‘ Australian Government

£ Department of Broadband, Communications
and the Digital Economy

Australian Research Council

From imagination

NICTA Funding and Supporting Members and Partners

= fEse UNSW. k|

o o University IVE CoVIRITY OF e SOUTH et o | INVestment MELBOURNE
1 Lo . : anshn‘ " G'lfﬁth THE Uninversam
SYDNEY PP Government Ll JJUNNERSITY i O S —

A Mechanized Proof of
Loop Freedom of the
(untimed) AODV routing protocol

Timothy Bourke, Peter Hofner, Rob van Glabbeek

NICTA Funding and Supporting Members and Partners

b4
A0S Australian Government © 0 Australian
i = faEme UNSW 3% e (5]

TUSEEET Department of Broadband, Communications |+ Unversity Investment
and the Digital Economy

THE UnversiTy

Australian Research Council $ SVOREY ‘ Queensiand iy Griffith

' NICTA Partners

Wireless Mesh Networks

* Wireless Mesh Networks (WMNSs)

— key features: mobility, dynamic topology, wireless multihop backhaul
— quick and low cost deployment

* Applications
— public safety

— emergency response, W = [
disaster recovery Ao H E
— transportation i .‘
@ @2
— smart grid
. Limitations in reliability & &

and performance . % ,
TT . B W

© NICTA 2014

Ad Hoc On-Demand Distance Vector Protocola

« Main Mechanism

— if route is needed
BROADCAST RREQ

— if node has information about a destination
UNICAST RREP

— if unicast fails or link break is detected
GROUPCAST RERR

 Essential Data structure

— a routing table
* local knowledge

* entries:
(dip, dsn, dsk, val, hops, nhip, pre)

© NICTA 2014

Ad Hoc On-Demand Distance Vector Protocol

* Properties of AODV

— route correctness
— loop freedom
— route discovery <

— packet delivery <

© NICTA 2014

o
pLas
COR s

Specification in Process Algebra

A,

 AODV in Process Algebra AWN

— standard process algebra vl
— with data structure rr& ----------------------

. _ ol
/ Ry IS

¢ o s ‘Q B N

| N N

— network-specific primitives, such as ;|

— (local) broadcast b e
— (conditional) unicast [,,f i

— layered structure
(processes, nodes,
network of nodes, encapsulation)

+ Model of AODV |

KL NEEINNERE
— 6 processes EEREEFIREEERY
— about 150 lines of specification SRR Pt

i
|||||||
O N A T T R
\\\\\\\\\\\
\\\\\
\\\\\\\\\\

\ \, \ \ /
© NICTA 2014 S I S N N
L e SR N P

//// Il \\ \\ \\\
¢ PRerr ¢ & PRreq

N\
d / N

PNewPkt !

[
|||||
|||||
L
| I
uuuuuuuuu
N I A
| |
////////

Snippet of AODV

+ [(oip, rreqid) € rreqgs | /* the RREQ is new to this node */
/* update the route to oipinrt */
[[rt := update(rt, (oip,osn,valid , hops+1,8ip,0))]
/* update rreqs by adding (oip, rreqid) */
[rreqs := rreqs U{(oip,rreqid)}}
(
[dip=ip] /* this node is the destination node */
/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]]
/* unicast a RREP towards oip of the RREQ: next hop is sip */
unicast(sip,rrep(0,dip,sqgn(rt,ip),oip,ip)). AODV(ip,rt,rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn)|(rip,rsn,valid,*,sip,*) €rt}]
[pre:= U{precs(rt,rip)|(rip, *) € dests}]}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcastipre ,rerr(dests.ip)). AODV(ip.rt .rreqs,queues)
+ [dip # ip] /* this node is not the destination node */
(
[dip € aD(rt) Adsn < sqn(rt,dip) A sqn(rt,dip) # 0] /* valid route to dip that is
fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r :=addpre(o,...(rt,dip), {sip}): rt:= update(rt,r)]

© NICTA 2014

* There existed a pen-and-paper proof
—around 20 pages
— about 40 invariants
— state invariants
—transition invariants
— talking about one or more nodes

© NICTA 2014

Mechanizing the Proof

 done in Isabelle/HOL

* Mechanization of the process algebra AWN

— details see ITP'14
— some crucial parts are discussed below

* Mechanization of the loop-freedom proof
— 360 lemmas of which 40 are invariants
— “usual” overhead

© NICTA 2014

Node Properties

» Often straight forward

« Example:
“all routing table entries have a hop count greater than or
equal to one”

paodv i |

© NICTA 2014

(, *, %, %, hops, %, %) € 5% = 1 < hops

— onl Iyoay (A(E,-). Vip € kD(rt €). 1 < the (dhops (rtf) ip))

Network Properties for Single Nodes

 stating network properties already gets complicated

* proving even more sophisticated
(but also for the pen-and-paper proof)

© NICTA 2014

Network Properties for Single Nod

« Example:

Ao AN TR~
(et b

“the quality of the routing table entries for a destination dip
Is strictly increasing along a route towards dip”

dip € vD? N szhip A nhip # dip = EP(rt) Caip X,Mp (rt)

opaodv i |= (otherwith (op =) {i}

(orecvmsg (Ag m. msg_fresh ¢ m A msg_zhops m)),

otherquality_increases{i}
onl I'yoqy (A(0,-). Vdip. let n
in dip €v

—)
nip = the (nhop (rt(o i)) dip)
D (rt (o i)) N vD (rt (o nhip))

A nhi

0 £ dip

— (rt (0 i)) Cdip (rt (o nhip)))

© NICTA 2014

Why Mechanisation?

* Did we waste our time
— there was a pen-and-paper proof before

— took about 1 person-year
(building up infrastructure for AWN, etc.)

— more confidence
— found one missing case and some typos

* Do we gain anything when we analyse variants

© NICTA 2014

Variants

» Variants might occur
— change in specification
(not yet standardized)
— optimizations found

— different Interpretations of the Specification
(written in English)

© NICTA 2014

Change in Specifications

+ [(oip, rreqid) € rreqgs | /* the RREQ is new to this node */
/* update rreqs by adding (oip, rreqid) */
[[rreqs := rreqs U{(oip,rreqid)}]
/* update the route to cipinrt */
[Irt := update(rt, (oip,osn,valid hops+1,sip.9))}

(
[dip=ip] /* this node is the destination node */

/* update the sqn of ip by setting it to max(sqn(rt, ip),dsn) */
[rt:=update(rt, (ip,dsn,valid,0,ip,@))]]
/* unicast a RREP towards oip of the RREQ: next hop is sip */
unicast(sip,rrep(0,dip,sqgn(rt,ip),oip,ip)). AODV(ip,rt,rreqs, queues)
» /* If the packet transmission is unsuccessful, a RERR message is generated */
[dests:= {(rip,rsn)|(rip,rsn,valid,*,sip,*) €rt}]
[pre:= U{precs(rt,rip)|(rip, *) € dests}]}
[forall (rip,#) € dests: invalidate(rt, rip)]|
groupcastipre ,rerr(dests.ip)). AODV(ip.rt .rreqs,queues)
+ [dip # ip] /* this node is not the destination node */

(
/* valid route to dip that is

[dip € aD(rt) Adsn < sqn(rt,dip) A sqn(rt,dip) # 0]

fresh enough */
/* update rt by adding sip to precs(rt .dip) */
[r :=addpre(o,...(rt,dip), {sip}): rt:= update(rt,r)]

© NICTA 2014

Different Readings of a Standard ,

————

o —_— e
_,:‘,'//

‘If your DOG

~does a POO

~Please put it
.in a litter bin.

Please help keep our

open spaces clean.

© NICTA 2014

Analysing Variants

« Overview

* Analysed 5 Variants
— from simple optimisations
— to "bug fixing”
* An Interactive Theorem Prover can try to replay the proof
— points a points where proofs/invariants break down
— hope it's easy to fix
— if you cannot fix it, you don’'t know anything

© NICTA 2014

Variants of AODV

* Variant A: Skipping route request identifiers
— small optimisation
— RFC uses unnecessary data structure

— modification in specification took about 5 minutes
— proof went basically through

© NICTA 2014

Variants of AODV

» Variant B: Forwarding route replies
— “bug” fix of RFC

— modification includes deletion of 3 lines of the spec

— out of 400-odd lemmas only 7 broke down
— 4 were easily fixed (broken references to line numbers)
—about 3 hours to repair (for a novice)

© NICTA 2014

Variants of AODV

 Variant C: From groupcast to broadcast
— groupcast failed to inform some nodes
— using boadcast is (in some sense) more efficient
— as a consequence: simplifying data structure

— modification includes new guard

— about 75 lemmas broke down

— 74 simple fixes
— delete references to dropped data structure
—fix line references

— basically 1 lemma broke which could be fixed

© NICTA 2014

Variants of AODV

* Variant D: Forwarding route requests
— requests are not send to all nodes
— missed opportunity to establish routes
— performance improvement (maybe)

— 8 lines were changed in the specification

— 17 lemmas broke down
— one proof needed major rework

© NICTA 2014

Variants of AODV

» Variant E: All changes discussed above
— basically merging all proof changes
— no conflicting proofs/conditions showed up

© NICTA 2014

The Other Side of the Medal '

* |s every variant fix so simple

— probable yes, IF the lemmas/invariants stay valid
(which was the case for the presented variants)

—no, IF lemmas do not hold any longer
Variant F: Updating with the Unknown Sequence Number

—since lemmas are not valid any more deep expertise is needed
to see that the lemma is incorrect
to provide an alternative repair

© NICTA 2014

, Conclusion/Future Work

 Mechanised Proof of AODV and variants

— based on process algebra

— mechanised in Isabelle

— about 1 hour verification time (with 4 cores)

— both mechanisation of process algebra and AODV can be found in the
Archive of Formal Proofs

* Variants are often so small that the proof can be “replayed”

* Optimise Mechanisation

— simple changes might be automated
(e.g. reference to line numbers)

» Extend Formalism and Model
— add time
— add probabilities and quantities

© NICTA 2014

) - I ‘ vvj-‘\
Jie 3 N F

!

XS
/|

m
& AR

