Topology-Based Mobility Models for Wireless Networks

Ansgar Fehnker, <u>Peter Höfner</u>, Maryam Kamali, and Vinay Mehta

Australian Government

Department of Broadband, Communications and the Digital Economy

Australian Research Council

SYDNEY

Queensland

Sovernment

Griffith

- Protocols (Communication, Mesh, MANET, SDN,...) are designed to deal with dynamic topologies (mobile nodes)
- Protocols have to deal with nodes that join, disappear, or change neighbours
- Mobility is often source of problems (bugs, inefficiency,...)
- Analysis on formal models often

 consider static topologies only, or
 very few (arbitrary) topology changes, or
 - -ignore topology (non-deterministic choices)

Aim

- Creation of mobility models
 - -to be used for Model Checking
 - -independent of the protocol (re-use)
 - -simple (not adding too much complexity)

Mobility Models

- Synthetic Models (non-realistic)
 - -generate traces from mathematical model of motion
 - -usually based on a physical model of a moving node
 - -more than a dozen different models
 - random waypoint models
 - random walk models
 - Manhattan models
 - gravity mobility models

•

Mobility Models

- Random Waypoint Model (RWP)
 - 1. select the next waypoint uniformly from abounded
 - 2. choose a speed with certain probability
 - -choose a waiting time with a certain probability
 - -may include additional probabilistic choices

Mobility Models

- Random Walk Models (RW)
 - 1. select a direction uniformly
 - 2. choose a speed, and distance with certain probability
 - 3. plus some rules what to do if the a boundary is hit
 - -choose a waiting time with a certain probability
 - -may include additional probabilistic choices.

Topology-Based Mobility

Idea

- -model mobility as changes of connectivity matrix
 - point of view of nodes
- -simplicity/compatibility
 - no speed, no time
 - compatible to all protocol models
- -transitions will be probabilistic

Topology-Based Mobility (Example) **NICTA** Moving node along a grid

Topology-Based Mobility (Example) **NICTA** Moving node along a grid

Moving node along a grid (a close look)

• Moving node along a grid (a close look)

• Moving node along a grid (a close look)

• Moving node along a grid (a close look)

Moving node along a grid (a close look)

Moving node along a grid (a close look)

NICTA Copyright 2013

From imagination to impact

Topology-Based Mobility

- s neighbours
- The mobile node is characterised by its neighbours (nodes within transmission range)
- Space can be partitioned into regions with the same topology
- Mobility is expressed as probability of moving from one region/topology to the next

Moving node along a grid (a close look)

Moving node along a grid (a close look)

What are the probabilities?

NICTA Copyright 2013

1. Mobility simulation

using a "traditional" simulator to estimate the transition probabilities

2. Probabilistic mobility model

- -instantiate a probabilistic automaton model of mobility with obtained probabilities
- Combination with (probabilistic) model of a protocol
 - -use a (statistical) model checker to analyse the impact of mobility on performance of the protocol.

Mobility Simulation

Simulator

-computes a series of waypoints; each successive pair defines a line segment

- RWP: Next waypoint selected uniformly from area
- RW: Next waypoint is old plus value from 2-D normal distribution
- -computes intersection of line with transmission ranges
- -each intersection corresponds to a transition
- –count transitions
- -estimate probabilities
- -implementation
 - C++
 - 100.000 waypoints

Simulation Results I

- Random Walk Model
 - -transition probabilities are independent of grid size
 - -number of transitions per path grows linear with range
 - -same transition probabilities of congruent regions
 - -probabilities depend only locally on the set of nodes within range

Simulation Results II

Random Walk Model

NICTA

1.0

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0.0

25000

20000

15000

10000

5000

0

Freq

P- 0.5

- Random Walk Model
 - -transition probabilities are independent of grid size
 - -number of transitions per path grows linear with range
 - -same transition probabilities of congruent regions
 - -probabilities depend only locally on the set of nodes within range
- Random Waypoint Model
 - -none of the above holds
 - -(still we determined probabilities)

Model Checking --- Uppaal Model

- (statistical) Uppaal
 - -topology is modelled as a connectivity matrix
 - -changes in topology are changes to the matrix
 - probabilities are obtained from a lookup table (obtained from simulator, as discussed)
 - -(properties checked with 0.95 confidence)

Case Studies

- Combination of mobility model with existing protocol models
 - -AODV
 - an on-demand routing protocol
 - a routing request is flooding the network, a routing reply to initiator will report the route

-LMAC

- time synchronisation (time division) protocol
- all neighbouring nodes and their neighbours need to select different slot in a time frame; if not, collisions occur

 AODV (time needed for successful route establishment)

Introducing mobility makes it possible to establish routes faster/slower

Case Study I

LMAC

(probability of collisions for a 4 by 4 network within 2000 time units after fresh start)

- mobility decreases probability that no or few collisions will occur
- mobility decreases probability that perpetual collisions will occur
- mobility increases probability that all nodes will choose time slot, from 80-90% to 95-100% (not in picture)

Conclusion

- Topology-Based model for mobility –generic
 - -allows adaptation on mobility model
- Demonstrated how this model can be instantiated with probabilities obtained from a simulator
 - –random way point and random walk model in a grid
 –other models could be used as well
- Demonstrated how the instantiated mobility model can be combined with existing protocol models

-AODV and LMAC are only examples

- Future work:
 - -other protocols

-increase efficiency (make more use of symmetries)