by using symmetric
difference on a power set of a finite set.

(proof can be achieved by a constructing a generating system)



More Models (generic)

» assume a set B of base colors. Then
(27, A, 0) satisfies the axioms of feature composition,
where A denotes symmetric difference

MAN = (M UN)—(MnN N)

* a first generic model of CA can be defined by
M-N = ()
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Towards A Full Representation Theorem

 feature composition well-known
— generic models for composition

» feature interaction not understood yet
— more models due to variability
— no generic models known

— sequel: towards a better understanding of feature interaction
vision: full representation theorem
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* from now we use the generic model for feature
composition (A)

 free use of set-theoretic concepts and operations

» every element of a finite CA is finitely generated, i.e., there
is a set B of base colors

* general: an element is base if it is isomorphic to a
singleton set (atom) of the generic model

 due to distributivity the definition of interaction can be
reduced to the interaction of base colors



Small Models (generated)

* generated models (Mace4)

#base colors/ | #interact. # CA
#colors | (up to iso.) | (up to iso.)

1/2 1 ]

2/4 y 1

3/8 557 y

4/16 y
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Models (general)

« assume a semigroup (B, o)
including a special element €, satisfying

eocada —€—aoc€

e feature interaction can be defined as
frg = A Aulaob)

acf bEg
where ¢ : B — 27 is given by t(e) = () and ¢(b) = {b}
(for b+ e)
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Representation Conjecture

. (28, A, -, 0) forms a Coloring Algebra

» Conjecture: These are all models up to isomorphism
(proof missing)

* in real applications it is useful to define 5 as power set of
even smaller units (27F)
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Feature Interaction

» operation o gives flexibility

* however, the axioms imply a clear structure for
interactions
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Feature Interaction (first consequences)

 Lemma:
a repair cannot introduce new conflicts

f-g=h = f-h=0

* Lemma:
a repair does not delete one of its components entirely

J#70 = f-9=0
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Feature Interaction (first consequences)

 Lemma:
colors cannot repair each other in “cycles”
— no non-trivial color is its own repair

frg=f= f=0
— repairs are mutually exclusive
frhi=gANg-ha=f = f=0
— the first part can be extended to finite chains
f-h1=ha A (/\hSi—l‘hSi:hSi+1) N hspt1 - hapnyo=f = f=0

1=1
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Feature Interaction (first consequences)

» absence of cycles makes the divisibility relation w.r.t.
interaction into a strict partial order (on non-empty colors)

f<g = df f,gGF—{O}/\HhEF:f-h:g

 Lemma:
neither composition nor interaction is isotone w.r.t. <
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Interaction Equivalence and ldeals

 group colors according to their behaviour under interaction
J~g &g Yhif-h=g-h

* ~ IS an equivalence relation,
equivalence classes are denoted by

Sl =ar 19| f ~ g}
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Interaction Equivalence and ldeals

* Lemma:
an element of F' — {0} is an annihilator iff it is maximal

w.r.t. <

for finite F' # {0} there is at least one maximal element in
F — {0} and hence a non-zero annihilator
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Interaction Equivalence and ldeals

 Lemma:
the set|0] of annihilators forms a subtractive ring ideal

— closed under composition

— closed under interaction
~-fe0]A f+gel0] = gel0]
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Interaction Equivalence and ldeals

 Lemma:
composition is cancellative w.r.t. ~

f+h~g+h & f~g

~ IS a congruence
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Towards a Representation Theorem

* generating systems w.r.t. interaction -

 Lemma:
let G be a minimal generating system. Then no two
distinct elements of G' can be related by ~
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Towards a Representation Theorem

e Theorem:

the elements of GG form a system of representatives for the
equivalence classes of ~

the set of equivalence classes can be made into a
quotient semiring by defining
1+ Lol =ar [f +9]
S lgl =ar If - 9]

© NICTA 2012



Towards a Representation Theorem

* Conjectures
— the interaction (repair) of two base colors is always a base color

— the number of possible CAs can be determined by the number of
semigroups satisfying the additional annihilation requirements

—the elements f € 2" form a system of representatives for
equivalence classes, where N is the set of all non-annihilating base
colors
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