-

.

i

€.? ngg:',"'ﬂu

SO T
-'. .\u\'vn 'o"

Australian Government

Department of Broadband, Communications
and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

From imagination

= fmee NSW | 8

oo University 1P UOVIRBTY OF AW SOUTY st o | INVestment Victoria R
&) Queensland \fy; Griffith L
P Government B2 innversTy e e yrrr

& SVDNEY




Algebras for (automatic) NICTA

Verification of Graph Algorithms

Peter Hofner

and the Digital Economy

Australian Research Council

UNSW

THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY + CANBERRA + AUSTRALIA

NICTA Funding and Supporting Members and Partners

é mra"!"m UNS % Trade & ﬁ;;

(o2 Z 1 Umdty THE LA TRTY OF N0 90000 eats Investment

5

MELBOURNE

e . . THE UnversiTy
S SYDNEY B Covernment Wiy Griffith Or Quetraiane

NICTA Partners



Motivation

» towards more automation in program verification
— functional correctness
— use algebra to improve proof automatisation
— using pre/post conditions (Hoare-style reasoning)

e at the moment

— look at ‘simple’” and well-known while programs
(invariant proofs)

— find ‘correct’/appropriate algebra

— limited to algorithms where data structure
can be modelled by algebra

© NICTA 2014




Unweighted Graphs

O 1 O {A7B)7 B7A)7
101 B,C),(C,A)}
1 0 0

* edges are relation between nodes

* relation algebra prime candidate
— elements are sets of relations/Boolean matrices

— offers operations for
« sequential composition
 set operations (union, intersection, complement)

* transposition
« finite iteration (Kleene star)

» well known, used for program verification

© NICTA 2014




v‘—“‘

Warming Up: Reflexive-Transitive Closure

input R
C,v:=10:;

while v # R:L do
let p = point(R;LN 7);
C,o:=CUC;p;p":R;C , vUp

od
return C

© NICTA 2014




Warming Up: Reflexive-Transitive Closure

input R
C,v:=10:;

while v # R;L do
let p = point(R;L N v)
C,v:=C0CUC; '

deterministic function returning
a point from R, which was not considered
before

od

return C

© NICTA 2014




Warming Up: Reflexive-Transitive Closure

input R
C,v:=10:;

while v # R;L do
let p = point(R;L N v)
C,v:=C0CUC; '

deterministic function returning
a point from R, which was not considered
before

od
return C

¢ =R}

© NICTA 2014




Warming Up: Reflexive-Transitive Closure

{True}
input R
C.v:=10;

while v # R;L do
let p = point(R;L N v)
C,v:=C0CUC; '

deterministic function returning
a point from R, which was not considered
before

od
return C

¢ =R}

© NICTA 2014




Warming Up: Reflexive-Transitive Closure

{True}
input R
C.v:=10;
{C=(RNv)* Nv=w;L}
while v # R;L do
let p = point(R;L N v)
C,v:=CUC; '

deterministic function returning
a point from R, which was not considered
before

od
return C

¢ =R}

© NICTA 2014




Warming Up: Reflexive Transitive Closure v Qe
| NICTA

Invg(R,C,v) & C=(RNwv)"
Invi(v) & v=w;L

* Proof: simple exercise?

© NICTA 2014




—— T —

Oe

Warming Up: Reflexive Transitive Closure
- NICTA

Invg(R,Cyv) & C=(RNv)"
Invi(v) & v=w;L

* Proof: simple exercise?
e pispoint < p;L=p AL:p=LAp;p" CI

© NICTA 2014




Warming Up: Reflexive Transitive Closure Qe
NICTA

Invg(R,C,v) & C=(RNwv)"
Invi(v) & v=w;L

* Proof: simple exercise?
e pispoint < p;L=p AL:p=LAp;p" CI

* Proof Automatisation
(Prover9 or any other automated Theorem Prover)

Establishment
Invg(R,1,0) A Inv,(O) Os

Post-Condition
v=R;LA Invg(R,C,v) AlInvi(v) = C=R" Os
Maintainance
Invi(v) Apispoint ApC R;LNv = Invi(vUp) 1s
Invg(R,C,v)Ap is pointAp C R; LNT = Invg(R,CUC;p;p';R;C,vUp) |-

© NICTA 2014




Oe

NICTA

Invg(R,Cyv) & C=(RNv)"
Invi(v) & v=w;L

Warming Up: Reflexive Transitive Closure.

* Proof: simple exercise?
e pispoint < p;L=p AL:p=LAp;p" CI

* Proof Automatisation
(Prover9 or any other automated Theorem Prover)

Establishment

Invg(R,1,0) A Invy(O) Os
Post-Condition

v=R;LA Invg(R,C,v) AlInvi(v) = C=R" Os
Maintenance

Invi(v) Apispoint ApC R;LNv = Invi(vUp) 1s

Invo(R,C,v)Ap is pointAp C R; LNT = Inwe(R,CUC;p;p'; R;C,vUp) |0s

+ 3 properties about Kleene star




T —

More Examples

input R

S,v:=10;
while v # L do

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od

return S

© NICTA 2014




e —

More Examples

* Topological Sorting
input R

S,v:=10;
while v # L do

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od

return S

© NICTA 2014




e —

More Examples

* Topological Sorting

input R
{R;R* =0}
S,v:=10;

while v # L do

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od

return S

© NICTA 2014




. I I =

More Examples

* Topological Sorting

input R
{R;R* =0}
S,v:=10;

while v # L do

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od
return S

[RCSANICSAS,SCSASNSTCIASUST =L}

© NICTA 2014




More Examples

* Topological Sorting

input R
{R;R* =0}
S,v:=10;

while v # L do
{ICSANS;SCSASNSTCSASUST =vwT UIA

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od
return S

[RCSANICSAS,SCSASNSTCIASUST =L}

© NICTA 2014




More Examples

* Topological Sorting

input R
{R;R* =0}
S,v:=10;

while v # L do
{ICSANS;SCSASNSTCSASUST =vwT UIA
v;iLCv A S wCouv ARNvw' CS A RyvCol

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od
return S

[RCSANICSAS,SCSASNSTCIASUST =L}

© NICTA 2014




More Examples

* Topological Sorting

input R Proof is fully automatic

gRgﬁj I:OO°} (incl. termination)

while v # L do
{ICSANS;SCSASNSTCSASUST =vwT UIA
v;iLCv A S wCouv ARNvw' CS A RyvCol

let p = point(v N (RTN1);7);
S, v:=SUv;p,oUp

od
return S

[RCSANICSAS,SCSASNSTCIASUST =L}

© NICTA 2014




More Examples

* Matching Algorithm
* Node Colouring

* Relation algebra seems to be well suited for most
(all?) graph problems

© NICTA 2014




 natural order: C

B,

4

o — O
— O O

O v v

U

S — O
o O O

o o




. I I =

Weighted Graphs

NICTA




Algebras for Weighted Graphs

* Matrices over Min-Plus-Algebra (and variants)
» algorithms such as Dijkstra and Floyd-Warshall

* Routing Algebra

» developed for Mesh Protocols
(see IFIP 2.1 Reisensburg)

» Other algebras: Max-Plus, Max-Min, Min-Max, ...

© NICTA 2014




Min-Plus Algebra

* Choice: Take path with smaller weight
« Path Composition: Addition

* Kleene star: ,» _ m>161 n) = min(0,n,2n,...) =0
(]

e (NU{oo}, min,+,00,0,") forms a Kleene algebra

* no intersection, no complement
* no transposition

* natural order defined as usual
m C n < min(m,n) =n<n<m

* Theorem:

Matrices over Kleene algebras are Kleene algebras
 natural order is defined point-wise

© NICTA 2014




Oe

NICTA

Problems

* |s this algebra as suitable and flexible as relation algebra?

© NICTA 2014




—_—— v‘—“‘

Reflexive-Transitive Closure

* all-shortest paths

© NICTA 2014




. I I =

Reflexive-Transitive Closure

* all-shortest paths

© NICTA 2014




Reflexive-Transitive Closure

* all-shortest paths

* How to calculate the star
» classical matrix decomposition (cf. Kozen)
e algorithm from above ?

© NICTA 2014




v‘—“‘

Reflexive Transitive Closure

input R
C,v:=10:;

while v # R:L do
let p = point(R;LN 7);
C,o:=CUC;p;p":R;C , vUp

od
return C

© NICTA 2014




Reflexive-Transitive Closure

* all-shortest paths

* How to calculate the star
» classical matrix decomposition (cf. Kozen)
» algorithm from above
e problem: what is a point

p;L=pALp=LApp CI

© NICTA 2014




Reflexive-Transitive Closure

* all-shortest paths

* How to calculate the star
» classical matrix decomposition (cf. Kozen)
» algorithm from above
e problem: what is a point

p-T=pAT-p=TAp-p' CId

© NICTA 2014




Reflexive-Transitive Closure

* all-shortest paths

* How to calculate the star
» classical matrix decomposition (cf. Kozen)
» algorithm from above
e problem: what is a point

© NICTA 2014




Reflexive-Transitive Closure

* all-shortest paths

* How to calculate the star
» classical matrix decomposition (cf. Kozen)
» algorithm from above

 points can be characterised via atomic test elements
(every Kleene algebra can be equipped with a test algebra
— no details in this talk)

© NICTA 2014




Example: Prim’s algorithm

input G, v

{G symmetric}

UT :=v,0;

while U # Id do

{T is minimal spanning tree in U - G - U}
let e edge with minimal weight from U to -U
UT :=U+sourceote, T +e

od

return [’

{T" is minimal spanning tree}

© NICTA 2014




Example: algorithm to compute Spanning.lree

input G, v

{G symmetric}

UT :=v,0:;

while U # Id do

{T is spanning tree in U - G - U’}
let e edge from U to -U
UT :=U+sourceote, T +e

od

return [

{T" is spanning tree}

© NICTA 2014

Oe

NICTA




T —

Spanning Tree

* T is spanning tree of G
— T is tree (injective, reaches everything)
— T is subtree of G

© NICTA 2014




Subtree

e natural order: L

© NICTA 2014




Subtree

e natural order: L

© NICTA 2014




» Relation algebra (set model): ((O(V x V),u,N,...)
» “pseudo” multigraphs (Matrices with sets as entries)
— ((V x N xV),U, +join, 0,V x {0} x V)
forms Kleene algebra, where Tjoin is point-wise operation

N B (u7m—|—n,$) if v =w
(u, m, v) +join (W, N, x) = { undefined otherwise

—((V X Z xV'),U, +ijoin, 0,V x {0} x V;*)
can be turned into a Relation algebra

(w,m,v)" = (v,—m,u)

* why not real multi graphs?
no natural order

© NICTA 2014




. I I =

Back to Spanning tree

input G, v

{G symmetric}

UT :=wv,0;

while U # Id do

{T is spanning tree in U - G - U’}
let e edge from U to ~U
UT :=U +sourceote, T +e

od

return [’

{T' is spanning tree}

© NICTA 2014




Back to Spanning tree

input G, v

{G symmetric}

U1T :=wv,0;

while U # Id do

{T<U-G-U Arange(v-T7)=U}
let e edge withe < U -G --U,...;
U, T :=U+source(e) , T +e

od

return /'

{T" is spanning tree}

© NICTA 2014




Oe

Spanning tree
| NICTA

» Correctness can be shown similar to the above examples

—in all three models
— straight-forward (full automatic if isotonicity laws are added)

— source and range can be defined via algebraic operations
(tests, domain, codomain)

» But: How to characterise minimality?

© NICTA 2014




R ee——

Problem: Minimality

» Easy if additional weight-function on top
— model dependent, requires specific axioms for functions...
— could be performed on relations only
— but seems not to be the best way

* can we integrate minimality into algebra?

— how to access the weights?
—in (QO(V x N xV),U, +ioin, 0,V x {0} x V*)
one can at least compare edges
e1 preferred overeg < T :-e1- 1T < T -.-e9- T

© NICTA 2014




Summary

* aim at more automation for program verification

— “black-box” approach
—any ATP/ITP system should be fine

 focus on graph algorithms

* suitable algebras
— unweighted graphs: relation algebra

— shortest paths: min-plus algebra
(building graphs)

— spanning trees: 7?7
(subtrees)

— max-plus algebra, max-min algebra ...

» weighted graphs need several algebraic models
(hopefully all based on same algebra)







