
© NICTA 2013

From imagination to impact



© NICTA 2013

Peter Höfner

Analyse drahtloser Netzwerke 
mittels Formaler Methoden



© NICTA 2013

Past and Present: Protocol Development

• “Rough Consensus and Running Code” (Trial and Error)
– start with a good idea 
– build a protocol out of it (implementation)

• run tests (over several years)
• find limitations, flaws, etc.
• fix problems 

– build a new version of the protocol
• start testing again

– at some point, people 
agree on an RFC (standard)

Beauvais Cathedral
(~300 years to build, at least 2 collapses)



© NICTA 2013

Future: Protocol Development

• Is there a method which is more 
reliable and cost-efficient?

• Is there a way to compare different protocols?

• New methods required
(or finetune/extend existing ones)

“The original design was so boldly conceived that it was found 
structurally impossible to build.”



© NICTA 2013

Problems

• Standards (IETF RFCs) are not precise
– written in English
– ambiguous (sometimes incomplete)
– no formal specification



© NICTA 2013

Why Formal Specification?



© NICTA 2013

Why Formal Specification?



© NICTA 2013

Problems

• Standards (IETF RFCs) are not precise
– written in English
– ambiguous (sometimes incomplete)
– no formal specification

• Compliant implementations
– have different behaviours
– are not compatible
– have serious flaws

• Traditional evaluation techniques: simulation and test-bed
– expensive
– limited to (a small number of) specific scenarios
– error found after years of evaluation
– barely offer any guarantee for properties such as route discovery



© NICTA 2013

Formal Methods for Mesh Networks

• Goal
– model, analyse, verify and increase the performance of wireless 

mesh protocols
– develop suitable formal methods techniques

• Benefits
– more reliable protocols
– finding and fixing bugs
– better performance
– proving correctness
– reduce “time-to-market”



© NICTA 2013

Formal Methods for Mesh Networks

• Main Methods used so far
– process algebra
– model checking
– routing algebra



© NICTA 2013

Wireless Mesh Networks

• Wireless Mesh Networks (WMNs)
– key features: mobility, dynamic topology, wireless multihop backhaul
– quick and low cost deployment

• Applications
– public safety
– emergency response,

disaster recovery
– transportation
– mining
– smart grid
– ...

• Limitations in reliability 
and performance



© NICTA 2013

Case Study: AODV

• Main Mechanism
– if route is needed 

      BROADCAST RREQ
– if node has information about a destination

      UNICAST RREP
– if unicast fails or link break is detected

      GROUPCAST RERR

d

b

s

a



© NICTA 2013

Case Study: AODV

• Main Mechanism
– if route is needed 

      BROADCAST RREQ
– if node has information about a destination

      UNICAST RREP
– if unicast fails or link break is detected

      GROUPCAST RERR

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q



© NICTA 2013

Case Study: AODV

• Main Mechanism
– if route is needed 

      BROADCAST RREQ
– if node has information about a destination

      UNICAST RREP
– if unicast fails or link break is detected

      GROUPCAST RERR

d

b

s

a
R
R
E
PR

R
E
P



© NICTA 2013

Ad Hoc On-Demand Distance Vector Protocol

• Properties of AODV

– route correctness

– loop freedom

– route discovery

– packet delivery



© NICTA 2013

Ad Hoc On-Demand Distance Vector Protocol

• Properties of AODV

– route correctness

– loop freedom

– route discovery

– packet delivery

(at least for some interpretations)



© NICTA 2013

Process Algebra



© NICTA 2013

Process Algebra

• Desired Properties
– guaranteed broadcast
– conditional unicast
– data structure

• Inspired by 
–    - Calculus
–    - Calculus
– (LOTOS)

�
�



© NICTA 2013

Structure of WMNs


• User 
– Network as a “cloud”

• Collection of nodes
– connect / disconnect / send / receive
– “parallel execution” of nodes

• Nodes
– data management

• data packets, messages, IP addresses ...
– message management (avoid blocking)
– core management

• broadcast / unicast / groupcast ...
– “parallel execution” of sequential processes



© NICTA 2013

Nodes (Sequential Process Expressions)

• Syntax of sequential process expressions

SP ::= X(exp1, . . . , expn) | [⇥]SP | [[var := exp]]SP | SP + SP |
�.SP | unicast(dest,ms).SP � SP

� ::= broadcast(ms) | groupcast(dests,ms) | send(ms) |
deliver(data) | receive(msg)



© NICTA 2013

Snippet of AODV



© NICTA 2013

Case Study

• AODV Routing Protocol
• Achievements

– full concise specification of AODV (RFC 3561)
(without time)

– verified/disproved properties
• route discovery
• packet delivery
• loop freedom

– first (correct) proof
– disproved loop freedom for variants of AODV

(as implemented in at least 3 open source implementations)
– analysed more than 5000 interpretations

– found several ambiguities, mistakes, shortcomings
– found solutions for some limitations



© NICTA 2013

Ambiguities and Loop Freedom

1. Updating the Unknown Sequence Number in Response to a Route Reply
1a. the destination sequence number (DSN) is copied from the

RREP message (Sect 6.7)
decrement of sequence numbers and loops

1b. the routing table is not updated when the information in-
side is “fresher” (Sect. 6.1)

loop free

2. Updating with the Unknown Sequence Number (Sect. 6.5)
2a. no update occurs loop free, but opportunity to improve routes is missed.
2b. overwrite any routing table entry by an update with an

unknown DSN
decrement of sequence numbers and loops

2c. use the new entry with the old DSN loop free

3. More Inconclusive Evidence on Dealing with the Unknown Sequence Number (Sect. 6.2)
3a. update when incoming sequence number is unknown supports Interpretations 2b or 2c above
3b. update when existing sequence number is unknown decrement of sequence numbers and loops
3c. update when no existing sequence number is known supports Interpretation 2a above

4. (Dis)Allowing Self-Entries
4a. allow self-entries loop free if used with appropriate invalidate
4b. disallow self-entries; if self-entries would occur, ignore mess. loop free
4c. disallow self-entries; if self-entries would occur, forward loop free

5. Storing the Own Sequence Number
5a. store sequence number as separate value loop free
5b. store sequence number inside routing table excludes non-trivial self-entries (4b–c)

6. Invalidating Routing Table Entries in Response to a RERR message
6a. copy DSN from RERR message (Sect. 6.11) decrement of sequence numbers and loops

(when allowing self-entries (Interpretation 4a))
6b. no action if the DSN in the routing table is larger than the

one in the RERR mess. (Sect. 6.1 & 6.11)
loops (when allowing self-entries)

6c. take the maximum of the DSN of the routing table and the
one from the RERR message

loops (when allowing self-entries)

6d. take the maximum of the increased DSN of the routing
table and the one from the RERR mess.

loop free

Table 2: Analysis of Di↵erent Interpretations of the RFC 3561 (AODV)

tion 6.7 above, but leads to routing loops in the same
way. The remaining possibility is that Part (iii) refers
to the sequence number in the routing table, but only
deals with the case that that number is truly unknown,
i.e. has the value 0 (and the sequence-number-status
flag has the value unk). This reading is consistent with
interpretation (a) above. However, it implies that the
routing table may not be updated if the existing entry
has a known sequence number whereas the route dis-
tilled from the incoming information does not. This is
in contradiction to the quote above from Section 6.5.10

As we have seen in the example of Section 3, self-
entries can yield problems. There are only two possibil-
ities for any specification of AODV—either allow or dis-
allow them. The RFC does mention self-entries explic-
itly (see above). If self-entries are allowed this might, in
combination with other assumptions, yield loops. There
are two possibilities to disallow self-entries: (a) if a node
receives a route reply and would create a self-entry, it
silently ignores the message. This interpretation has
the disadvantage that replies are lost. (b) The alter-
native is that the node who would create a self-entry
does forward the message without updating its routing
table. Both variants by themselves do not yield weird
or unwanted behaviour.

10An IETF Internet draft—published after the RFC—
rephrases the above statement as follows: “the sequence num-

ber in the routing table is unknown.” [17, Sect. 6.2].

As discussed before, Kernel-AODV and AODV-UIUC
store the node’s own sequence number in an optimal self-
route. By this, non-trivial self-entries are ruled out and
loops are avoided.

The last ambiguity we want to discuss is the invalida-
tion of routing table entries in response to a RERR mes-
sage. The RFC states that the sequence number should
be“copied from the incoming RERR ”[18, Sect. 6.11].
In particular, this part of the RFC prescribes the re-
placement of an existing destination sequence number
in a routing table entry with one that may be strictly
smaller, which contradicts Sect. 6.1 of the RFC. To
make the process of invalidation consistent with Sect. 6.1
of the RFC, one could use two possible variants instead.
The first, strictly following Sect. 6.1, aborts the invali-
dation attempt if the destination sequence number pro-
vided by the incoming RERR message is smaller than
the one already in the routing table. The second still
invalidates in these circumstances, but prevents a de-
crease in the destination sequence number by taking
the maximum of the stored and the incoming number.
It can be shown that each of these variants can yield
loops, when used in conjunction with self-entries. There
is only one reasonable solution to avoid routing loops in
these circumstances. Instead of copying or ignoring the
sequence number from the incoming RERR message,
one can use the maximum of the increased destination
sequence number of the routing table and the one from

8



© NICTA 2013

Ambiguities and Loop Freedom

• proof modularity (different invariants)
–  5068 interpretations (240 are loop free and “correct”)

• 432 are “reasonable” (112 are loop free and “correct”)
– even some interpretations we never thought about

• simulation and test-bed experiment would be separate for 
each scenario



© NICTA 2013

Model Checking




© NICTA 2013

Model Checking


• Model checking routing algorithms
– executable models

• Complementary to process algebra
– find bugs and typos in model of process algebra
– check properties of specification applied to particular topology
– easy adaption in case of change 
– automatic verification

• Achievements
– implemented process algebra specification of AODV
– found/replayed shortcomings



© NICTA 2013

UPPAAL Model Checker

• Well established model checker 
• Uses networks of timed automata
• Has been used for protocol verification

• Synchronisation mechanisms
– binary handshake synchronisation (unicast communication)
– broadcast synchronisation (broadcast communication)

• Common data structures
– arrays, structs, ... 
– C-like programming language 

• Provides mechanisms for time and probability



© NICTA 2013

Experiments Set-Up

• Exhaustive search
– various properties
– all different topologies up to 5 nodes (one topology change)
– 2 route discovery processes
– 17400 scenarios
– variants of AODV (4 models)



© NICTA 2013

Results: Route Discovery (2004)

• Route discovery fails in a linear 3-node topologytester s a d

− aodv

0

1

2

3

4

5

6

7

8

9

10

11

12

13

aodv aodv

− aodv aodv

− aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv

aodv aodv

− aodv aodv aodv

newpkt[a][d]

newpkt[s][d]

rreq[a]rreq[a]

rreq[s]

rrep[d][a]

rreq[a]rreq[a]

rrep[d][a]

pkt[a][d]

rreq[s]



© NICTA 2013

Results: Route Discovery

• exhaustive search 
(potential failure in route discovery)

– static topology: 47.3%
– dynamic topology (add link): 42.5%
– dynamic topology (remove link): 73.7%

• AODV repeats route request
• Other solution: forward route reply 



© NICTA 2013

Routing Algebra



© NICTA 2013

Routing Algebra - Elements, Operators

• Matrices over routing table entries

• standard matrix operations
• further abstraction possible

(semirings, test, domain, modules ...)

�

⇧⇧⇧⇧⇧⇤

A B C D . . .

A ( , 0) (B, 1) (B, 2) ( ,�)
B (A, 1) ( , 0) (C, 1) ( ,�) . . .
C ( ,�) (B, 1) ( , 0) ( ,�)
D ( ,�) ( ,�) ( ,�) ( , 0)
...

...
. . .

⇥

⌃⌃⌃⌃⌃⌅

“routes” to B

routing table of A



© NICTA 2013

Routing Algebra - Elements, Operators

• Routing table entries (no sequence number so far)

• Choice:
• Multiplication: 

– destination and source must coincide

• idea: back to Backhouse, Carré, Griffin, Sobrinho

(nhip , hops)

(A, 5) + (B, 2) = (B, 2)
(A, 5) · (B, 2) = (A, 7)



© NICTA 2013

Example

• A route request is broadcast

�

⇧⇧⇤

( , 0) (B, 1) (C, 1) ( ,�)
(A, 1) ( , 0) ( ,�) (D, 1)
(A, 1) ( ,�) ( , 0) (D, 1)
( ,�) (B, 1) (C, 1) ( , 0)

⇥

⌃⌃⌅ •

�

⇧⇧⇤

( , 0) ( ,�) ( ,�) ( ,�)
( ,�) ( ,�) ( ,�) ( ,�)
( ,�) ( ,�) ( ,�) ( ,�)
( ,�) ( ,�) ( ,�) ( ,�)

⇥

⌃⌃⌅ •

�

⇧⇧⇤

( , 0) (B, 1) ( ,�) ( ,�)
(D,3) ( , 0) ( ,�) ( ,�)
(A, 1) ( ,�) ( , 0) (D, 1)
(C, 2) ( ,�) (C, 1) ( , 0)

⇥

⌃⌃⌅

topology sender routing table

=

�

⇧⇧⇤

( , 0) (B, 1) ( ,�) ( ,�)
(A,1) ( , 0) ( ,�) ( ,�)
(A, 1) ( ,�) ( , 0) (D, 1)
(C, 2) ( ,�) (C, 1) ( , 0)

⇥

⌃⌃⌅

updated routing table

A

B

D

C



© NICTA 2013

Sent Messages

• sending messages

• by distributivity

snapshot, 1-hop connection learnt, content sent
• broadcast, unicast, groupcast are the same 

(modelled by different topologies)
• Kleene star models flooding the network

(modal operators terminate flooding)

a + p · b · q · (1 + c)

a + p · b · q + p · b · q · c



© NICTA 2013

Conclusion/Future Work

• So far concentrated on AODV
– well known
– IETF standard

• Extend formal methods to other protocols
– OSLR, DYMO, ... 
– CAN and other communication protocols
– Open Flow

• Add further necessary concepts
– time
– probability (links, measurements)
– define quality of protocols



© NICTA 2013

Questions



© NICTA 2013

From imagination to impact


