
www.data61.csiro.au

A Timed Process Algebra for
Wireless Networks with an
Application in Routing
Emil Bres, Rob van Glabbeek, Peter Höfner
April 2016

Flashback (ESOP 2012)

• “A Process Algebra for Wireless Mesh Networks”
• Summary
• New Process Algebra Developed
– language for formalising specs of network protocols
– key features
– guaranteed broadcast
– conditional broadcast
– data handling

• Achievements
– full concise specification of AODV (RFC 3561)  

(without time)
– formally verified loop freedom (without timeouts)
– found several ambiguities, mistakes, shortcomings

2

Flashback (ESOP 2012)

• “A Process Algebra for Wireless Mesh Networks”
• Summary
• New Process Algebra Developed
– language for formalising specs of network protocols
– key features
– guaranteed broadcast
– conditional broadcast
– data handling

• Achievements
– full concise specification of AODV (RFC 3561)  

(without time)
– formally verified loop freedom (without timeouts)
– found several ambiguities, mistakes, shortcomings

2

Time

• The Need for Time
• motivated by network protocols
– timeouts
– (regularly) scheduled tasks
– …

• Discrete vs. Continous
• in practise discrete time is sufficient

3

Timed Process Algebra: T-AWN

Design Decisions

• Intranode Computations
• sending messages between nodes takes many microseconds
• time for intranode computations can be neglected 

(but could be added in the same spirit as time for message sending)
• Guaranteed Message Receipt
• messages sent will be received when in transmission range
• failure of route discovery is imperfection of the protocol

• Input Enabledness
• models have to be able to receive messages  

(consequence of guaranteed receipt)
• T-AWN Syntax
• protocol designers should not bother with timing issues
• same syntax as AWN

5

Syntax: Sequential Processes

6

SP ::= X(exp1, . . . , expn) | [']SP | [[var := exp]]SP | SP+ SP |
↵.SP | unicast(dest ,ms).SP I SP

↵ ::= broadcast(ms) | groupcast(dests ,ms) | send(ms) |
deliver(data) | receive(msg)

• Key Features
• guaranteed broadcast
• conditional broadcast
• data handling

Process 4 Parts of the RREQ handling

RREQ(hops , rreqid , dip , dsn , dsk , oip , osn , sip , ip , sn , rt , rreqs , store)
def
=

1. [[exp rreqs(rreqs , now)]]
2. (

3. [(oip , rreqid , ⇤) 2 rreqs] /* the RREQ has been received previously */

4. AODV(ip , sn , rt , rreqs , store) /* silently ignore RREQ, i.e., do nothing */

5. + [(oip , rreqid , ⇤) 62 rreqs] /* the RREQ is new to this node */

6. [[rt := update(rt , (oip, osn, kno, val, hops + 1, sip, ;, now + ACTIVE ROUTE TIMEOUT))]]
7. [[rt := setTime rt(rt,oip,now+2 ·NET TRAVERSAL TIME�2 ·(hops+1) ·NODE TRAVERSAL TIME)]]
8. [[rreqs := rreqs [{(oip, rreqid, now + pathdiscoverytime)}]] /* update rreqs */

9. (

10. [dip = ip] /* this node is the destination node */

11. [. . .]

12.

23. + [dip 6= ip] /* this node is not the destination node */

24. (

25. /* valid route to dip that is fresh enough */

26. [dip 2 vD(rt) ^ dsn  sqn(rt ,dip) ^ sqnf(rt ,dip) = kno]
27. /* update rt by adding precursors */

28. [[rt := addpreRT(rt , dip , {sip})]]
29. [[rt := addpreRT(rt , oip , {nhop(rt , dip)})]]
30. /* unicast a RREP towards the oip of the RREQ */

31. unicast(nhop(rt , oip),
rrep(dhops(rt , dip) , dip , sqn(rt , dip) , oip , �time(rt , dip) � now , ip) .

32. AODV(ip , sn , rt , rreqs , store)
33. I /* If the transmission is unsuccessful, a RERR message is generated */

34. [. . .] /* update local data structure */

40. groupcast(pre , rerr(dests , ip)) . AODV(ip , sn , rt , rreqs , store)
41. + [dip 62 vD(rt)_ sqn(rt ,dip) < dsn_ sqnf(rt ,dip)= unk] /*no fresh route*/

42. /* no further update of rt */

43. broadcast(rreq(hops+1 ,rreqid ,dip ,max(sqn(rt , dip) , dsn) ,dsk ,oip ,osn ,ip))
.

44. AODV(ip , sn , rt , rreqs , store)
45.)

46.)

47.)

7

T-AWN in Use: AODV

Time Passing

• Time Passes iff
• message sending (durational action)
• ready to receive or synchronise (e.g.),  

but some synchronisation partner is not ready
– implemented by wait-actions

8

P
w�! i↵ P rcv.����6! ^ P send����6! ^ P other����6!

P
wr�! i↵ P rcv.����!^ P send����6! ^ P other����6!

send(ms)

T-AWN Processes

• Each AWN process, seen as a T-AWN process, can be
(weakly) simulated by the AWN process  
 
AWN specifications can be analysed w.r.t. time

• A T-AWN process always admits a transition,  
independently of the outside environment.  
 
No time deadlocks  

9

Theoretical Results

• Process algebra is isomorphic to one without data structure
• a process for every substitution instance
• resulting algebra is in (infinitary) de Simone format
• generates same transition system 

(up to strong bisimulation)
• Hence strong bisimulation and other semantic equivalences

are congruences
• Both parallel operators are associative  

(follows by a meta result of Cranen, Mousavi, Reniers)  

10

Pk
wr�! P 0

1

4
i=k

Pi
wr�!

1

4
i=k+1

Pi

Pk
a�! P 0

1

4
i=k

Pi
a�! P 0

Case Study: AODV

AODV

• Ad-hoc On-Demand Distance Vector Routing Protocol
• routing protocol for wireless mesh networks 

(wireless networks without wired backbone)

• Ad hoc (network is not static)
• On-Demand (routes are established when needed)
• Distance (metric is hop count)
• Vector (routing table has the form of a vector) 

• Developed 1997-2001 by Perkins, Beldig-Royer and Das 
(University of Cincinnati)
• basis of IEEE 802.11s

12

Intuition

• Main Mechanism
• if route is needed  

BROADCAST RREQ
• if node has information about destination  

UNICAST RREP
• if unicast fails or link break is detected  

GROUPCAST RERR
• performance improvement via  

intermediate route reply

13

d

b

s

a

Intuition

• Main Mechanism
• if route is needed  

BROADCAST RREQ
• if node has information about destination  

UNICAST RREP
• if unicast fails or link break is detected  

GROUPCAST RERR
• performance improvement via  

intermediate route reply

13

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

Intuition

• Main Mechanism
• if route is needed  

BROADCAST RREQ
• if node has information about destination  

UNICAST RREP
• if unicast fails or link break is detected  

GROUPCAST RERR
• performance improvement via  

intermediate route reply

13

d

b

s

a
R
R
E
PR

R
E
P

Formalisation

• (untimed) model
• full specification of AODV (IETF Standard)
– around 5 types and 30 functions
– around 120 lines of specification  

(in contrast to 40 pages English prose)
– no ambiguities, no underspecification, no contradictions

• timed model
• extended with timeouts 

(routing table entry expiration and deletion)

14

Process 4 Parts of the RREQ handling

RREQ(hops , rreqid , dip , dsn , dsk , oip , osn , sip , ip , sn , rt , rreqs , store)
def
=

1. [[exp rreqs(rreqs , now)]]
2. (

3. [(oip , rreqid , ⇤) 2 rreqs] /* the RREQ has been received previously */

4. AODV(ip , sn , rt , rreqs , store) /* silently ignore RREQ, i.e., do nothing */

5. + [(oip , rreqid , ⇤) 62 rreqs] /* the RREQ is new to this node */

6. [[rt := update(rt , (oip, osn, kno, val, hops + 1, sip, ;, now + ACTIVE ROUTE TIMEOUT))]]
7. [[rt := setTime rt(rt,oip,now+2 ·NET TRAVERSAL TIME�2 ·(hops+1) ·NODE TRAVERSAL TIME)]]
8. [[rreqs := rreqs [{(oip, rreqid, now + pathdiscoverytime)}]] /* update rreqs */

9. (

10. [dip = ip] /* this node is the destination node */

11. [. . .]

12.

23. + [dip 6= ip] /* this node is not the destination node */

24. (

25. /* valid route to dip that is fresh enough */

26. [dip 2 vD(rt) ^ dsn  sqn(rt ,dip) ^ sqnf(rt ,dip) = kno]
27. /* update rt by adding precursors */

28. [[rt := addpreRT(rt , dip , {sip})]]
29. [[rt := addpreRT(rt , oip , {nhop(rt , dip)})]]
30. /* unicast a RREP towards the oip of the RREQ */

31. unicast(nhop(rt , oip),
rrep(dhops(rt , dip) , dip , sqn(rt , dip) , oip , �time(rt , dip) � now , ip) .

32. AODV(ip , sn , rt , rreqs , store)
33. I /* If the transmission is unsuccessful, a RERR message is generated */

34. [. . .] /* update local data structure */

40. groupcast(pre , rerr(dests , ip)) . AODV(ip , sn , rt , rreqs , store)
41. + [dip 62 vD(rt)_ sqn(rt ,dip) < dsn_ sqnf(rt ,dip)= unk] /*no fresh route*/

42. /* no further update of rt */

43. broadcast(rreq(hops+1 ,rreqid ,dip ,max(sqn(rt , dip) , dsn) ,dsk ,oip ,osn ,ip))
.

44. AODV(ip , sn , rt , rreqs , store)
45.)

46.)

47.)

15

RREQ Handling

Two Models of AODV

• The timed version of AODV is a proper extension of the
untimed version [ESOP12].  
 
If all timing constants are set to , then the (T-AWN)
transition systems of both versions of AODV are weakly
bisimilar.

16

1

Loop Freedom

• Loop Freedom of (untimed) AODV
• 5184 possible interpretations due to ambiguities
• 5006 of these readings of the standard contain loops 

(1 “default” variant has been proven loop free;  
the remaining 177 are loop free, adapting the default proof)

• 3 out of 5 open-source implementations contain loops

• Loop Freedom of the default reading of (timed) AODV
• by meta theory:  

if all timing constants are set to , then loop free
• however, it contains time loops

17

1

Time Loops

• Premature Route Expiration (Deletion)

• node C had route to D before;  
B uses this information

• B stores information longer than C
• can be avoided by not deleting information  

(invalidating is still fine)

• Premature Route Expiration is the only cause of loops

18

B
D:val!C

C
D:−

RREQ

B
D:val!C

C
D:val!B

RREP

• “Trivial” Cases
• messages spend an inordinate amount of time in the in-

queue (usually does not occur)  
 
Assumption 1: the transmission time of a message plus
the period it spends in the queue of incoming messages of
the receiving node is bounded by

• early deletion before reply arrives  
 
Assumption 2: the period a RREQ travels through the
network is bounded by

Premature Route Expiration

19

NET TRAVERSAL TIME

NODE TRAVERSAL TIME

Premature Route Expiration

• 5 lines of our formal specification can yield premature route
expiration and hence routing/time loops
• in contrast to the RFC
• in contrast to the main paper of AODV (13,000 citations)
• in contrast to common belief

(adapting the (untimed) invariant proof revealed these problems)

• possible fixes lead to loop freedom
– skip the 5 lines (may change the intention of AODV)
– change lines 

(add condition, change time outs, …)

20

Conclusion and Outlook

Conclusion
• expanded process algebra for wireless networks
• unique set of features
• used for protocol analysis of industrial size
• qualitative analysis, e.g. loop freedom, packet delivery

Outlook
• model, analyse and compare other protocols (e.g. B.A.T.M.A.N, OLSR)
• what does it mean that protocol A is better than B

• quantitative analysis
• for example “how long does it take until a packet is delivered”

• add probability
• model unreliable links (quantitative analysis)
• model “probabilistic protocols” such as CMSA

21

www.data61.csiro.au

Thank you

Related Work

23

A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann & W.L. Tan 122

Process algebra Message loss Type of broadcast Connectivity model
CBS [88] ’91 enforced synchr. global broadcast symmetric
bp [22] ’99 enforced synchr. subscription-based broadcast symmetric
CBS# [74] ’06 enforced synchr. local bc. dynamic top. n[P,S] op. sem. symmetric
CWS [69] ’06 enforced synchr. local bc. static topology n[P]cl,r node symmetric
CMAN [40] ’07 lossy broadcast local bc. dynamic top. bpcs

l node symmetric
CMN [66] ’07 lossy broadcast local bc. dynamic top. n[P]µl,r node symmetric
w [94] ’07 lossy broadcast local bc. dynamic top. P : G node symmetric
RBPT [34] ’08 lossy broadcast local bc. dynamic top. JPKl op. sem. asymmetric
bAp [42] ’09 lossy broadcast local bc. dynamic top. bpcl network asymmetric
by [9] ’11 lossy broadcast local bc. dynamic top. P op. sem. asymmetric
AWN here ’11 enforced synchr.

with guar. receipt
local bc. dynamic top. ip:P:R node asym./sym.

Table 9: Process algebras modelling broadcast communication

trative burden is shifted to the broadcast actions—they are annotated with the range of possible receivers.
This enables us to model groupcast and unicast actions, which are not treated in CBS# and CWS, in the
same way as broadcast actions. However, the price to be payed for this convenience is that our actions
arrive(m), which are synchronisations of (non)receive actions of multiple components, need to be an-
notated with the locations of all these components. Moreover, this set of locations is partitioned into the
ones that are in and out of transmission range of the message m. It does not appear possible to model our
groupcast in the style of CBS# and CWS.

Conditional Unicast Our novel conditional unicast operator chooses a continuation process dependent
on whether the message can be delivered. This operator is essential for the correct formalisation of
AODV and other network protocols. In practice such an operator may be implemented by means of an
acknowledgement mechanism; however, this is typically done at the link layer, from which the AODV
specification [79], and hence our formalism, abstracts. One could formalise a conditional unicast as a
standard unicast in the scope of a priority operator [16]; however, our operator allows an operational
semantics within the de Simone format. Of the other process algebras of Table 9, only the w-calculus,
bAp and the broadcast psi-calculi model unicast at all, next to broadcast; they do not have anything
comparable to the conditional unicast.

Data Structures Although our treatment of data structures follows the classical approach of universal
algebra, and is in the spirit of formalisms like µCRL [46], we have not seen a process algebra that
freely mixes in imperative programming constructs like variable assignment. Yet this helps to properly
capture AODV and other routing protocols. This mixture should make the syntax of AWN on the level
of sequential processes easy to read for anybody who has some experience in programming, thus making
it easier to implement protocol specifications written in AWN.

Other Process Algebras for WMNs In [31] CMN is extended with mechanisms for unicast and mul-
ticast/groupcast communication; the paper focuses on power-consumption issues. Process calculi in the
same spirit as the ones above, but focusing on security aspects and trust, appear in [43, 68]. Probabilistic
and stochastic calculi for WMNs, based on similar design principles as the process algebras discussed
above, are proposed in [97, 38, 29, 60, 98, 10, 11, 30]. An extended and improved version of CWS

