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Separation Logic (Reynolds, O’Hearn et al. )| DATA | ®

* Extension to Hoare Logic
* Based on Separation Algebras of abstract heaps

e Captures the notion of disjointness in the world
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Separation Logic (Reynolds, O’Hearn et al. )| DATA | D

Motivation

* Pointer programs are hard to reason about

{p—a}
delete p

{p _}

The Frame Problem
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Motivation

* Pointer programs are hard to reason about

{p—aAnp — b}
delete p
{pvs AP — b}

The Frame Problem
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Separation Logic (Reynolds, O’Hearn et al. )| DATA | D

Motivation

* Pointer programs are hard to reason about

{p—=anp —bAp#p'}
delete p

{pA _ANp —bApF#p'}

The Frame Problem




Separation Logic (Reynolds, O’Hearn et al. )| DATA | D

Motivation

es,h=P
wheres is a store, h is a heap, and P is an assertion
over the given store and heap

s,h =P x(Q
<~ Elhl,hg. hi1 L hy and
h=hy Uhy and s,h; = P and s,hy = Q
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~
Frame Rule o | @y
~N 7

P} C{Q}
{Px R} C{Q *x R}

(mod(C) N fu(R) = 0)

e Risthe ‘Frame’

— Extending an environment with a disjoint
portion changes nothing

— Local Reasoning
— Compositional




Separation Algebras o |

e Separation logic can be lifted to algebra

* Allows abstract reasoning
* Transfers knowledge
* |deal for interactive and automated theorem proving

() Forwards and Backwards in Separation Algebra




Separation Algebras (Calcagno et al.) o |

e partial commutative monoid
partial plus (+), and neutral element (0)

 h # h’ captures the ‘definedness’ or partiality of (+)
* 0is the empty heap

r+0=2 x4#0

S,hIZP*Q — Elhl,hg. hl#hg/\hZhl—I—hg/\P(hl)/\Q(hg)
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Algebra of Assertions (Dang et al.) o | Dy

e Set-based semantics

[p] & {(s,h):s,h =p}.

[p*q] = [plUlql
PUu@ < {(s,hUbh'):(s,h)e PA(s,h)eQ
A doms(h) Ndom(h') = 0} .




Separating Implication o |
Magic Wand N 7

» Separating Implication P —x ()

— Extending by P produces Q over the combination

* Describes a mapping between heaps and ‘holes’

s,sh=EP—=Q < Vh'. (WL hands h'EP)
implies s,h' Uh = Q
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Separating Implication o |
Magic Wand N
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Separating Implication oy
Magic Wand N
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. . . . . ~
Conjunction version Implication o |

e Podus ponens

s,h = Qx (Q—P)
s,h |=
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. . . . . ~
Conjunction version Implication o |

e Podus ponens

Q@+ (Q@—=P)] € [P]




. . . . . ~
Conjunction version Implication o |

e Podus ponens

Qx+(Q—=*P) = P
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Conjunction version Implication o |

e Podus ponens

Qx+(Q—=*P) = P

* Currying/decurrying

(P+x@Q = R) & (P = @Q—=R)




Conjunction version Implication o |

e Podus ponens

Qx+(Q—=*P) = P

* Currying/decurrying

(P+x@Q = R) & (P = @Q—=R)

Galois connection
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Relationships between Operators o |
~
<~ Qalois >

P x @ P — Q)
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Backwards Reasoning o |

e Backward reasoning / reasoning in weakest precondition style

* for given postcondition Q and given program C, determine
weakest precondition wp(C, Q) such that

{wp(C,Q)} C {Q}

is valid Hoare triple

e but what about separation logic where frames occur?
{Px R} C{Q* R}

(problem with frame calculation)

Forwards and Backwards in Separation Algebra



Backwards Reasoning Il o |

e from Galois connection we get

(VR.{PxR} C {Q=+R}) < (VR.{Px(Q—=R)} C{R})

 used to transform specifications
for example

{p— _xR}setptrpv {p— v R}
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Backwards Reasoning Il o |

e from Galois connection we get

(VR.{PxR} C {Q=+R}) < (VR.{Px(Q—=R)} C{R})

 used to transform specifications
for example

{p— _x(p—v—xR)} set_ptr pv {R}
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Backwards Reasoning Il o |

 Allows now full backwards reasoning without calculating the
frame in every step
» Supported in Isabelle/HOL

e Easy patterns (alternation between implication and conjunction)
allow automated simplifications

Forwards and Backwards in Separation Algebra




Forward Reasoning ﬁm @

(VR. {P* R} C {Q+R}) < (VR. {R}C {77}




. -~
Forward Reasoning Il (o | @y

e |deal world

(VR.{PxR} C{Q+R}) & (VR.{R}C{Qx*x(P —& R)})
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More Separation Logic o | Gy

» there is another operator in the literature: septraction
s,hi=P —& Q
< dhg. h subheap of hy and s,hg — h = P and s, hy = ()

* algebraically:

P - Q & —(P—=(—Q))

"Q
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Forward Reasoning Il (o | @y

 |deal world seemingly impossible

(VR.{PxR} C{Q+R}) & (VR.{R}C{Qx*x(P —& R)})

e Can’t describe what happens in case where precondition doesn’t

hold {emp} delete p {77}
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Forward Reasoning Il (o | @y

 |deal world seemingly impossible

(VR.{PxR} C {Q*xR}) <& (VR.{R} C{Q*(P —® R)})

e Can’t describe what happens in case where precondition doesn’t

hold {emp} delete p {77}
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Relationships between Operators o |
~
<~ Qalois >
P x @ P — Q)
dual

P —® @
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Separating ‘Coimplication’ o | Dy
Magic Snake N~
. PQ < =(Px*(-Q))

 Removing P produces Q over the reduction

* Every time we can find a P in our heap, the rest of the heapisa Q
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Separating Coimplication (o | D
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Separating Coimplication (o | D
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Separating Coimplication o |
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. . . . ~
Separating ‘Coimplication’ o | Dy
Magic Snake N~

: PskQ < —(Px*(-Q))




Separating ‘Coimplication’ o | Dy
Magic Snake N~
. PQ < =(Px*(-Q))

(P Q = R) & (Q = (P~x=Q))

(Galois connection)

 many properties come for free from the Galois connection




Relationships between Operators @m @
~

(complete)

dual dual

«— Qalois ™

<« Galois __»




Specifications with Separating Conmpllcathmm ®

e P not satisfied by any subheap
P~ false

* specification of delete

{p+— _~> R} delete p {R}
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Back to Forward Reasoning ﬁm @

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

 Relax specifications/requirements

{Px R} C {Q* R}
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Back to Forward Reasoning ﬁm @

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

 Relax specifications/requirements

{P~=R} C {Q+ R}
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Back to Forward Reasoning @m @

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

 Relax specifications/requirements
{P~R} C {Q* R}

e another example
{p— _~ R} setptrpv {p+— vx* R}
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. -~
Forward Reasoning Il oy
~

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

e By Galois connections and dualities we get a rule for forward
reasoning

(VR. {P~«R} C {Q*R}) < (VR.{R}C{Q*(P —® R)})
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Forwards Reasoning IV o |

 allows backwards reasoning without calculating the frame in
every step

 supported in Isabelle/HOL

e easy patterns (alternation between implication and conjunction)
allow automated simplifications
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Forward Reasoning (Problems) ﬁm @

e we restricted ourselves to partial correctness
- no problem for backwards reasoning

- but for forward reasoning postcondition does not need to exist

* rules are only valid because we deal with partial correctness
{P} C {Q} & Vs. P(s) = (Vs'. Some s' = (Cs) = Q(s))

e if failure occurs anything is possible

{p > _} set_ptr p v {P=NP}
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Unified Correctness (o | @y

 introduce explicit failure state
» always describe what actually occurs

1P CAQ} = Vs. P(s) = Q(C(s))

* requirements:
 failed program execution stays failed

{fail} C' {fail}

 failure is separate from False

e we can determine whether or not we succeeded
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Extending the Model (o | @y

 New Heap Model

e Same as standard heap model, but we add a boolean flag for failure
p=v,g—=v".] = ([p—v,q—v".], True)
(h, False) + (h',—) = (h + R/, False)

e “Infinitely” many failure states
 New operators needed
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Extending the Model | (o | @y

* New Septraction operator for grabbing resources
s,hi=P — @Q Old
& Jho. h subheap of hy and s, ha — h = P and s,hs = @

32 Forwards and Backwards in Separation Algebra




Extending the Model | L | Dy

* New Septraction operator for grabbing resources
s,shEP —® Q
< dhso. h subheap of hy and s,hy — h = P and s, hs &= Q)
< dhy,he. = P and s, h; = Q and
hLlhi, ho = h+ hq

Old
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Extending the Model | L | Dy

* New Septraction operator for grabbing resources
s,shEP —® Q
< dhso. h subheap of hy and s,hy — h = P and s, hs &= Q)
< dhy,he. = P and s, h; = Q and
hLlhi, ho = h+ hq

Old

s,hi=P —& @

< dhy,he. = P and s, h; = Q and
if flag(h) then hLhy, ho = h + hy
else flag(ho) — (flag(h1) — h1Lho) A (lag(h) — hLhs)

New
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Extending the Model Il @m @
~

» Desired properties are satisfied

* Consuming: If the resource is there, we succeed
s,h=p—v) @ (p—v) = h=(emp,true)

* Collapsing: Once crashed, remain crashed

s,h =P —» ‘fail’ = h = (_, false)

* Paraconsistent: Removing something that didn’t exist yield failure

s,hi=p— _ —® emp = h=(_, false)
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The Good and The Bad (o | @y

 New operators satisfy Galois connections and dualities

“— T
[ 70 J Galois [ P 0 J

(dual dual)

= (=2

~ Galols __~

» Separation algebra is identical to the ‘old’ in case of
no failure

In case of failure, associativity of separating conjunction is lost
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The Good and The Bad (o | @y

 New operators satisfy Galois connections and dualities

“— T
[ 70 J Galois [ P 0 J

(dual dual)

= (=2

~ Galols __~

» Separation algebra is identical to the ‘old’ in case of
no failure

In case of failure, associativity of separating conjunction is lost

Is this natural? Is this problematic?
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Conclusion o | ey

* Framework for
backwards reasoning using weakest preconditions and
forward reasoning using strongest postconditions for Partial and
Unified Correctness

 Automation

» Basic examples demonstrated
e e.g. Linked-List Reverse
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