
www.data61.csiro.au

Split,	Send,	Reassemble:	
A	Formal	Specification	of	a	CAN	Bus	Protocol	Stack

Rob	van	Glabbeek	and	Peter	Höfner	
April	2017

http://www.data61.csiro.au

(c)	2017						P.	Höfner2

• Controller	Area	Network	(CAN	bus)	is	a	vehicle	bus	standard		
• Designed	to	allow	microcontrollers	and	devices	to	communicate	

• Robert	Bosch	GmbH	(80s/1991)	

The	Controller	Area	Network	
	(CAN	bus)

(c)	2017						P.	Höfner3

CAN	bus	-	Mechanism	I

CAN	controller 
(receive)

CAN	controller 
(sent)

CAN	controller 
(sent)

TX	buffer

TX	bufferRX	buffer

49

49

• broadcast	mechanism	

• in-built	filter	to	ignore	 
messages

(c)	2017						P.	Höfner4

CAN	bus	-	Mechanism	II

CAN	controller 
(receive)

CAN	controller 
(sent)

CAN	controller 
(sent)

TX	buffer

TX	bufferRX	buffer

• sending	is	timed	

• internal	prioritisation  
mechanism	

49

13

CAN	ID Data

Comp	1 0 0 0 0 1 1 0 1 …

Comp	2 0 0 0 0 1 1 1

(c)	2017						P.	Höfner5

• Designed	for	sensor	data	
• payload	only	8	bytes	

• no	security/authentication	

• cannot	send	large	messages 
 
Need	for	Fragmentation	and	 
Reassembly	

• Priority	Inversion	
• high-priority	messages	can	be	blocked	

• in-built	prioritisation	is	not	enough  
 
 
Need	for	Prioritisation

CAN	bus	-	Limitations

(c)	2017						P.	Höfner6

Split,	Send,	Reassemble

(c)	2017						P.	Höfner7

• Developed	formal	(unambiguous)	specification	

• Used	process	algebra	AWN	

• AWN	was	successfully	used	to	model	and	verify	AODV	

– offers	data	structure,	and	different	sending	mechanisms 
such	as	broadcast,	unicast,	etc.	

– AWN	has	a	formally	defined	semantics	

• offers	support	for		

– model	checking	(Uppaal/mCRL2)  
(there	is	a	sound	translation,	not	yet	fully	implemented)	

– interactive	theorem	provers	(Isabelle/HOL)	

– pen-and-paper	reasoning

Formal	Specification

(c)	2017						P.	Höfner8

The	Multiplexer

(c)	2017						P.	Höfner9

The	Multiplexer	-	Main	Loop

22 A Formal Specification of a CAN Bus Protocol Stack

X(exp1, . . . ,expn) process name with arguments
P+Q choice between processes P and Q
[j]P conditional process: proceed as P, but only if j evaluates to true
[[var := exp]]P assignment followed by process P
broadcast(ms).P broadcast message ms followed by P
groupcast(dests ,ms).P multicast ms to all destinations dests
unicast(dest ,ms).P I Q unicast ms to dest; if successful proceed with P; otherwise with Q
deliver(data).P deliver data to application layer
receive(msg).P receive a message and store its contents in the variable msg
(x ,P) process P with initial valuation of its variables
V hhW parallel valuated processes on the same component
id :V addressed component
CkD parallel composition of addressed components

Table 1: Process Expressions

the process with an in-queue (see App. B); so technically the multiplexer receives a message from this
queue. MULTIPLEXERH maintains two data variables prio and txs. The former implements a priority
queue which contains all CAN messages to be sent via the CAN bus; the later is a local storage which
keeps track of the CAN IDs currently sent by or stored in the TX buffers of the CAN controller.

Process 9 Multiplexer—Main Loop11

MULTIPLEXERH(prio ,txs)
def
=

1. receive(msg) .
2. (
3. [msg= can(cid ,data)] /* new fragment */
4. NEW CANH(msg ,prio ,txs)
5. + [msg= cancel(cid)] /* cancellation message received */
6. CANCEL CH(cid ,prio ,txs)
7. + [msg= msgd(tid ,ack(suc))] /* message from CAN controller */
8. ACK CH(suc ,tid ,prio ,txs)
9.)

First, a message has to be received (Line 1). After that, the process MULTIPLEXERH checks the type
of the message and calls a process that can handle this message: in case a CAN message is received from
the fragmentation protocol, the process NEW CANH is called (Line 4); in case of an incoming cancellation
request the process CANCEL CH is executed (Line 6); and in case a message from the CAN driver is
read, the process ACK CH is called (Line 8). In case a message of any other type is received, the process
MULTIPLEXERH deadlocks; it is a proof obligation to check that this will not occur.
New CAN Message. In case a new CAN message is sent from an instance of the fragmentation protocol,
the process NEW CANH stores the CAN message and determines whether the newly received message
is important enough to be forwarded directly to the CAN driver. The formal specification is shown in
Process 10.

The received CAN message is first stored in the queue prio (Line 2), which contains all messages
to be sent via the CAN bus. The protocol just stores the newly received message, it does not check for
emptiness of prio(cid). Therefore, to guarantee that no message is lost the property prio(cid) =?

msg

needs to hold before Line 2 is executed; it needs to be proven. The protocol then determines whether the
message should directly be forwarded to the CAN driver—this is the case if the CAN ID is among the

11The numbering of the processes is according to App. B.

(c)	2017						P.	Höfner10

• Description	Language	(Syntax)

Process	Algebra	AWN

X(exp1, . . . , expn)

[']P

[[var := exp]]P

broadcast(ms).P

deliver(data).P

process calls
nondeterministic
choiceif-construct (guard)
assignment followed
bybroadcast
groupcast
unicast
send
receive
deliver

groupcast(dests,ms).P

unicast(dest,ms).P I Q

receive(msg).P

P +Q

send(ms).P

(c)	2017						P.	Höfner11

Developed	Process	Algebra

• Description	Language	(Syntax)	

• Parallel	Operator

deterministic choice

loops

[']P + [¬']Q

P (n) = [[n := n+ 1]].P (n)

(c)	2017						P.	Höfner12

The	Multiplexer

(c)	2017						P.	Höfner13

Multiplexer	-	new	CAN	message
10 A Formal Specification of a CAN Bus Protocol Stack

Process 10 New CAN Message Received11

NEW CANH(msg ,prio ,txs)
def
=

1. [msg= can(cid ,data)] /* distill cid out of msg */
2. [[prio(cid) := msg]] /* store message in priority queue */
3. (
4. [cid 2 n best(prio)] /* message should be scheduled */
5. (
6. [tx

cid

(tid ,txs) =?
cid

] /* TX buffer tid is free */
7. [[txs(tid) := (cid,false)]]
8. unicast(CH ,msgd(tid ,msg)) . /* pass message to CAN driver, to put in free slot */
9. MULTIPLEXERH(prio ,txs)

10. + [8tid 2 TX : tx
cid

(tid ,txs) 6=?
cid

] /* cancel message with lowest priority */
11. (
12. [[wid := getWorstTX(txs)]] /* identify TX buffer containing lowest CAN ID */
13. (
14. [tx

abort

(wid ,txs) = false] /* TX buffer wid is still active */
15. [[txs(wid) := (tx

cid

(wid ,txs),true)]] /* set the abort-flag of buffer wid */
16. unicast(CH ,msgd(wid ,cancel())) . /* cancel contents of buffer wid */
17. MULTIPLEXERH(prio ,txs)
18. + [tx

abort

(wid ,txs) = true] /* TX was already asked to clean up */
19. MULTIPLEXERH(prio ,txs)
20.)
21.)
22.)
23. + [cid 62 n best(prio)] /* message not important enough to be scheduled right now */
24. MULTIPLEXERH(prio ,txs)
25.)

n messages with lowest CAN IDs currently stored in prio (Line 4). Here n equals the number #TX of
TX buffers available in the CAN controller. Lines 5–22 present all actions to be performed in case the
message is forwarded to the CAN driver.

In case there exists an empty TX buffer tid, which is currently not used, the message should be
sent to this TX buffer, and there is no need to erase a used TX buffer. The empty buffer tid is chosen in
Line 6.12 The CAN message is then forwarded to the connected CAN driver CH in Line 8. Since the CAN
driver needs also the name of the TX buffer to be used, the value tid is sent next to the CAN message
msg. The multiplexer also updates the local variable txs (Line 7), which keeps track of those CAN
identifiers that are currently sent by or stored in the TX buffers. By this, the newly received message has
been handled and the process can return to the main routine (Line 9).

In case all available TX buffers are used (Line 10), the least important message—the CAN message
with the largest CAN ID—needs to be removed from the TX buffer and rescheduled later. This avoids
the blocking example presented earlier. In Line 12 the process NEW CANH determines the name of the TX
buffer that contains the ‘worst’ message currently handled for sending. The CAN message that should
be stored in this particular TX buffer cannot be put there immediately; a cancellation request needs to
be sent first, and an acknowledgement needs to be received that informs the multiplexer about a free TX
buffer. The routine checks whether a cancellation request was sent earlier, using the function tx

abort

.
If this is the case, it returns straight to the process MULTIPLEXERH ; otherwise a cancellation message is
sent to the CAN driver CH , identifying the TX buffer that needs cancellation (Line 16).

12Since tid is a free variable, it will be instantiated with a value that validates tx
cid

(tid ,txs) =?
cid

; so the condition in
the guard is satisfied iff 9tid 2 TX : tx

cid

(tid ,txs) =?
cid

.

(c)	2017						P.	Höfner14

• Specification	
• 13	processes	written	in	AWN	

• around	25	function	

• unambiguous	

• Implementation	

• implemented	by	Galois	Inc.	(US)	

• in	Ivory	(Haskell)	

• Features	
• can	send	messages	of	arbitrary	length	

• solves	problem	of		priority	inversion

Overall	Protocol

(c)	2017						P.	Höfner15

• Developed	within	DARPA’s	SMACCM	program 
(Secure	Mathematically-Assured	Composition	of	Control	Models)	

• cooperation	by	various	partners,	such	as	  
Galois	Inc.,	Rockwell	Collins,	Boing,	 
U	Minnesota 

Research	Vehicle

Motors Sensors

Microcontroller

Flight Control

RTOS

CAN

seL4

Mission Board

Linux

CAN

File System/
Drivers

 Network

Gateway

COTS
GPS

(c)	2017						P.	Höfner16

• Unreachability	of	ERROR	states	(“undesired	behaviour”)	

• The	protocol	is	deadlock	free	

• Each	component	is	deadlock	free	

• Any	message	received	has	been	sent	

• Any	message	sent	is	received  
(under	side	conditions)	

• Buffers	have	maximal	(finite)	length	

• The	application	layer	can	always	succeed	to	submit	new	messages

Desired	Properties

(c)	2017						P.	Höfner17

• Assumptions	on	the	CAN	bus	

• perfect	channel:	every	message	sent	will	be	received	by	all	nodes	

• possibility	that	a	CAN	message	is	sent	and	received	twice	 
(possibly	because	of	CAN’s	error	frame)	

• messages	sent	over	the	CAN	bus	are	not	reordered  
(CAN	controller	allows	overtaking)	

• Requirements	on	the	Input	Data	

• every	message	type	(CAN	ID)	has	a	unique	sender	

• every	message	split	has	a	fixed	length	

• distribution	of	the	message	IDs	is	fixed	at	compile	time	

• application	layer,	after	submission	of	a	message,	will	wait	for	an	

acknowledgement	(positive	or	negative)	before	submitting	a	new	message		

• Remark	on	CAN	IDs:	extended	frame	up	to	229	=	536,870,912

Assumptions

(c)	2017						P.	Höfner18

• Specification	
• designed	formal	(unambiguous)	fragmentation	protocol	on	top	of	CAN	bus	

• solved	priority	inversion	problem	of	CAN	

• Analysis	
• first	analysis	performed,	using	Uppaal  
(component-wise)	

• combination	of	components	via	Rely/Guarantee	Reasoning 
(manual,	not	perfectly	formal	yet)	

• Additional	Component	

• Gateway	to	avoid	DoS	and	

Conclusion

(c)	2017						P.	Höfner18

• Specification	
• designed	formal	(unambiguous)	fragmentation	protocol	on	top	of	CAN	bus	

• solved	priority	inversion	problem	of	CAN	

• Analysis	
• first	analysis	performed,	using	Uppaal  
(component-wise)	

• combination	of	components	via	Rely/Guarantee	Reasoning 
(manual,	not	perfectly	formal	yet)	

• Additional	Component	

• Gateway	to	avoid	DoS	and	

Conclusion

www.data61.csiro.au

Trustworthy	Systems	
Peter	Höfner

t					+61	2	9490	5861	
e				peter.hoefner@data61.csiro.au	

w			www.data61.csiro.au

http://www.data61.csiro.au
http://www.data61.csiro.au

(c)	2017						P.	Höfner20

• ISO-TP	or	ISO	15765-2		
• international	standard		

• splits	longer	messages	into	multiple	frames	up	to	4095	bytes	

• no	extra	prioritisation	

• Shin	follows	the	spirit	of	ISO-TP	
• 	capacity	of	6	bytes	only	(more	overhead)	

• TP	2.0	or	VW	TP	2.0	

• sends	a	couple	of	messages	to	establish	a	“channel”	between	the	sender	and	

the	recipients	

• then	exchanges	and	sets	up	channel	parameters	such	as	the	number	of	

frames		

• overhead	lies	in	the	setup-phase.	

• CANopen	
• fragmentation	is	a	subprotocol	

• too	much	of	an	overhead.

Related	Work

