| | | |
N NS S SANNSN

AN AN NSNSNN

[I
\ 7”7 ~ /\I/ I/\I \I/\

AN NS 7

Verifying Liveness Properties: s S

: |
Assumptions and Problems "
Peter Hofner | |
(joint work with R. van Glabbeek and V. Dyseryn) P

IFIP 2.3, July 2017, Mooloolaba

www.databl.csiro.au %

Motivation e | @y

* Verification of/Reasoning about Safety Properties
* many applications
— routing protocols

— mutual exclusion
— TLBs (Gerwin’s talk)
— program/functional correctness (David’s talk)

2 Reasoning about Liveness

Motivation e | @y

* Verification of/Reasoning about Safety Properties
* many applications
— routing protocols
— mutual exclusion
— TLBs (Gerwin’s talk)
— program/functional correctness (David’s talk)

e “easy” to achieve
— at least we know what to do
— existence of solid theoretical foundations
— rely guarantee/Owicki-Gries/concurrent separation logic (Thomas)

— standard techniques relate (labelled) transition systemssimulation,
bisimulation, refinement, ...

2 Reasoning about Liveness

Motivation (2) ﬁm D

* Verification of/Reasoning about Liveness Properties
* many applications
— routing protocols

— mutual exclusion
— TLBs

3 Reasoning about Liveness

Motivation (2) ﬁm D

* Verification of/Reasoning about Liveness Properties
* many applications
— routing protocols

— mutual exclusion
— TLBs

* “easy” to achieve?

3 Reasoning about Liveness

Motivation (2) o | ey

* Verification of/Reasoning about Liveness Properties
* many applications
— routing protocols

— mutual exclusion
— TLBs

* “easy” to achieve? NO
— do | (we) even know what we do?

3 Reasoning about Liveness

An Example: | DATA | &
Peterson’s Mutual Exclusion Protocol N~

Process A

repeat forever

(¢, noncritical section

ly readyA = true

{3 turn := B

¢y, await (readyB = false \V turn = A)
/s critical section

s readyA = false

e a similar process for B (each line is atomic)
e readyA,readyB and turn are shared variables (Booleans)
e initial state: A is in a state before ¢y, and readyA = turn = false

Peterson’s Mutual Exclusion Protocol: um | &

Safety

Process A

repeat forever

(/; noncritical section

ly readyA := true

{3 turn := B

¢y await (readyB = false V turn = A)
U5 critical section

lg readyA := false

o Safety:

(

Process B

repeat forever

noncritical section

readyB := true

turn 1= A

await (readyA = false V turn = B)
critical section

readyB = false

there is at most one process in the critical section at any time

5 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &
Safety

Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mso readyB = true
{3 turn := B ms turn:= A
) ¢y await (readyB = false V turn = A)) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false

o Safety:
there is at most one process in the critical section at any time

D(_I(€5 A\ m5))

5 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &
Safety

Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mso readyB = true
{3 turn := B ms turn:= A
) ¢y await (readyB = false V turn = A)) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false
o Safety:

there is at most one process in the critical section at any time
D(_I(€5 A\ m5))

proof: homework

5 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &

Liveness

Process A

repeat forever

(/; noncritical section

ly readyA := true

{3 turn := B

¢y await (readyB = false V turn = A)
U5 critical section

lg readyA := false

e Liveness:

(

Process B

repeat forever

noncritical section

readyB := true

turn 1= A

await (readyA = false V turn = B)
critical section

readyB = false

if a process wants to access the critical section,

it will eventually do so

6 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &

Liveness

Process A

repeat forever
(/; noncritical section
ly readyA := true
{3 turn := B
¢y await (readyB = false V turn = A)
U5 critical section

lg readyA := false

e Liveness:

(

Process B
repeat forever

noncritical section

readyB := true

turn 1= A

await (readyA = false V turn = B)
critical section

readyB = false

if a process wants to access the critical section,

it will eventually do so

formalisation:

6 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &
Liveness

Process A Process B
repeat forever repeat forever
r oy s . f oy e .
/1 nmnoncritical section m71 noncritical section
ly readyA := true meo readyB := true
< {3 turn := B < ms turn:= A
¢y await (readyB = false V turn = A) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false
e Liveness:

if a process wants to access the critical section,
it will eventually do so

formalisation:
proof: does the property even hold

6 Reasoning about Liveness

Assumption I: Progress o |

A system in a state that admits an action
will eventually perform an action.

Peterson’s Mutual Exclusion Protocol: um | &
Liveness

Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mso readyB = true
< 3 turn := B < ms turn := A
¢y await (readyB = false V turn = A) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false
* Liveness:
if a process wants to access the critical section, it will eventually
do so

proof: does the property even hold

8 Reasoning about Liveness

Assumption I: Progress o |

A process in a state that admits a non-blocking
action will eventually perform an action.

* non-blocking action: any action that does not require cooperation

Peterson’s Mutual Exclusion Protocol: um | &
Liveness

Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mso readyB = true
< 3 turn := B < ms turn := A
¢y await (readyB = false V turn = A) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false
* Liveness:
if a process wants to access the critical section, it will eventually
do so

proof: does the property even hold

10 Reasoning about Liveness

Peterson’s Mutual Exclusion Protocol: um | &
Liveness

Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mso readyB = true
< 3 turn := B < ms turn := A
¢y await (readyB = false V turn = A) my await (readyA = false V turn = B)
U5 critical section ms critical section
| U6 TeadyA := false | me readyB := false
readyA || turn || readyB
. memor
e Liveness: !
if a process wants to access the critical section, it will eventually
do so

proof: does the property even hold

10 Reasoning about Liveness

Standard Assumption: Fairness ﬁm @

If an action is enabled infinitely often/perpetually,
the action will be taken

e there are about 25 different versions of fairness in the literature

Standard Assumption: Fairness ﬁm @

If an action is enabled infinitely often/perpetually,
the action will be taken

e there are about 25 different versions of fairness in the literature

* all of them imply liveness

. . ”~”~
Fairness Could be Considered Harmful | DA | %
~

repeat forever

if(z ==0) then z :=1 yi— g+ 1

* Should ¢(x ==1) hold?

. . ”~”~
Fairness Could be Considered Harmful | DA | %
~

repeat forever

if(z ==0) then z :=1 yi— g+ 1

* Should ¢(x ==1) hold?

Fairness Could be Considered Harmful @m @
~

repeat forever

if(z ==0) then z :=1 yi— g+ 1

* Should ¢(x ==1) hold?

e if the program runs on two machines YES
(if it runs on the same machine the OS hopefully guarantees this)

e progress cannot guarantee this
e addition of a fairness assumption seems appropriate

12 Reasoning about Liveness

. . ”~”~
Fairness Could be Considered Harmful | DA | %
~

repeat forever
if(zr ==0) then z := 1
Jy=y+1

* Should O(z ==1) hold?

. . ”~”~
Fairness Could be Considered Harmful | DA | @
~

repeat forever
if(zr ==0) then z := 1
Jy=y+1

* Should ¢(x ==1) hold?
e NO

repeat forever

e consider the program to be a specificationand ,.—,+1 as implementation

Fairness | Dan | @y

* required on top of a specification/implementation

e rules out particular (infeasible) paths
(similar to progress)

¢ requires deep understanding of the program
(in contrast to progress)

e progress and fairness are of different nature
— progress guarantees continuation, independent of action

— fairness guarantees particular actions to happen

14 Reasoning about Liveness

Fairness | Dan | @y

* required on top of a specification/implementation

e rules out particular (infeasible) paths
(similar to progress)

¢ requires deep understanding of the program
(in contrast to progress)

— dangerous since you may enforce properties that do not hold
(addition of fairness should be considered harmful)

e progress and fairness are of different nature
— progress guarantees continuation, independent of action

— fairness guarantees particular actions to happen

14 Reasoning about Liveness

Formalising and Proving Properties UATA | D

* most formalisms are based on labelled transition systems (LTSs)

repeat forever

if(r ==0) then z :=1 gyt 1

repeat forever
if(x ==0) then z :=1
Jy=y+1

Formalising and Proving Properties UATA | D

* most formalisms are based on labelled transition systems (LTSs)

repeat forever

if(x ==0) then z :=1 yi—y+1

repeat forever
if(x ==0) then z :=1
Jy=y+1

15 Reasoning about Liveness

Formalising and Proving Properties UATA | D

* most formalisms are based on labelled transition systems (LTSs)

repeat forever

if(x ==0) then z :=1 y eyt 1

repeat forever
if(x ==0) then z :=1
Jy=y+1

15 Reasoning about Liveness

Summary (intermediate) o | Dy

* progress not strong enough

* fairness should be considered to be harmful
e may rule out too many paths
* may be unrealistic (e.g. implementing a fair scheduler)

* if we find a better solution we loose property preservation under
bisimulation (and other relations)

e progress is a property on single processes,
we should consider interaction
(in particular when the (shared) memory is modelled)

Justness | Dae | @y

If a combination of components in a parallel
composition is in a state that admits a non-blocking
action, then one (or more) of them will eventually

partake in an action

Justness o |y

If a combination of components in a parallel
composition is in a state that admits a non-blocking
action, then one (or more) of them will eventually

partake in an action

* itis a progress property rather than a fairness assumption
there is a formal definition in CCS

Progress of (combination of) components

Justness (2) |fATA D

e justness can distinguish the two programs

repeat forever

if(x ==0) then z :=1 y ey + 1

repeat forever
if(x ==0) then z :=1
ly=y+1

18 Reasoning about Liveness

Justness (2) ﬁm D

e justness can distinguish the two programs

repeat forever

if(x ==0) then z :=1 y ey + 1

repeat forever
if(x ==0) then z :=1
ly=y+1

e 5O, are we done?

18 Reasoning about Liveness

Coloured Labelled Transition Systems |UATA D

e idea: label LTS with component performing the action

repeat forever

if(r ==0) then z :=1 J eyt 1
repeat forever
if(x ==0) then z :=1

Jy=y+1

* (you may want to add multicolors)

Coloured Labelled Transition Systems |UATA D

e idea: label LTS with component performing the action

if(z == 0) then o := 1 repeat forever

y=y+1
y=y+1 y=y+1 y=y+1 y:=y+1
x:=1 >Ix:_l >Iac:l >I:z:l >I;(;_1
I »O »O »O PO -re
y=y+1l y=y+l y=y+l y=y+l
repeat forever
if(x ==0) then z :=1

Jy=y+1

* (you may want to add multicolors)

Coloured Labelled Transition Systems @m D
~N 7

e idea: label LTS with component performing the action

repeat forever

if(zx ==0) th =1

if (x) then x Jim 1+ 1
y=y+1l y=y+l y=y+l y=y+l
x:=1 >Ix:_l >Iac:l >Iaz:l >I;(;_1
I »O »O »O PO rene
y=y+1 y:=y+1 y=y+1 yi=y+1

repeat forever

if(x ==0) then z :=1

Jy=y+1

* (you may want to add multicolors)

19 Reasoning about Liveness

Justness - Simplification Possible? |fm @

If a combination of components in a parallel
composition is in a state that admits a non-blocking
action, then one (or more) of them will eventually

partake in an action

Justness - Simplification Possible? |fm @

If a combination of components in a parallel
composition is in a state that admits a non-blocking
action, then one (or more) of them will eventually

partake in an action

a ‘ a

—»O0—»O

Yet Another Example (o | D

repeat forever repeat forever
MEeMy,
r:=x+1 T = —1

* under justness, does {(z == —1) hold?

Yet Another Example (o | D

repeat forever repeat forever
MEM,
r:=x+1 T = —1

* under justness, does {(z == —1) hold?

Yet Another Example (o | D

repeat forever repeat forever
MEM,
r:=x+1 T = —1

* under justness, does {(z == —1) hold? NO

Back to Peterson (o | @y

b1
~
Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mo readyB := true
{3 turn := B ms turn:= A
) ¢y await (readyB = false V turn = A)) my await (readyA = false V turn = B)
U5 critical section ms critical section
lg readyA = false | me readyB := false

readyA || turn || readyB

* under justness, does the liveness property hold?

22 Reasoning about Liveness

Back to Peterson (o | @y

b1
~
Process A Process B
repeat forever repeat forever
(/; noncritical section (m; noncritical section
ly readyA := true mo readyB := true
{3 turn := B ms turn:= A
) ¢y await (readyB = false V turn = A)) my await (readyA = false V turn = B)
U5 critical section ms critical section
lg readyA = false | me readyB := false

readyA || turn || readyB

* under justness, does the liveness property hold?
NO (reading can block writing)

22 Reasoning about Liveness

Reading blocks Writing (o | @y

e is this realistic? probably not

» extensions of well-established formalisms avoid this
e Petri Nets with Read Arcs
e CCS with signals
e also avoids reading to block reading (or other actions)

e extensions distinguish “state-changing” and “read” actions

e under these extensions Peterson can be proven to satisfy the
liveness property, under justness only

23 Reasoning about Liveness

Coloured LTSs adapted (o | D

repeat forever
write(x)

repeat forever

read(x)

MEN,

* insert active and passive partners (make reading “asymmetric”)

Coloured LTSs adapted o | 6
~N 7
repeat forever
rigle;é)forever read(z) rept;at(f;)rever
| write(x) wrielt

* insert active and passive partners (make reading “asymmetric”)

Peterson for N Processes | DATA | %

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety:
* liveness: |

25 Reasoning about Liveness

Peterson for N Processes | DATA | %

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety: YES, but ...
* liveness: |

25 Reasoning about Liveness

Peterson for N Processes | DATA | %

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety: YES, but ...

* liveness: progress:
|

25 Reasoning about Liveness

Peterson for N Processes | DATA | %

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety: YES, but ...

* liveness: progress: NO,
|

25 Reasoning about Liveness

Peterson for N Processes | DATA | %

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety: YES, but ...

* liveness: progress: NO,
justness: |

25 Reasoning about Liveness

Peterson for N Processes | DATA | @

Processi (i€ {1,...,N})

repeat forever
([¢/; noncritical section
by for jinl...N —1
s room|i| := j
Q8 Ay last]j] := i
U5 await (last[j] # i V (Vk # i, room|k] < j))
l¢ critical section
U7 roomli] := 0

 safety: YES, but ...

* liveness: progress: NO,
justness: NO (two write actions in parallel)

25 Reasoning about Liveness

Write/Write Actions e |y
What about Reality? N~

e write can block writing
e Peterson for N processes (PNP) has no liveness property

e write/write can happen in parallel and one action “wins”
e PNP is safe and live
e how to model this in (coloured) LTSs
— adapt active/passive components?
— parallel writing some kind of broadcast?

* write and write can happen in parallel
(potentially producing garbage)
* PNP is “alive”, but not safe any longer
e remark: no problem with normal Peterson algorithm
e remark: no garbage for Boolean (maybe false value, though)

26 Reasoning about Liveness

Write/Write Actions e |y
What about Reality? N7
e write can block writing
e Peterson for N processes (PNP) has no liveness property
e write/write can happen in parallel and one action “wins”
e PNP is safe and live
e how to model this in (coloured) LTSs
— adapt active/passive components?
— parallel writing some kind of broadcast?
* write and write can happen in parallel {6\\“‘
(potentially producing garbage) dp\@o
* PNP is “alive”, but not safe any longer e@‘ig’e\\
e remark: no problem with normal Peterson algorithm 9(\6\\\‘
?

e remark: no garbage for Boolean (maybe false value, t

26

Reasoning about Liveness

Conclusion: um @
Assumptions and Problems with Liveness \/

e formalisation can be error prone
e assumption I: progress

e assumption Il: fairness - dangerous
better justness

e be careful with bisimulation, simulation, refinement, ...
e use coloured extensions

* but what about reality

Conclusion: um @
Assumptions and Problems with Liveness \ ~

e formalisation can be error prone
e assumption I: progress

e assumption Il: fairness - dangerous
better justness

e be careful with bisimulation, simulation, refinement, ...
e use coloured extensions

* but what about reality

Did we get the foundations right?

| | | |
/ N NS S SANNSN

IE /\/ NSNS NSN N

R I B
\ / ~ /\I/ I/\I \I/\

AN NS 7

Thank you P
Data6l I I
Peter Hofner N N7
t +61294905861 l I

e peter.hoefner@databl.csiro.au P
w www.data6l.csiro.au

www.databl.csiro.au %

http://www.csiro.au/lorem

