From imagination

NICTA Funding and Supporting Members and Partners

T2W Australian Government 2 Australian & o 8

223 A) NS ades () R B9
| W Nsw Investment Victoria .

TEEEEY Department of Broadband, Communications | - Unwersty =20 SRR S DRE
Australian Research Council 2 SYONEY Queensland WAy Griffith OF Qe

and the Digital Economy
¥] Government -

Analyse drahtloser Netzwerke
mittels Formaler Methoden

Peter Hofner

and the Digital Economy

Australian Research Council

NICTA
UNSW

LBl e UNIVERSITY OF NEW SOUTH WALES
YDNEY + CANBERRA + AUSTRALIA
2o vot| S £

NICTA Funding and Supporting Members and Partners

Investment

A Queensland Ll") Griffith

¥ Government UNNERSITY

NICTA Partners

THE UnversITy
OF Querssiang

Past and Present: Protocol Development.,

* "Rough Consensus and Running Code” (Trial and Error)

— start with a good idea

— build a protocol out of it (implementation)
* run tests (over several years)
* find limitations, flaws, etc.
* fix problems
— build a new version of the protocol
» start testing again
— at some point, people
agree on an RFC (standard)

[=
.

Beauvais Cathedral
(~300 years to build, at least 2 collapses)

© NICTA 2013

Future: Protocol Development

e |s there a method which is more
reliable and cost-efficient?

* |s there a way to compare different protocols?

* New methods required
(or finetune/extend existing ones)

“The original design was so boldly conceived that it was found

structurally impossible to build.”

© NICTA 2013

Problems

« Standards (IETF RFCs) are not precise

— written in English
— ambiguous (sometimes incomplete)
— no formal specification

© NICTA 2013

Why Formal Specification?

-~ o~
e

‘If your DOG
does a POO

~Please put it

.in a litter bin.

Please help keep our
open spaces clean.

© NICTA 2013

Why Formal Specification?

——

‘If your DOG
does a POO

~Please put it

_in a litter bin.

Please help keep our
|
| open spaces clean.

© NICTA 2013

Problems

« Standards (IETF RFCs) are not precise

— written in English
— ambiguous (sometimes incomplete)
— no formal specification

« Compliant implementations
— have different behaviours
— are not compatible
— have serious flaws

» Traditional evaluation techniques: simulation and test-bed
— expensive
— limited to (a small number of) specific scenarios
— error found after years of evaluation
— barely offer any guarantee for properties such as route discovery

Formal Methods for Mesh Networks

 Goal

— model, analyse, verify and increase the performance of wireless
mesh protocols

— develop suitable formal methods techniques

» Benefits
— more reliable protocols
— finding and fixing bugs
— better performance
— proving correctness
— reduce “time-to-market”

© NICTA 2013

Formal Methods for Mesh Networks

 Main Methods used so far

— process algebra
— model checking

— routing algebra

Network Process Calculus

/% update the sqn of ip by setting it to max(sqn(rt, ip).dsn) */

W l" ‘ a [rt := update(rt, (ip.dsn,valid,0,ip.0))]

/% unicast a RREP towards oip of the RREQ: next hop is sip */
‘ unicast(sip,rrep(0,dip,sqn(rt,ip),oip,.ip)) . aodv(ip,rt . rreqs,.queues)
» /*If the packet ission is ful, a RERR is d*/
H H _i [dests := {(rip,rsn)|(rip,rsn,valid, = sip,*) € rt}]
llpre := U{precs(rt,rip)|(rip,*) € dests}] M d I
[forall (rip,*) € dests : invalidate(rt,rip)] o e

groupcast(pre , rerr(dests, ip)) . aodv(ip,rt,rreqs,queues)

e !

. Checking
LSRN ¥

(textual) Specification

.. The route is only updated if the new sequence number is either

(i) higher than the destination sequence number in the route
table, or
(ii) the sequence numbers are equal, but the hop count (of the
new information) plus one, is smaller than the existing hop
count in the routing table, or
(1ii) the sequence number is unknown.

This route MAY now be used to send any queued data packets and fulfills
any outstanding route requests. ...

(RFC 3561)

© NICTA 2013

Wireless Mesh Networks

* Wireless Mesh Networks (WWMNSs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response,
disaster recovery

— transportation

— mining

— smart grid
 Limitations in reliability

and performance

© NICTA 2013

Case Study: AODV

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2013

Case Study: AODV

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2013

Case Study: AODV

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

© NICTA 2013

Ad Hoc On-Demand Distance Vector Protool

* Properties of AODV

— route correctness
— loop freedom
— route discovery

— packet delivery

© NICTA 2013

Ad Hoc On-Demand Distance Vector Protocol

* Properties of AODV

— route correctness
— loop freedom v (atleast for some interpretations)
— route discovery <

— packet delivery <

© NICTA 2013

Process Algebra

+ [(oip, rreqid) ¢ rregs | /* the RREQ is new to this node */
/* update the route to oipinrt */
[[rt := update(rt,(oip,osn,valid hops+ 1,8ip,0))]}
/* update rregs by adding (oip, rreqid) */
[rregs := rreqs U{{oip,rreqid)}}
(
[dip=ip] /* this node is the destination node */
/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]l
/* unicast a RREP towards oip of the RREQ: next hopis sip */
unicast(sip,rrep(0,dip.sqn(rt,ip).oip.ip)). AODV(ip.rt, rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn) | (rip,rsn,valid,* sip,*) € rt}]|
[pre:= U{precs(rt,rip)| (rip,*) € dests}}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcast(pre ,rerr(dests . ip)). AODV(ip.rt . rregs.queues)
+ [dip # ip] /* this node is not the destination node */
(
[dip € aD(rt) Adsn < sgn(rt,dip) Asqn(rt,dip) # 0] /* valid route to dip that is
fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r := addpre(o,,...(rt,dip), {sip}): rt := update(rt,r)]

© NICTA 2013

Process Algebra

» Desired Properties

— guaranteed broadcast
— conditional unicast
— data structure

* |Inspired by
— 7r- Calculus

— w- Calculus
— (LOTOS)

© NICTA 2013

Structure of WMNSs

e User
— Network as a “cloud”

* Collection of nodes
— connect / disconnect / send / receive
— “parallel execution” of nodes

* Nodes

— data management
« data packets, messages, |IP addresses ...
— message management (avoid blocking)

— core management
* broadcast / unicast / groupcast ...

— “parallel execution” of sequential processes

© NICTA 2013

« Syntax of sequential process expressions

SP = X(expy,...,exp,) | [p]SP | [var := exp]SP | SP+ SP |
«.SP | unicast(dest, ms).SP » SP
« = broadcast(ms) | groupcast(dests,ms) | send(ms) |

deliver(data) | receive(msg)

© NICTA 2013

Snippet of AODV

+ [(oip, rreqid) ¢ rregs | /* the RREQ is new to this node */
/* update the route to oipinrt */
[[rt := update(rt,(oip,osn,valid hops+ 1,8ip,0))]}
/* update rregs by adding (oip, rreqid) */
[rregs := rreqs U{{oip,rreqid)}}
(
[dip=ip] /* this node is the destination node */
/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]l
/* unicast a RREP towards oip of the RREQ: next hopis sip */
unicast(sip,rrep(0,dip.sqn(rt,ip).oip.ip)). AODV(ip.rt, rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn) | (rip,rsn,valid,* sip,*) € rt}]|
[pre:= U{precs(rt,rip)| (rip,*) € dests}}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcast(pre ,rerr(dests . ip)). AODV(ip.rt . rregs.queues)
+ [dip # ip] /* this node is not the destination node */
(
[dip € aD(rt) Adsn < sgn(rt,dip) Asqn(rt,dip) # 0] /* valid route to dip that is
fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r := addpre(o,,...(rt,dip), {sip}): rt := update(rt,r)]

© NICTA 2013

Case Study

 AODV Routing Protocol

 Achievements

— full concise specification of AODV (RFC 3561)
(without time)
— verified/disproved properties
* route discovery
» packet delivery
* loop freedom
— first (correct) proof

—disproved loop freedom for variants of AODV
(as implemented in at least 3 open source implementations)

—analysed more than 5000 interpretations
— found several ambiguities, mistakes, shortcomings

— found solutions for some limitations

© NICTA 2013

Ambiguities and Loop Freedom

|1. Updating the Unknown Sequence Number in Response to a Route Reply

la.

1b.

the destination sequence number (DSN) is copied from the
RREP message (Sect 6.7)

decrement of sequence numbers and loops

the routing table is not updated when the information in-
side is “fresher” (Sect. 6.1)

loop free

|2. Updating with the Unknown Sequence Number (Sect. 6.5)

2a.| no update occurs loop free, but opportunity to improve routes is missed.

2b.| overwrite any routing table entry by an update with an | decrement of sequence numbers and loops
unknown DSN

2c.| use the new entry with the old DSN loop free

|3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)

3a.| update when incoming sequence number is unknown supports Interpretations 2b or 2c above

3b.| update when ezisting sequence number is unknown decrement of sequence numbers and loops

3c.| update when no existing sequence number is known supports Interpretation 2a above

|4. (Dis)Allowing Self-Entries

4a.| allow self-entries loop free if used with appropriate invalidate

4b.| disallow self-entries; if self-entries would occur, ignore mess. | loop free

4c.| disallow self-entries; if self-entries would occur, forward loop free

|5. Storing the Own Sequence Number

ba.| store sequence number as separate value loop free

5b.| store sequence number inside routing table excludes non-trivial self-entries (4b—c)

|6. Invalidating Routing Table Entries in Response to a RERR message

ba.

6b.

6c¢.

6d.

copy DSN from RERR message (Sect. 6.11)

decrement of sequence numbers and loops
(when allowing self-entries (Interpretation 4a))

no action if the DSN in the routing table is larger than the
one in the RERR mess. (Sect. 6.1 & 6.11)

loops (when allowing self-entries)

take the maximum of the DSN of the routing table and the
one from the RERR message

loops (when allowing self-entries)

take the maximum of the increased DSN of the routing
table and the one from the RERR mess.

loop free

Table 2: Analysis of Different Interpretations of the RFC 3561 (AODYV)

Ambiguities and Loop Freedom

 proof modularity (different invariants)

— 5068 interpretations (240 are loop free and “correct”)
« 432 are “reasonable” (112 are loop free and “correct”)

— even some interpretations we never thought about

» simulation and test-bed experiment would be separate for
each scenario

© NICTA 2013

Model Checking

Pandidl?
frepyid|

fecVMsg=aus 4 -

id!=0
initnode()

recvmsg.sr0d==id

jﬁ{rwmsg.dsw]dnmg sndd,
) rg@mg_sndd]d?amsj sndd,
notifyAlIRErr kDjd]recvmsg.dstid}=",

initall? KDjd]recvmsg.sndde!

notifyRErr (

—

8l

rreq[B] req[B]

——— 1
msq srod] i) 88 recmsgtE

isconnectes rfidJrecy
o tfic[recvmsg.S700
replrtidre)
sg.dstd].reomw .
:% :gmmsg.sndd}d?msq sndd
kD[d][recvrﬂSO»dsﬂ;»
kDfd]recvmsg-STo
3 CA
recvmsgs 3 e
aux:mCVﬂSQ

CA

rreq[C]

CA

rreq[B]

rreq[C]"™"

88888

7 ’ rre p[A][B] BA

rrep[A][B] **

10

88800880 ee-

© NICTA 2013

Model Checking

* Model checking routing algorithms
— executable models

 Complementary to process algebra
— find bugs and typos in model of process algebra
— check properties of specification applied to particular topology
— easy adaption in case of change
— automatic verification

* Achievements
— implemented process algebra specification of AODV
— found/replayed shortcomings

© NICTA 2013

UPPAAL Model Checker

 \Well established model checker
 Uses networks of timed automata
* Has been used for protocol verification

» Synchronisation mechanisms
— binary handshake synchronisation (unicast communication)
— broadcast synchronisation (broadcast communication)

« Common data structures

— arrays, structs, ...
— C-like programming language

* Provides mechanisms for time and probability

Experiments Set-Up

* Exhaustive search
— various properties
— all different topologies up to 5 nodes (one topology change)
— 2 route discovery processes
— 17400 scenarios

— variants of AODV (4 models)

© NICTA 2013

Results: Route Discovery (2004)

* Route discovery fails in a linear 3-node topology

En En

aodv

1‘ aodv aodv

_ rreq[a] |rreq[a] -
rreq[s] | |

aodv

rrep[d][a]

.
<=
aodv ’
|< rreq[a] Irreq@

© NICTA 2013

Results: Route Discovery

» exhaustive search
(potential failure in route discovery)

— static topology: 47.3%
— dynamic topology (add link): 42.5%
— dynamic topology (remove link): 73.7%

 AODV repeats route request
» Other solution: forward route reply

© NICTA 2013

Routing Algebra

A
B
C
D
E

A B C D

o QT ~

“routes” to B

« standard matrix operations

 further abstraction possible
(semirings, test, domain, modules ...)

© NICTA 2013

routing table of A

* Routing table entries (no sequence number so far)
(nhip, hops)

» Choice: (A4,5) + (B,2) = (B, 2)
» Multiplication: (A,5) - (B,2) = (A, 7)

— destination and source must coincide

e [dea: back to Backhouse, Carré, Griffin, Sobrinho

© NICTA 2013

e
(/)
©
@)

d
(qV]
@)
|

@)

D

e
(/p)
)
)
O
()
| -
()

e
D)
@)
| -

<C
o

topology

routing table

sender

updated routing table

© NICTA 2013

Sent Messages

* sending messages
a+p-b-q-(1+c)
by distributivity
a + p-b-qgq+ p-b-q-c
snapshot, 1-hop connection learnt, content sent

* broadcast, unicast, groupcast are the same
(modelled by different topologies)

» Kleene star models flooding the network
(modal operators terminate flooding)

© NICTA 2013

Conclusion/Future Work

e So far concentrated on AODV

— well known
— |ETF standard

« Extend formal methods to other protocols

— OSLR, DYMO, ...
— CAN and other communication protocols

— Open Flow
* Add further necessary concepts
—time
— probability (links, measurements)
— define quality of protocols

© NICTA 2013

TP
ll q

. ‘arw

17

(

\o
%

i"«
!

{

