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Motivation


• towards more automation in program verification 
– functional correctness  
– use algebra to improve proof automatisation 
– using pre/post conditions (Hoare-style reasoning) 

!

• at the moment 
– look at ‘simple’ and well-known while programs 

(invariant proofs) 
– find ‘correct’/appropriate algebra 
– limited to algorithms where data structure  

can be modelled by algebra
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Unweighted Graphs

• edges are relation between nodes 
• relation algebra prime candidate 

– elements are sets of relations/Boolean matrices 
– offers operations for  

• sequential composition  
• set operations (union, intersection, complement) 
• transposition  
• finite iteration (Kleene star) 

• well known, used for program verification 

A

B

C

0

@
0 1 0
1 0 1
1 0 0

1

A
{(A,B), (B,A),

(B,C), (C,A)}



© NICTA 2014 

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v );
C, v := C [ C ;p;pT ;R;C , v [ p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure
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Warming Up: Reflexive Transitive Closure

• Proof: simple exercise? 
•   
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintainance
1s
-

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v ) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v ) Inv1(v [ p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v) ) C = R⇤

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I
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Warming Up: Reflexive Transitive Closure

• Proof: simple exercise? 
•   
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintenance
1s
0s 

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v ) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v ) Inv1(v [ p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v) ) C = R⇤

+ 3 properties about Kleene star

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I
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More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ ST = v ;vT [ I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point( v \ (RT \ I ); v );
S, v := S [ v ;pT, v [ p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ ST = L}
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More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ ST = v ;vT [ I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point( v \ (RT \ I ); v );
S, v := S [ v ;pT, v [ p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ ST = L}

Proof is fully automatic  
(incl. termination)
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More Examples

• Matching Algorithm 
• Node Colouring 
• … 
!

!

• Relation algebra seems to be well suited for most 
(all?) graph problems
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Subtree

• natural order: ✓

A

B

CA

B

C

{ (B,A),
(B,C), (C,A)} ✓ {(A,B), (B,A),

(B,C), (C,A)}

0

@
0 0 0
1 0 1
1 0 0

1

A ✓

0

@
0 1 0
1 0 1
1 0 0

1

A
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Weighted Graphs
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Algebras for Weighted Graphs 

• Matrices over Min-Plus-Algebra (and variants) 
• algorithms such as Dijkstra and Floyd-Warshall 
!

• Routing Algebra 
• developed for Mesh Protocols 

(see IFIP 2.1 Reisensburg) 
!

• Other algebras: Max-Plus, Max-Min, Min-Max, …
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Min-Plus Algebra

• Choice: Take path with smaller weight 
• Path Composition: Addition 
• Kleene star:  
!

•                                   forms a Kleene algebra 
• no intersection, no complement 
• no transposition 
• natural order defined as usual 
!
!

• Theorem: 
Matrices over Kleene algebras are Kleene algebras 

• natural order is defined point-wise 

n⇤ = min
i�0

(
iX

j=0

n) = min(0, n, 2n, . . . ) = 0

(IN[{1},min,+,1, 0,⇤ )

m v n , min(m,n) = n , n  m
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Problems

• Is this algebra as suitable and flexible as relation algebra?
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Reflexive-Transitive Closure

• all-shortest paths
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0
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2 7 0

1
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Reflexive-Transitive Closure

• all-shortest paths 
!

!

!

!

!

• How to calculate the star 
• classical matrix decomposition (cf. Kozen) 
• algorithm from above ?
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{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v );
C, v := C [ C ;p;pT ;R;C , v [ p

od

return C
{C = R⇤}

Reflexive Transitive Closure
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!

!

• How to calculate the star 
• classical matrix decomposition (cf. Kozen) 
• algorithm from above 

• problem: what is a point
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Reflexive-Transitive Closure

• all-shortest paths 
!

!

!

!

!

• How to calculate the star 
• classical matrix decomposition (cf. Kozen) 
• algorithm from above 

• points can be characterised via atomic test elements 
(every Kleene algebra can be equipped with a test algebra 
— no details in this talk)
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input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is minimal spanning tree in U ·G · U}
let e edge with minimal weight from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is minimal spanning tree}

Example: Prim’s algorithm
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input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is spanning tree in U ·G · U}
let e edge from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is spanning tree}

Example: algorithm to compute Spanning Tree
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Spanning Tree

• T is spanning tree of G 
– T is tree (injective, reaches everything) 
– T is subtree of G
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Subtree

• natural order: 
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`

• Relation algebra (set model): 
• “pseudo” multigraphs (Matrices with sets as entries) 

–   
 forms Kleene algebra, where         is point-wise operation 
!
!
!

–  
 can be turned into a Relation algebra 

!

• why not real multi graphs?  
no natural order

(}(V ⇥ V ),[,\, . . . )

(}(V ⇥ IN⇥V ),[,+
join

, ;, V ⇥ {0}⇥ V,⇤ )
+

join

(u,m, v) +

join

(w, n, x) =

⇢
(u,m+ n, x) if v = w

undefined otherwise

(}(V ⇥ ZZ ⇥V ),[,+
join

, ;, V ⇥ {0}⇥ V,⇤ )

(u,m, v)> = (v,�m,u)
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Back to Spanning tree

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is spanning tree in U ·G · U}
let e edge from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is spanning tree}
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Back to Spanning tree

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T  U ·G · U ^ range(v · T+) = U}
let e edge with e  U ·G · ¬U , . . . ;
U, T := U + source(e) , T + e

od

return T
{T is spanning tree}
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Spanning tree


• Correctness can be shown similar to the above examples 
– in all three models 
– straight-forward (full automatic if isotonicity laws are added) 
– source and range can be defined via algebraic operations 

(tests, domain, codomain) 
!

• But: How to characterise minimality?
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Problem: Minimality

• Easy if additional weight-function on top 
– model dependent, requires specific axioms for functions… 
– could be performed on relations only 
– but seems not to be the best way 
!

• can we integrate minimality into algebra? 
– how to access the weights? 
– in  

one can at least compare edges
(}(V ⇥ IN⇥V ),[,+

join

, ;, V ⇥ {0}⇥ V,⇤ )

e1 preferred over e2 , > · e1 ·>  > · e2 ·>
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Summary

• aim at more automation for program verification 
– “black-box” approach 
– any ATP/ITP system should be fine 

• focus on graph algorithms 
• suitable algebras 

– unweighted graphs: relation algebra 
– shortest paths: min-plus algebra 

(building graphs) 
– spanning trees: ??? 

(subtrees) 
– max-plus algebra, max-min algebra … 
!

• weighted graphs need several algebraic models 
(hopefully all based on same algebra)
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From imagination to impact


