Statistical Model Checking of Wireless Mesh Routing Protocols

NICTA

MACQUARIE UNIVERSITY

LINISWA

Peter Höfner and Annabelle McIver

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

Wirless Mesh Networks

- wireless mesh networks (WMNs)
 - key features: mobility, dynamic topology, wireless multihop backhaul
 - -quick and low cost deployment
- applications
 - -public safety
 - –emergency response, disaster recovery
 - -transportation
 - -smart grid

— . . .

limitations in reliability and performance

Case Study: AODV vs DYMO

- AODV and DYMO are routing protocols for WMNs
 - -ad hoc (network is not static)
 - on demand (routes are established when needed)
- Ad Hoc On-Demand Distance Vector (AODV)
 - –1997-2001 by Perkins, Beldig-Royer and Das (University of Cincinnati)
 - One of the four protocols currently standardised by the IETF MANET working group (IEEE 802.11s)
- Dynamic MANET On-demand (DYMO) Routing
 - -successor of AODV
 - -"supposed to be better"

Case Study:

- main mechanism (AODV and DYMO)
 - -if route is needed broadcast route request (RREQ)
 - if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

(no details for the purpose of this talk)

Case Study:

- main mechanism (AODV and DYMO)
 - -if route is needed broadcast route request (RREQ)
 - if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

(no details for the purpose of this talk)

Case Study:

- main mechanism (AODV and DYMO)
 - -if route is needed broadcast route request (RREQ)
 - if node has information about a destination unicast route reply (RREP)
 - -if unicast fails or link break is detected groupcast route error (RERR)

(no details for the purpose of this talk)

Model Checking WMN-protocols

- exhaustive MC techniques often limited
 - -state space explosion
 - limited to less than 10 nodes
 - dynamic topology decreases network size even more
 - quantitative reasoning
 - hardly possible
 - qualitative reasoning only indicated that there is a problem; but not how serious it is
- do we need real verification?
 - -is high evidence/confidence sufficient?

Example: Loop Free Protocol

- idea (common belief):
 - sequence numbers guarantee loop freedom if increased monotonically
- depending on the reading of the standard AODV is (not) loop free
 - 6 nodes (2 highly dynamic)
 - 4 route request
- not possible to find with MC
 - -but should we find it?
 - -are the scenarios too rare?

Statistical Model Checking

- combines ideas of model checking and simulation
- supports quantitative analysis
- overcomes size barrier

- SMC trades certainty for approximation
 - using Monte Carlo style sampling, and hypothesis testing
 - -we use SMC-Uppaal

Simulation vs SMC vs MC

- SMC allows more control on an abstract level
- for example abstracts from other network layers

Uppaal Models

- created Uppaal models for AODV and DYMO
 - -from unambiguous algebraic specification
 - –each node runs two processes
 - message queue
 - main processes, handling the received messages (takes time)
 - -time only elapse while sending messages (some randomness)

-technicality

 SMC-Uppaal only allows broadcast

Experiments

a timing analysis of AODV

a comparison between AODV and DYMO

a quantitative analysis of AODV and DYMO

pushing the limits of network size

A Timing Analysis of AODV

- AODV fails to establish some routes
 - -in 47% of all scenarios
 - from exhaustive (non-timed) MC
 - non-quantitative values (does not state how often failure happens)
 - -might depend on missing time
- replay some of the experiments
 - –all topologies up to 5 nodes (similar to former experiments)
 - -about 4000 experiments on 444 topologies
 - two requests, one topology change

A Timing Analysis of AODV

results

- -failure rate around 10%
- dependent on scenario
- -reasons
 - time has been added
 - we now have quantitative measurement

Comparison AODV vs DYMO

- protocols vary in details, e.g.
 - different handling of sequence numbers
 - –path accumulation(to decrease the number of messages sent)
- experiments show that
 - –DYMO behaves better
 - AODV behaves better
- results
 - -DYMO fails less often

Quantitative Comparison AODV vs DYMO

quantitative measurements

- -route quantity
 - nodes gain knowledge by received messages
- -route quality
 - how good/useful is the knowledge learned

results

-DYMO establishes fewer routes

• that was a surprise since it uses path accumulation

•	fewer messages sent means fewer
	opportunities to learn alternative routes

	3 nodes	4 nodes	5 nodes
AODV	5.28	8.83	13.99
DYMO	5.25	7.87	11.94
max	6	12	20

Average number of routes established

-DYMO's route quality is worse than that for AODV

assumption: big consequences in larger networks

Experiments (Intermediate) Summary

- exhaustive analysis of topologies up to 5 nodes
 - could be handled by exhaustive MC
 - -allowed quantitative analysis
 - some surprising insights in AODV and DYMO
 - although these protocols have been implemented and analysed for years
- can SMC really can overcome the size barrier
 - -last experiment

Networks of Realistic Size

- WMNs consist of 20-100 nodes
 - -some problems seem to occur only in larger networks
- analysis of topologies with 100 nodes feasible
 - -problem: topology choice
 - –node placement algorithm for realistic topologies (NPART)

#nodes	50	75	100
memory (Gb)	14	30	80
run time (m)	270	328	1777

Memory consumption

transmission range: $\vdash \vdash$

a network with 100 nodes

The Other Side of the Coin

- we can analyse realistic size networks
 - which topology to be chosen (there are too many)
 - (small network topologies can be iterated)
 - -dynamic topology
 - link failures could be modelled by probabilities
 - mobile nodes should be modelled

Conclusion

- timed models of AODV and DYMO
 - -systematic analysis across all small networks
 - –examine reasons for observed differences in performance
- examined the feasibility of SMC w.r.t. scalability
 - -first you analyses WMNs of realistic size
- what's next
 - -catalogue of topology (shape, density, ...)
 - -mobility model

THE END

Problems

- Standards (IETF RFCs) are not precise
 - -written in English
 - -ambiguous (sometimes incomplete)
 - -no formal specification
- Compliant implementations
 - have different behaviours
 - -are not compatible
 - –have serious flaws
- Traditional evaluation techniques: simulation and test-bed
 - -expensive
 - -limited to (a small number of) specific scenarios
 - -errors found after years of evaluation

Why Formal Specification?

Why Formal Specification?

