| | | |
/ N NS S ISANNN

IE /\/ ANINSNSN N

[I
\ / ~ /\I/ I/\I \I/\

N N\~ 7~

A Timed Process Algebra for /I /I |

Wireless Networks with an |
NN\

Application in Routing |

Emil Bres, Rob van Glabbeek, Peter Hofner 7 N
April 2016

www.data61.csiro.au %

Flashback (ESOP 2012) o |

« “A Process Algebra for Wireless Mesh Networks”

« Summary
* New Process Algebra Developed
— language for formalising specs of network protocols

— key features
— guaranteed broadcast
— conditional broadcast
— data handling
« Achievements

— full concise specification of AODV (RFC 3561)
(without time)

— formally verified loop freedom (without timeouts)
— found several ambiguities, mistakes, shortcomings

Flashback (ESOP 2012) o |

« “A Process Algebra for Wireless Mesh Networks”
« Summary
* New Process Algebra Developed
— language for formalising specs of network protocols
— key features
— guaranteed broadcast
— conditional broadcast
— data handling
« Achievements

— full concise specification of AODV (RFC 3561)
— formally verified loop freedorrm
— found several ambiguities, mistakes, shortcomings

. 7~
Time | DATA | @

* The Need for Time
* motivated by network protocols
— timeouts
— (regularly) scheduled tasks

* Discrete vs. Continous
* in practise discrete time is sufficient

Timed Process Algebra: T-AWN

Design Decisions | @y

* Intranode Computations
» sending messages between nodes takes many microseconds

 time for intranode computations can be neglected
(but could be added in the same spirit as time for message sending)

» Guaranteed Message Receipt
* messages sent will be received when in transmission range
« failure of route discovery is imperfection of the protocol

* Input Enabledness

« models have to be able to receive messages
(consequence of guaranteed receipt)

* T-AWN Syntax
« protocol designers should not bother with timing issues

« same syntax as AWN

Syntax: Sequential Processes nATA | D

SP ::= X(expy,...,exp,) | [¢]SP | [var :=exp]SP | SP+ SP |
«.SP | unicast(dest, ms).SP » SP
o ::= broadcast(ms) | groupcast(dests, ms) | send(ms) |

deliver(data) | receive(msg)

» Key Features
« guaranteed broadcast
» conditional broadcast
 data handling

T-AWN in Use: AODV j?{m D
N 7

RREQ(hops ,rreqid,dip,dsn,dsk, oip,osn,sip, ip,sn,rt, rreqgs, store) =

1

. [exp-rregs(rregs, now)]

2. (

© 0N o s W

10.

23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

40.
41.
42.
43.

44.

[(oip, rreqid, %) € rregs | /* the RREQ has been received previously */
AODV(ip,sn,rt,rreqgs, store) /* silently ignore RREQ), i.e., do nothing */
+ [(oip, rreqid, *) & rregs | /* the RREQ is new to this node */

[rt := update(rt, (oip, osn, kno, val, hops + 1, sip, (), now + ACTIVE_ROUTE_TIMEOUT))]
[rt := setTime_rt(rt,oip,now-+ 2 NET_TRAVERSAL_TIME — 2 - (hops + 1) - NODE_TRAVERSAL_TIME)]

[rregs := rreqs U {(oip, rreqid, now + pathdiscoverytime)}] /* update rreqs */
[dip = ip] /™ this node is the destination node */
+ [dip # ip] /* this node is not the destination node */

/* valid route to dip that is fresh enough */
[dip € vD(rt) A dsn < sqn(rt ,dip) A sqnf(rt ,dip) = kno]
/* update rt by adding precursors *
[rt := addpreRT(rt ,dip, {sip})]
[rt := addpreRT(rt , oip, {nhop(rt,dip)})]
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt , oip),
rrep(dhops(rt ,dip) ,dip, sqn(rt, dip), oip, dtime(rt ,dip) — now, ip).
AODV(ip, sn,rt,rregs, store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[...] /* update local data structure */
groupcast(pre , rerr(dests, ip)) . AODV(ip, sn,rt, rregs, store)
+ [dip € vD(rt) V sqn(rt ,dip) < dsnV sqnf(rt,dip) = unk] /*no fresh route*/
/* no further update of rt */
broadcast(rreq(hops+1,rreqid,dip, max(sqn(rt , dip), dsn),dsk,oip,osn,ip))

AODV(ip, sn,rt,rreqs, store

Time Passing “oama | D

* Time Passes iff
* message sending (durational action)

* ready to receive or synchronise (e.g.send(ms)),
but some synchronisation partner is not ready

— implemented by wait-actions
PL T P rcv. / /\P send/\ /\POthef/>

T-AWN Processes ar-
N 7

* Each AWN process, seen as a T-AWN process, can be
(weakly) simulated by the AWN process

AWN specifications can be analysed w.r.t. time

* AT-AWN process always admits a transition,
independently of the outside environment.

No time deadlocks

Theoretical Results | @

* Process algebra is isomorphic to one without data structure
* a process for every substitution instance
 resulting algebra is in (infinitary) de Simone format

* generates same transition system
(up to strong bisimulation)

* Hence strong bisimulation and other semantic equivalences
are congruences

* Both parallel operators are associative
(follows by a meta result of Cranen, Mousavi, Reniers)

P, % p/ P, -% P/
AP ¥ /\ P /\ P, % pr
1=k i=k+1 1=k

Case Study: AODV

AODV %o
19

* Ad-hoc On-Demand Distance Vector Routing Protocol

* routing protocol for wireless mesh networks
(wireless networks without wired backbone)

Ad hoc (network is not static)

On-Demand (routes are established when needed)
Distance (metric is hop count)

Vector (routing table has the form of a vector)

» Developed 1997-2001 by Perkins, Beldig-Royer and Das
(University of Cincinnati)

* basis of IEEE 802.11s

og o vd
Intuition | @Dy
N~

 Main Mechanism

 if route is needed
BROADCAST RREQ

* if node has information about destination
UNICAST RREP

 if unicast fails or link break is detected
GROUPCAST RERR

« performance improvement via
intermediate route reply

og o vd
Intuition | @Dy
N~

 Main Mechanism

 if route is needed
BROADCAST RREQ

* if node has information about destination
UNICAST RREP

 if unicast fails or link break is detected
GROUPCAST RERR

« performance improvement via
intermediate route reply

og o vd
Intuition | @Dy
N~

 Main Mechanism

 if route is needed
BROADCAST RREQ

* if node has information about destination
UNICAST RREP

 if unicast fails or link break is detected
GROUPCAST RERR

« performance improvement via
intermediate route reply

&
Qs’

. . vd
Formalisation % | 6D
N~

* (untimed) model
» full specification of AODV (IETF Standard)
— around 5 types and 30 functions

— around 120 lines of specification
(in contrast to 40 pages English prose)

— no ambiguities, no underspecification, no contradictions

* timed model

« extended with timeouts
(routing table entry expiration and deletion)

RREQ Handling o | @
N~

RREQ(hops ,rreqid,dip,dsn,dsk, oip,osn,sip, ip,sn,rt, rreqgs, store) =

1

. [exp-rregs(rregs, now)]

2. (

© 0N o s W

10.

23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.

40.
41.
42.
43.

44.

[(oip, rreqid, %) € rregs | /* the RREQ has been received previously */
AODV(ip,sn,rt,rreqgs, store) /* silently ignore RREQ), i.e., do nothing */
+ [(oip, rreqid, *) & rregs | /* the RREQ is new to this node */

[rt := update(rt, (oip, osn, kno, val, hops + 1, sip, (), now + ACTIVE_ROUTE_TIMEOUT))]
[rt := setTime_rt(rt,oip,now-+ 2 NET_TRAVERSAL_TIME — 2 - (hops + 1) - NODE_TRAVERSAL_TIME)]

[rregs := rreqs U {(oip, rreqid, now + pathdiscoverytime)}] /* update rreqs */
[dip = ip] /™ this node is the destination node */
+ [dip # ip] /* this node is not the destination node */

/* valid route to dip that is fresh enough */
[dip € vD(rt) A dsn < sqn(rt ,dip) A sqnf(rt ,dip) = kno]
/* update rt by adding precursors *
[rt := addpreRT(rt ,dip, {sip})]
[rt := addpreRT(rt , oip, {nhop(rt,dip)})]
/* unicast a RREP towards the oip of the RREQ */
unicast(nhop(rt , oip),
rrep(dhops(rt ,dip) ,dip, sqn(rt, dip), oip, dtime(rt ,dip) — now, ip).
AODV(ip, sn,rt,rregs, store)
» /* If the transmission is unsuccessful, a RERR message is generated */
[...] /* update local data structure */
groupcast(pre , rerr(dests, ip)) . AODV(ip, sn,rt, rregs, store)
+ [dip € vD(rt) V sqn(rt ,dip) < dsnV sqnf(rt,dip) = unk] /*no fresh route*/
/* no further update of rt */
broadcast(rreq(hops+1,rreqid,dip, max(sqn(rt , dip), dsn),dsk,oip,osn,ip))

AODV(ip, sn,rt,rreqs, store

Two Models of AODV ar-
N~

* The timed version of AODV is a proper extension of the
untimed version [ESOP12].

If all timing constants are set to co, then the (T-AWN)
transition systems of both versions of AODV are weakly
bisimilar.

Loop Freedom o | @y

* Loop Freedom of (untimed) AODV
* 5184 possible interpretations due to ambiguities

« 5006 of these readings of the standard contain loops
(1 “default” variant has been proven loop free;
the remaining 177 are loop free, adapting the default proof)

* 3 out of 5 open-source implementations contain loops

* Loop Freedom of the default reading of (timed) AODV

* by meta theory:
if all timing constants are set to 00, then loop free

* however, it contains time loops

Time Loops ar-
N 7

* Premature Route Expiration (Deletion)

RREQ RREP
D:val—C D:val—C D:val— B

* node C had route to D before;
B uses this information

« B stores information longer than C

* can be avoided by not deleting information
(invalidating is still fine)

* Premature Route Expiration is the only cause of loops

° L /
Premature Route Expiration | 6
N~

* “Trivial” Cases

* messages spend an inordinate amount of time in the in-
queue (usually does not occur)

Assumption 1: the transmission time of a message plus

the period it spends in the queue of incoming messages of
the receiving node is bounded by NODE_TRAVERSAL_TIME

 early deletion before reply arrives

Assumption 2: the period a RREQ travels through the
network is bounded by NET_TRAVERSAL_TIME

Premature Route Expiration -

* 5 lines of our formal specification can yield premature route
expiration and hence routing/time loops

e in contrast to the RFC

* in contrast to the main paper of AODV (13,000 citations)
* in contrast to common belief

(adapting the (untimed) invariant proof revealed these problems)

 possible fixes lead to loop freedom

— skip the 5 lines (may change the intention of AODV)
— change lines
(add condition, change time outs, ...)

Conclusion and Outlook o | @

Conclusion

« expanded process algebra for wireless networks
« unique set of features
 used for protocol analysis of industrial size
 qualitative analysis, e.g. loop freedom, packet delivery

Outlook

« model, analyse and compare other protocols (e.g. B.A.T.M.A.N, OLSR)
« what does it mean that protocol A is better than B
« quantitative analysis
« for example “how long does it take until a packet is delivered”
 add probability
« model unreliable links (quantitative analysis)
« model “probabilistic protocols” such as CMSA

| | | |
/ N NS S IANNSN

IE /\/ ANINSNSN N

[I
\ / ~ /\l/ I/\I \I/\

N N\~ 7~

Thank you P

NN\

7\

www.data61.csiro.au %

Related Work DA
19

Process algebra | Message loss Type of broadcast Connectivity model

CBS [88] ’91| enforced synchr. | global broadcast symmetric
bm [22] ’99| enforced synchr. | subscription-based broadcast symmetric
CBS# [74] ’06| enforced synchr. | local bc. | dynamic top. n[P,S] | op.sem. | symmetric
CWS [69] ’06| enforced synchr. | local bc. | static topology | n[P|f, | node symmetric
CMAN [40] ’07| lossy broadcast local bc. | dynamic top. | p] ld node symmetric
CMN [66] ’07| lossy broadcast local bc. | dynamic top. n[P] f . | node symmetric
) [94] 07| lossy broadcast local bc. | dynamic top. P:G | node symmetric

RBPT [34] ’08| lossy broadcast local bc. | dynamic top. [P]; op. sem. | asymmetric
bAm [42] 09| lossy broadcast local bc. | dynamic top. vay network | asymmetric
by [9] 11| lossy broadcast local bc. | dynamic top. P op. sem. | asymmetric
AWN here ’11| enforced synchr. | local bc. | dynamic top. ip:P:R | node asym./sym.
with guar. receipt

