
© NICTA 2014

!

From imagination to impact

© NICTA 2014

!

Peter Höfner

Algebras for (automatic)
Verification of Graph Algorithms

© NICTA 2014

!

Motivation

• towards more automation in program verification
– functional correctness
– use algebra to improve proof automatisation
– using pre/post conditions (Hoare-style reasoning)

!

• at the moment
– look at ‘simple’ and well-known while programs 

(invariant proofs)
– find ‘correct’/appropriate algebra
– limited to algorithms where data structure  

can be modelled by algebra

© NICTA 2014

!

Unweighted Graphs

• edges are relation between nodes
• relation algebra prime candidate

– elements are sets of relations/Boolean matrices
– offers operations for

• sequential composition
• set operations (union, intersection, complement)
• transposition
• finite iteration (Kleene star)

• well known, used for program verification 

A

B

C

0

@
0 1 0
1 0 1
1 0 0

1

A
{(A,B), (B,A),

(B,C), (C,A)}

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure

deterministic function returning
a point from R, which was not considered

before

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure

deterministic function returning
a point from R, which was not considered

before

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure

deterministic function returning
a point from R, which was not considered

before

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Warming Up: Reflexive-Transitive Closure

deterministic function returning
a point from R, which was not considered

before

© NICTA 2014

!

Warming Up: Reflexive Transitive Closure

• Proof: simple exercise?
•
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintainance
1s
-

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v) Inv1(v [p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v)) C = R⇤

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I

© NICTA 2014

!

Warming Up: Reflexive Transitive Closure

• Proof: simple exercise?
•
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintainance
1s
-

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v) Inv1(v [p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v)) C = R⇤

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I

© NICTA 2014

!

Warming Up: Reflexive Transitive Closure

• Proof: simple exercise?
•
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintainance
1s
-

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v) Inv1(v [p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v)) C = R⇤

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I

© NICTA 2014

!

Warming Up: Reflexive Transitive Closure

• Proof: simple exercise?
•
!

• Proof Automatisation 
(Prover9 or any other automated Theorem Prover)

Establishment
0s

Post-Condition
0s

Maintenance
1s
0s 

Inv0(R,C, v) , C = (R \ v)⇤

Inv1(v) , v = v ; L

Inv0(R,C, v)^p is point^p ✓ R ;L\ v) Inv0(R,C[C ; p ; pT ;R ;C, v[p)
Inv1(v) ^ p is point ^ p ✓ R ;L \ v) Inv1(v [p)

Inv0(R, I,O) ^ Inv1(O)

v = R ; L ^ Inv0(R,C, v) ^ Inv1(v)) C = R⇤

+ 3 properties about Kleene star

p is point , p;L = p ^ L;p = L ^ p;p> ✓ I

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

© NICTA 2014

!

More Examples

• Topological Sorting
input R
{R;R⇤ = O}
S, v := I,O;
while v 6= L do

{I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ S ^ S [ST = v ;vT [I^
v ;L ✓ v ^ S ;v ✓ v ^ R \ v ;vT ✓ S ^ R;v ✓ v}
let p = point(v \ (RT \ I); v);
S, v := S [v ;pT, v [p

od

return S
{R ✓ S ^ I ✓ S ^ S ;S ✓ S ^ S \ ST ✓ I ^ S [ST = L}

Proof is fully automatic  
(incl. termination)

© NICTA 2014

!

More Examples

• Matching Algorithm
• Node Colouring
• …
!

!

• Relation algebra seems to be well suited for most
(all?) graph problems

© NICTA 2014

!

Subtree

• natural order: ✓

A

B

CA

B

C

{ (B,A),
(B,C), (C,A)} ✓ {(A,B), (B,A),

(B,C), (C,A)}

0

@
0 0 0
1 0 1
1 0 0

1

A ✓

0

@
0 1 0
1 0 1
1 0 0

1

A

© NICTA 2014

!

Weighted Graphs

A

B

C
2

5
4

1

© NICTA 2014

!

Algebras for Weighted Graphs

• Matrices over Min-Plus-Algebra (and variants)
• algorithms such as Dijkstra and Floyd-Warshall
!

• Routing Algebra
• developed for Mesh Protocols 

(see IFIP 2.1 Reisensburg)
!

• Other algebras: Max-Plus, Max-Min, Min-Max, …

© NICTA 2014

!

Min-Plus Algebra

• Choice: Take path with smaller weight
• Path Composition: Addition
• Kleene star:
!

• forms a Kleene algebra
• no intersection, no complement
• no transposition
• natural order defined as usual
!
!

• Theorem: 
Matrices over Kleene algebras are Kleene algebras

• natural order is defined point-wise 

n⇤ = min
i�0

(
iX

j=0

n) = min(0, n, 2n, . . .) = 0

(IN[{1},min,+,1, 0,⇤)

m v n , min(m,n) = n , n  m

© NICTA 2014

!

Problems

• Is this algebra as suitable and flexible as relation algebra?

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

G⇤ =

0

@
0 5 6
3 0 1
2 7 0

1

A

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

G⇤ =

0

@
0 5 6
3 0 1
2 7 0

1

A

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths
!

!

!

!

!

• How to calculate the star
• classical matrix decomposition (cf. Kozen)
• algorithm from above ?

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

© NICTA 2014

!

{True}
input R
C, v := I,O;
{C = (R \ v)⇤ ^ v = v ;L}
while v 6= R;L do

let p = point(R;L \ v);
C, v := C [C ;p;pT ;R;C , v [p

od

return C
{C = R⇤}

Reflexive Transitive Closure

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths
!

!

!

!

!

• How to calculate the star
• classical matrix decomposition (cf. Kozen)
• algorithm from above

• problem: what is a point

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

p;L = p ^ L;p = L ^ p;p> ✓ I

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths
!

!

!

!

!

• How to calculate the star
• classical matrix decomposition (cf. Kozen)
• algorithm from above

• problem: what is a point

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

p ·> = p ^ > · p = > ^ p · p> v Id

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths
!

!

!

!

!

• How to calculate the star
• classical matrix decomposition (cf. Kozen)
• algorithm from above

• problem: what is a point

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

p ·> = p ^ > · p = > ^ p · p> v Id

© NICTA 2014

!

Reflexive-Transitive Closure

• all-shortest paths
!

!

!

!

!

• How to calculate the star
• classical matrix decomposition (cf. Kozen)
• algorithm from above

• points can be characterised via atomic test elements 
(every Kleene algebra can be equipped with a test algebra 
— no details in this talk)

A

B

C
2

5
4

1 G =

0

@
1 5 1
4 1 1
2 1 1

1

A

© NICTA 2014

!

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is minimal spanning tree in U ·G · U}
let e edge with minimal weight from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is minimal spanning tree}

Example: Prim’s algorithm

© NICTA 2014

!

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is spanning tree in U ·G · U}
let e edge from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is spanning tree}

Example: algorithm to compute Spanning Tree

© NICTA 2014

!

Spanning Tree

• T is spanning tree of G
– T is tree (injective, reaches everything)
– T is subtree of G

© NICTA 2014

!

Subtree

• natural order:

A

B

C
2

5
4

1

A

B

C
2

4
1

v

0

@
1 1 1
4 1 1
2 1 1

1

A v

0

@
1 5 1
4 1 1
2 1 1

1

A

© NICTA 2014

!

Subtree

• natural order:

A

B

C
2

5
4

1

v

A

B

C
2

6
4

1

0

@
1 6 1
4 1 1
2 1 1

1

A v

0

@
1 5 1
4 1 1
2 1 1

1

A

© NICTA 2014

!

`

• Relation algebra (set model):
• “pseudo” multigraphs (Matrices with sets as entries)

–  
 forms Kleene algebra, where is point-wise operation
!
!
!

–  
 can be turned into a Relation algebra 

!

• why not real multi graphs?  
no natural order

(}(V ⇥ V),[,\, . . .)

(}(V ⇥ IN⇥V),[,+
join

, ;, V ⇥ {0}⇥ V,⇤)
+

join

(u,m, v) +

join

(w, n, x) =

⇢
(u,m+ n, x) if v = w

undefined otherwise

(}(V ⇥ ZZ ⇥V),[,+
join

, ;, V ⇥ {0}⇥ V,⇤)

(u,m, v)> = (v,�m,u)

© NICTA 2014

!

Back to Spanning tree

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T is spanning tree in U ·G · U}
let e edge from U to ¬U
U, T := U + source of e , T + e

od

return T
{T is spanning tree}

© NICTA 2014

!

Back to Spanning tree

input G, v
{G symmetric}
U, T := v, 0;
while U 6= Id do

{T  U ·G · U ^ range(v · T+) = U}
let e edge with e  U ·G · ¬U , . . . ;
U, T := U + source(e) , T + e

od

return T
{T is spanning tree}

© NICTA 2014

!

Spanning tree

• Correctness can be shown similar to the above examples
– in all three models
– straight-forward (full automatic if isotonicity laws are added)
– source and range can be defined via algebraic operations 

(tests, domain, codomain)
!

• But: How to characterise minimality?

© NICTA 2014

!

Problem: Minimality

• Easy if additional weight-function on top
– model dependent, requires specific axioms for functions…
– could be performed on relations only
– but seems not to be the best way
!

• can we integrate minimality into algebra?
– how to access the weights?
– in  

one can at least compare edges
(}(V ⇥ IN⇥V),[,+

join

, ;, V ⇥ {0}⇥ V,⇤)

e1 preferred over e2 , > · e1 ·>  > · e2 ·>

© NICTA 2014

!

Summary

• aim at more automation for program verification
– “black-box” approach
– any ATP/ITP system should be fine

• focus on graph algorithms
• suitable algebras

– unweighted graphs: relation algebra
– shortest paths: min-plus algebra 

(building graphs)
– spanning trees: ??? 

(subtrees)
– max-plus algebra, max-min algebra …
!

• weighted graphs need several algebraic models 
(hopefully all based on same algebra)

© NICTA 2014

!

From imagination to impact

