| | | |
NN S AN SNSN

AN AN NNN N

[I
\ / ~ /\I/ I/\I \I/\

N NS 7

Split, Send, Reassemble: - I/ I
A Formal Specification of a CAN Bus Protocol Stack NSNS

|
Rob van Glabbeek and Peter Hofner N

April 2017

&

http://www.data61.csiro.au

The Controller Area Network oy &
Bl
(CAN bus) ~N

e Controller Area Network (CAN bus) is a vehicle bus standard
* Designed to allow microcontrollers and devices to communicate
* Robert Bosch GmbH (80s/1991)

CAN bus - Mechanism | oara | @

CAN controller
(receive)

49
RX buffer

CAN controller
(sent)

CAN controller
(sent)

TX buffer

49

TX buffer

3

(c) 2017 P. Hofner

* broadcast mechanism

* in-built filter to ignore
messages

CAN bus - Mechanism Il (o | @
4 p 4 D

CAN controller +®| CAN controller |
(receive) (sent)
13
| RX buffer | TX buffer)

~— \;/

CAN controller
(sent)
49
L TX buffer p
* sending is timed
* internal prioritisation
CAN ID Data .
mechanism
Comp1 |0|10|0|0(1(1]|0]1]...
Comp2 |0|0|0]|0|1|1]|1 y-/

4 (c) 2017 P. Hofner

CAN bus - Limitations (o | @y

~
* Designed for sensor data N “\ ‘\\ \A (\
e payload only 8 bytes vy o “\"\;\x\,\ /
* no security/authentication “*\Q’\\‘)\\Svg‘\‘\%‘ \\\Q‘\\\\ \
e cannot send large messages “RR “\‘ \\\"
Wi
Need for Fragmentation and :
Reassembly

* Priority Inversion
¢ high-priority messages can be blocked

* in-built prioritisation is not enough _tieroconrter

Need for Prioritisation

5 (c) 2017 P. Hofner

Split, Send, Reassemble o | Dy

Protocol Chain for Splitting and Sending a Message

/ i e ~_CAN \

. cancel
Fragmentation P

k — — CAN
g —»| Fragmentation p—— Multiplexer :m:{ CAN]‘_
necv;nclc(el _J
Application Fragmentation ——

Protocol Chain for Receiving and Reassembling a Message

-)

[Application —

7
\.

N\
J
J/

[Application

~
J

Reassembly]<CAN CAN]._

(—lh—\

[Application

6 (c)2017 P. H6fner

Formal Specification (o | @y

* Developed formal (unambiguous) specification

* Used process algebra AWN
e AWN was successfully used to model and verify AODV

— offers data structure, and different sending mechanisms
such as broadcast, unicast, etc.

— AWN has a formally defined semantics
e offers support for

— model checking (Uppaal/mCRL2)
(there is a sound translation, not yet fully implemented)

— interactive theorem provers (Isabelle/HOL)
— pen-and-paper reasoning

7 (c) 2017 P. Hofner

The Multiplexer oara | @

MULTIPLEXER

NEW_CAN

CANCEL_C

8

(c) 2017 P. Hofner

The Multiplexer - Main Loop ﬁm @

Process 9 Multiplexe—Main Loop

) def
MULTIPLEXERy (prio,txs) =

1. receive(msg) .

2. (

3. [msg=can(cid,data)] /* new fragment */

4 NEW_CANg (msg,prio,txs)

5.+ [msg=cancel(cid)] /* cancellation message received */

6. CANCEL_Cy(cid,prio,txs)

7.+ [msg =msgd(tid,ack(suc))] /* message from CAN controller */
8. ACK_Cy(suc,tid,prio,txs)

9.)

9 (c) 2017 P. Hofner

Process Algebra AWN o e
~
 Description Language (Syntax)
X(expi,...,exp,) process calls
P+Q nondeterministic
] P if-construct (guard)
[var := exp| P assignment followed
broadcast(ms).P broadcast

groupcast(dests, ms).P groupcast
unicast(dest,ms).P ») ynicast

send(ms).P send
receive(msg). P receive
deliver(data).P deliver

10 (c) 2017 P. Hoéfner

Developed Process Algebra o |

* Description Language (Syntax)
PP+ [—¢]Q deterministic choice
P(n) =[n:=n+1].P(n) loops

 Parallel Operator

11 (c) 2017 P. Hofner

The Multiplexer oara | @

MULTIPLEXER

NEW_CAN

CANCEL_C

12

(c) 2017 P. Hofner

Multiplexer - new CAN message o |y

Process 10 New CAN Message Received

d
NEW_CANy (msg,prio,txs) &
1. [msg = can(cid,data)] /* distill cid out of msg */

2. [[prio(cid):=msg]l /* store message in priority queue */
3. (
4 [cid € n_best(prio)] /* message should be scheduled */
5. (
6 [txcia(tid,txs) = Lcial /* TX buffer tid is free */
7 [txs(tid) := (cid,false)]
8 unicast(Cy ,msgd(tid,msg)) . /* pass message to CAN driver, to put in free slot */
9. MULTIPLEXERy (prio,txs)
10. + [Vtid € TX : txcigq(tid,txs) # Lciq] /* cancel message with lowest priority */
1. (
12. [wid := getWorstTX(txs)]l /* identify TX buffer containing lowest CAN ID */
13. (
14. [tXabort(wid,txs) = false] /* TX buffer wid is still active */
15, [txs(wid) := (txcia(wid, txs),true)] /* set the abort-flag of buffer wid */
16. unicast(Cy ,msgd(wid,cancel())) . /* cancel contents of buffer wid */
17, MULTIPLEXERy (prio,txs)
18. + [tXaport (wid, txs) = true] /* TX was already asked to clean up */
19. MULTIPLEXERy (prio,txs)
20.)
21.)
22,)
23. + [cid ¢ n_best(prio)] /* message not important enough to be scheduled right now */
24, MULTIPLEXERy (prio,txs)
25.)

(c) 2017 P. Hofner

Overall Protocol (o | @y

* Specification
e 13 processes written in AWN
e around 25 function
e unambiguous

* Implementation
e implemented by Galois Inc. (US)
e in Ivory (Haskell)

* Features

® can send messages of arbitrary length
¢ solves problem of priority inversion

14 (c) 2017 P. Hofner

Research Vehicle (o | @y

* Developed within DARPA’s SMACCM program
(Secure Mathematically-Assured Composition of Control Models)

e cooperation by various partners, such as
Galois Inc., Rockwell Collins, Boing,

U Minnesota

f
(" N
l File System/ l ()
Drivers
4 R
(Flight Control) Linux
C CAN bl CAN L y —
/'y
C RTOS) C selL4) COTS
GPS
Microcontroller Mission Board
—_

' Motors ' ‘ Sensors ' Gateway

15 (c) 2017 P. Hofner

Desired Properties (o | @y

* Unreachability of ERROR states (“undesired behaviour”)
* The protocol is deadlock free

e Each component is deadlock free

* Any message received has been sent

* Any message sent is received
(under side conditions)

» Buffers have maximal (finite) length

* The application layer can always succeed to submit new messages

16 (c) 2017 P. Hofner

Assumptions o |

e Assumptions on the CAN bus
e perfect channel: every message sent will be received by all nodes

e possibility that a CAN message is sent and received twice
(possibly because of CAN’s error frame)

e messages sent over the CAN bus are not reordered
(CAN controller allows overtaking)

* Requirements on the Input Data
e every message type (CAN ID) has a unique sender
e every message split has a fixed length
e distribution of the message IDs is fixed at compile time

e application layer, after submission of a message, will wait for an
acknowledgement (positive or negative) before submitting a new message

* Remark on CAN IDs: extended frame up to 22°= 536,870,912

17 (c) 2017 P. Hofner

Conclusion o | @y

* Specification
e designed formal (unambiguous) fragmentation protocol on top of CAN bus
e solved priority inversion problem of CAN

e Analysis

e first analysis performed, using Uppaal
(component-wise)

e combination of components via Rely/Guarantee Reasoning
(manual, not perfectly formal yet)

18 (c) 2017 P. Hofner

Conclusion o | ey

* Specification
e designed formal (unambiguous) fragmentation protocol on top of CAN bus
e solved priority inversion problem of CAN

e Analysis

e first analysis performed, using Uppaal
(component-wise)

e combination of components via Rely/Guarantee Reasoning
(manual, not perfectly formal yet)

» Additional Component
e Gateway to avoid DoS and

18 (c) 2017 P. Hofner

| | | |
N NS S SANNSN

AN AN NSNSNN

\ / . /\I/l I/l\l I\I/l\

AN NS 7

~ ~
Trustworthy Systems I |
Peter Hofner N N\
t +61294905861 I I
e peter.hoefner@databl.csiro.au ” N

&

w www.databl.csiro.au

http://www.data61.csiro.au
http://www.data61.csiro.au

Related Work (o | @y

e ISO-TP or ISO 15765-2
¢ international standard
e splits longer messages into multiple frames up to 4095 bytes
e no extra prioritisation
 Shin follows the spirit of ISO-TP
® capacity of 6 bytes only (more overhead)
e TP2.00r VWTP2.0

e sends a couple of messages to establish a “channel” between the sender and
the recipients

e then exchanges and sets up channel parameters such as the number of
frames

e overhead lies in the setup-phase.

* CANopen
e fragmentation is a subprotocol
e too much of an overhead.

20 (c) 2017 P. Hofner

