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Motivation DATA | @

towards more automation in program verification
e functional correctness
e use algebra to improve proof automation

o use pre-/postconditions (Hoare-style reasoning)

at the moment

e look at ‘simple’ and well-known while programs
(pre-/postconditions, invariant proofs)

e use relational algebra

o limited to algorithms where data structure can be modelled by
(relational) algebra

o investigate the power of cardinalities over relational algebra
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Relation Algebra: DATA | @
The Standard Model
( o )
1 1
100

the standard model are relations (sets over M x M)
nxn matrices

{(a, b), (b, a), (b, ¢), (¢, a)}

o O

3

operations/constans:
e U,N, are set theoretic definitions
e R;.S={(a,c)|3b:(a,b) e RA(b,c) €S}
e RT ={(b,a) | (a,b) € R}
e O=0,L=Mx M, |={(a,a) | ac M}
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Relation Algebra DATA | @

a relation algebra is a structure (A,U,;, ,T,1) such that\ S
e (A,U,7) is Boolean algebra, i.e.,
(QUR)US=QU(RUS), QUR=RUQ,
R=RUSURUS
o provides an operation for composition
(Q:R);S=Q;(R;S), (QUR);S=QSURS RI=R
o defines an operation of conversion
RTT=R, (RUS)T=RTUST, RT;RSUS=S
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Relation Algebra DATA | @

a relation algebra is a structure (A,U,;, ,T,1) such that\ S
e (A,U,7) is Boolean algebra, i.e.,
(QUR)US=QU(RUS), QUR=RUQ,
R=RUSURUS
o provides an operation for composition
(QR):S=Q;(RS), (RUR)S=QSURS RI=R
o defines an operation of conversion
RTT=R, (RUS)T=RTUST, RT;RSUS=S
additional constants/operations:

e intersection: RNS=RUS
eorder: RCSRUS=S
o R*=U;sqR" =ITURUR?U
(first-order characterisation possible)
o smallest and greatest element: 0 = RNR, L=RUR
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Warming Up: DATA | @
Reflexive-Transitive Closure

input R

while v # R;L do
let p = point(R;L N V);
C,v:=CUC;p;p";R;C, vUp;
od

return C
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Warming Up: DATA | @
Reflexive-Transitive Closure

input R

{True}

C,v:=10

while v # R;L do

let p = point(R;L NV); //function choosing point from R;L NV
C,v:=CUC;p;p";R;C, vUp;

od

return C

[c=R"
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Warming Up: DATA | @
Reflexive-Transitive Closure

input R

{True}

C,v:=10

{C=(RNv)" A v=ylL}
while v # R;L do

let p = point(R;L NV); //function choosing point from R;L NV
C,v:=CUC;p;p";R;C, vUp;

od

return C

[c=R"
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Warming Up: DATA | %
Reflexive-Transitive Closure

e correctness proof: simple exercise ?
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Warming Up: DATA | @
Reflexive-Transitive Closure
e correctness proof: simple exercise ?

o Inp(R,C,v)< C=(RNv)*
Invi(v) & v=ylL
e pispoint< p,L=pALip=LAp;pCI
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Warming Up: DATA | @
Reflexive-Transitive Closure
e correctness proof: simple exercise ?

Invg(R,C,v) & C=(RNv)*
Invi(v) & v=ylL
pispoint & pL=pALp=LAp;pCI

proof automation
(e.g. the automated theorem prover Prover9)

Establishment

Invo(R,1,0) A Inv;(O) | 0s
Post-Condition

v=RLAInw(R,C,v)Alnvi(v) = C=R" | 0s
Maintenance

Invi(v) Apispoint ApC RILNV = Invi(vUp) | 1s
In(R,C,v)Apispoint ApC RLNV
= Inw(R,CU C:p;p"iR;C,vU p) -
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Warming Up: DATA | %
Reflexive-Transitive Closure

e correctness proof: simple exercise ?

o Inp(R,C,v)< C=(RNv)*

Invi(v) & v=ylL
e pispoint< p,L=pALip=LAp;pCI
e proof automation

(e.g. the automated theorem prover Prover9)

Establishment

Invo(R,1,0) A Inv;(O) | 0s
Post-Condition

v=RLAInw(R,C,v)Alnvi(v) = C=R" | 0s
Maintenance

Invi(v) Apispoint ApC RILNV = Invi(vUp) | 1s
In(R,C,v)Apispoint ApC RLNV

= Invw(R,CUC;p;p";R;C,vUDp) Os
add 3 theorems about the operation
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Conclusion DATA | @

e shows partial correctness only
total correctness has to be shown separately

e often automated reasoning helps — but not always

e perfect candidate for interactive theorem proving/proof
assistants (preferable with some bits of proof automation)

e more algorithms verified
topological sorting
node colouring
matching algorithms

vV vy vVvYyy

o verification of Relational-While Programs can be done
(in)equationally and automatically;
in particular RA seems to be well suited for graph problems
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Verification of Relational-While DATA | @
Program

e can be done equationally and automatically
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Verification of Relational-While DATA | @
Program

e can be done equationally and automatically
e BUT: what about cardinalities
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Cardinalities on Relation Algebra IDATA | @

e introduced by Prof. Kawahara [Kaw06]
e operation |.| over relation algebra

o Prof. Kawahara looked at basic graph theory,
such as the theorem of Hall and Konig

e we used his approach for verification
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Cardinalities on Relation Algebra DATA | @

(C1) if R is finite, then |R| € N, and
IR|=0iff R=0

(C2) |R| =[RT]

(C3) if R and S are finite, then
IRUS|=|R|+|S|—|RNS].

(C4) if Q is univalent (QT;Q C 1), then
IRNQT;S| <|Q;RNS|, and
IQNS;RT| < |QRNS]
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Cardinalities on Relation Algebra DATA | @

(C1) if R is finite, then |R| € N, and
IR|=0iff R=0

(C2) |R| =[RT]

(C3) if R and S are finite, then
IRUS|=|R|+|S|—|RNS].

(C4) if Q is univalent (QT;Q C 1), then
IRNQT;S| <|Q;RNS|, and
IQNS;RT| < |QRNS]

(Co) IV =
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Cardinalities on Relation Algebra IDATA | @

(C1) if R is finite, then |R| € N, and
IR|=0iff R=0

(C2) |R| =[RT]

(C3) if R and S are finite, then
IRUS|=|R|+|S|—|RNS].

(C4) if Q is univalent (QT;Q C 1), then
[RN , and
IQNS;RT| < |QRNS]

(C5) [l =1

we have to calculate in a heterogenous setting  (mxn matrices)
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Relations, Points, Vectors and DATA | @
Cardinalities

useful properties (sanity check)
e |.| is monotone, i.e. RC S = |R| C |S]
e if p is point, then |p| =1
o if v is vector, then |v| == [U,cp, Pl = > ,cp, |P
e if R is univalent and S is a mapping, then |R;S| = |R]

e if R is symmetric, P is injective and @ is univalent, then
IRNP;QT| = |R;PN Q|
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Minimum Vertex Covers DATA | @

o problem is NP-complete
e approximation algorithm of Garvil and Yannakakis

e cardinalities are used to give quality of approximation
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Minimum Vertex Covers DATA | @

input R

C,S = O)(],R

while S # O do

let e = edge(S);

¢S = cUel, SnelLULe
od

return ¢
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Minimum Vertex Covers DATA | @

input R
{RCIl, R=R"}
C,S = O)(],R

while S # O do

let e = edge(S);

¢S = cUel, SnelLULe
od

return ¢
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Minimum Vertex Covers DATA | @

input R
{RCIl, R=R"}
C,S = O)(],R

while S # O do
let e = edge(S);
¢S = cUel, SnelLULe
od
return ¢
{RCcLU(cL)T,
Vd: X<1eRC d;LU(dL) = |c| <2-|d]}
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Minimum Vertex Covers DATA | @

input R
{RCIl, R=R"}
¢, S,M:=0x,R,0;

while S # O do

let e = edge(S);

¢,S,M = cUel, SnelLULe, MUe;
od
return ¢
{RCcLU(cL)T,
Vd:X<1eRC d;LU(dL) = [c| <2-|d|}
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Minimum Vertex Covers DATA | @

input R
{RCIl, R=R"}
¢, S,M:=0x,R,0;
MCR, M=MT", M;MC 1, M,LNS =0 M aux. variable
RNSCclLuU(cl)', SCR, §=5T, || <|M|}
while S # O do
let e = edge(S);
¢,S,M = cUel, SnelLULe, MUe;
od
return ¢
{RCcLU(cL)T,
Vd: X< 1eRCdLU(dL) = [c| <2-d|}
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Correctness Proof DATA | @

e most invariant proofs are equational and “easy”;
they are verified using the proof assistant Coq
(there are just more and invariants)

e short proofs

e proof automation would be useful
(e.g. try Isabelle’s tool sledgehammer)
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Correctness Proof: Cardinalities IDATA|®

Invariant

lcUel| < |c|+|eL|—|cnel| //by(C3)

= |c| + |eL| // isotonicity

< [M|+ |eL] // invariant

= |M|+ e // e vector

= |[M|+|e| = [MNe // as Mne=0, by (C1)
= [MUel // by (C3)
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Correctness Proof: Cardinalities DATA | @

Postcondition

IM| = [M;(duUd)| // M univalent, d U d mapping, aux. Lemma
= [M;dU M;3|
< d // by (C3), isotony
< [M;d| + ‘R;E| // invariant, isotonicity
< |M;d| + |d| // as R;d C d, isotonicity
= LAMT " d| + |d|
< IMT;Lnd|+|d| // MT univalent, by (C4)
< |d| + |d] // isotonicity
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Adaptation to Hitting Sets DATA | @

e same algorithm, different relation algebra
(calculating on incidence relation | : X <> E)

e this models hypergraphs (edges are set of nodes)

e cardinality of all maximal hyperedges:
max{|l;p| | p: E <> 1 point}

o algorithm generalises to hyper graph with approximation

Vd: X< 1lelL=1T;d = |c| < k-|d]|

17 | Relational Programs and Approximation Algorithms | Peter Hofner



Maximum Cuts (Max-Cut) DATA | @

problem is NP-complete

approximation algorithm

cardinalities are used to give quality of approximation

cardinality of cut: |[RN (557 US;sT)|
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Maximum Cuts (Max-Cut) DATA | @

problem is NP-complete

approximation algorithm
cardinalities are used to give quality of approximation

cardinality of cut: |[RN (557 US;sT)|
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Minimum Vertex Covers DATA | @
input R

v,s,t:=Lx,0,0;

while v # O do
let p = point(v);
if |[RipNs| <|R;pNt
then v,s:=vnNp,sUp
elsev,t:=vNp,tUp
fi
od

return s
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Minimum Vertex Covers DATA | @

input R
{RCI, R=RT"}
v,s,t:=Lx,0,0;
{sNt=0, sut=v, |[RN(s;sTUtt")| <|RN(s;tT Ut;sT)|}
while v # O do
let p = point(v);
if |[RipNs| <|R;pNt
then v,s:=vnNp,sUp
elsev,t:=vNp,tUp
fi
od
return s
{Ve: X< 1e|RN(ccTuceh)| <2 RN (53T Us;sT)|}
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Correctness Proof DATA | @

e non-cardinality proofs are again standard;
they are verified using the proof assistant Coq

e approximation bound is %:
Ve: X< 1e|RN(cetugeh)|<2-|RN(s5TUS;sT)
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Correctness Proof: Cardinalities IDATA|®
Invariant

IRN((sup)(sup) Ut;t?)
=|(RN(s;s"Ut;t" Us;p" Up;s" Up;p")|

=|(RN(sisTUtt")U(RNs;pT)U(RNp;sT)| // st aux. result
<|IRN(s;s"UttT)|+|RNs;p" |+ |RNp;sT| // by (C3)
<|IRN(s;itTUtsT)|+|RNspT |+ |RNp;sT| // invariant
=|RN(sit"Ut;s")|+|RNp;s |+ |RNp;sT| // by (C2), R=R"
=|RN(s;t" Ut;s")| +|RipNs|+ |RipNs| // 1st aux. lemma
<|RN(sit"Ut;sN)| + |RipNt| +|Rip Nt // as |RipNs| < |RipNt|
=|RN(s;t" Ut;s")|+|RNp;tT|+ |RNp;tT| // aux. lemma
=|RN(s;t"Ut;s)|+|RNp;tT |+ |RNt;p"| // by (C2), R=R"
=|RN(s;t"Ut;s)|+|(RNp;t")U(RNt;p")|  // 2nd auxiliary result
=|(RN(s;t"Ut;sN)U(RNp;t"YU(RNtp")|  // 3rd auxiliary result

= |RN((sUp)tT Ut (sUp)")
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Correctness Proof: Cardinalities IDATA|®
Invariant

IRN((sup)(sup) Ut;t?)
=|(RN(s;s"Ut;t" Us;p" Up;s" Up;p")|

=|(RN(sisTUtt")U(RNs;pT)U(RNp;sT)| // st aux. result
<|IRN(s;s"UttT)|+|RNs;p" |+ |RNp;sT| // by (C3)
<|IRN(s;itTUtsT)|+|RNspT |+ |RNp;sT| // invariant
=|RN(sit"Ut;s")|+|RNp;s |+ |RNp;sT| // by (C2), R=R"
=|RN(s;t" Ut;s")| +|RipNs|+ |RipNs| // 1st aux. lemma
<|RN(sit"Ut;sN)| + |RipNt| +|Rip Nt // as |RipNs| < |RipNt|
=|RN(s;t" Ut;s")|+|RNp;tT|+ |RNp;tT| // aux. lemma
=|RN(s;t"Ut;s)|+|RNp;tT |+ |RNt;p"| // by (C2), R=R"
=|RN(s;t"Ut;s)|+|(RNp;t")U(RNt;p")|  // 2nd auxiliary result
=|(RN(s;t"Ut;sN)U(RNp;t"YU(RNtp")|  // 3rd auxiliary result

= |RN((sUp)tT Ut (sUp)")

e not nice, but still (in)equational reasoning
hence proof assistants can easily be used
e verification of postcondition is similar (but shorter)
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Conclusion and Remarks DATA | @

o verification of graph algorithms using cardinalities

e made use of point axiom Ly = UPEPLXI p

e made use of RelView (Berghammer et. al) to check proof
invariants
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Proof support and Proof DATA | %
Automation

o automated theorem provers (ATPs)
» Prover9 (best for algebraic reasoning): no types
» other have types, but difficult to encode heterogeneous RA
» no (proper) support of intermediate lemmas

e lIsabelle/HOL

» excellent library for homogeneous RA [Strl4]

» no (proper) library for heterogeneous RA (Guttmann)

» good connection to ATPs (via the Sledgehammer tool)

allows proof automation

e Coq

» good support for types
excellent library for (homogenous and heterogenous) RA [Poul]
lots of tactics available (decision procedures, normalisation ...)
cardinalities have been implemented (Stucke)
however, no tool such as sledgehammer
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