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• Extension	to	Hoare	Logic	

• Based	on	Separation	Algebras	of	abstract	heaps	

• Captures	the	notion	of	disjointness	in	the	world

Separation	Logic	(Reynolds,	O’Hearn	et	al.)



Backwards	and	Forwards	in	Separation	Algebra

• Pointer	programs	are	hard	to	reason	about

3

Separation	Logic	(Reynolds,	O’Hearn	et	al.)
Motivation

The Frame Problem

{p !" a}
delete p
{p #!" }
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Separation	Logic	(Reynolds,	O’Hearn	et	al.)
Motivation

The Frame Problem

{p 7! a ^ p0 7! b}
delete p

{p 67! ^ p0 7! b}
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Separation	Logic	(Reynolds,	O’Hearn	et	al.)
Motivation

The Frame Problem

{ p !" a # p! !" b# p $= p!}
delete p

{ p $!" # p! !" b# p $= p!}



Backwards	and	Forwards	in	Separation	Algebra

• !
where	s	is	a	store,	h	is	a	heap,	and	P	is	an	assertion	!
over	the	given	store	and	heap

4

Separation	Logic	(Reynolds,	O’Hearn	et	al.)
Motivation

s, h |= P

s, h |= P ! Q

" # h1, h2. h1 $ h2 and

h = h1 %h2 and s, h1 |= P and s, h2 |= Q
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Frame	Rule

• R is the ‘Frame’ 
– Extending an environment with a disjoint 

portion changes nothing 
– Local Reasoning 
– Compositional 

{ P} C { Q}
{ P ! R} C { Q ! R} (mod(C) " fv (R) = #)



Backwards	and	Forwards	in	Separation	Algebra

• Separation	logic	can	be	lifted	to	algebra	

• Allows	abstract	reasoning	
• Transfers	knowledge	
• Ideal	for	interactive	and	automated	theorem	proving

6

Separation	Algebras
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• partial	commutative	monoid	!
partial	plus	(+),	and	neutral	element	(0)	

• h	#	h’	captures	the	‘definedness’	or	partiality	of		(+)	

• 0	is	the	empty	heap
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Separation	Algebras	(Calcagno	et	al.)

s, h |= P ⇤Q , 9h1, h2. h1#h2 ^ h = h1 + h2 ^ P (h1) ^Q(h2)



Backwards	and	Forwards	in	Separation	Algebra

• Set-based	semantics

8

Algebra	of	Assertions	(Dang	et	al.)

[[ p ]] , {(s, h) : s, h |= p} .

[[ p ! q ]] = [[ p ]] á" [[ q ]]

P á" Q # { (s, h " h!) : (s, h) $ P %(s, h!) $ Q
%doms(h) & dom(h!) = ' } .



Backwards	and	Forwards	in	Separation	Algebra

• Separating	Implication		
– Extending	by	P	produces	Q	over	the	combination		

• Describes	a	mapping	between	heaps	and	‘holes’

9

Separating	Implication
Magic	Wand

s, h |= P !" Q # $ h!. (h!% h and s, h! |= P)

implies s, h! & h |= Q

P �⇤Q
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Separating	Implication
Magic	Wand

P

P
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Separating	Implication
Magic	Wand

Q

Q



Backwards	and	Forwards	in	Separation	Algebra

• Podus	ponens	

• Currying/decurrying!
!
!
!
Galois	connection

11

Conjunction	version	Implication

s, h |= Q ! (Q "! P)
s, h |= P

(P ! Q " R) # (P " Q $! R)
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Conjunction	version	Implication

[[Q ! (Q "! P)]] # [[P]]

(P ! Q " R) # (P " Q $! R)
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Relationships	between	Operators

P ! Q P "! Q

P ! ! Q P " ! Q

dual

Galois

dual

Galois
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Backwards	Reasoning

• Backward	reasoning	/	reasoning	in	weakest	precondition	style	

• for	given	postcondition	Q	and	given	program	C,	determine	weakest	
precondition																					such	that!
!
!
is	valid	Hoare	triple		

• but	what	about	separation	logic	where	frames	occur?!
!
!
!
(problem	with	frame	calculation)

wp(C, Q)

{ wp(C, Q)} C { Q}

{ P ! R} C { Q ! R}
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• Program:		

• Specification	(Hoare	triple)!

• Assume	the	program	occurs	in	larger	context	and	the	
postcondition	is!
!

Example

copy ptr p p! = do{ x ! get ptr p; set ptr p! x}

{| p !" x # p! !" # R|} copy ptr p p! {| p !" x # p! !" x # R|}

{| R!! ! p! "# v ! a "# ! p "# v ! R!|}
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Backwards	and	Forwards	in	Separation	Algebra

Backwards	Reasoning	II

• from	Galois	connection	we	get	

• used	to	transform	specifications!
for	example

{p 7! ⇤R} set ptr p v {p 7! v ⇤R}

(! R. {P " R} C {Q " R}) # (! R. {P " (Q $" R)} C {R})



Backwards	and	Forwards	in	Separation	Algebra

Backwards	Reasoning	II

• from	Galois	connection	we	get	

• used	to	transform	specifications!
for	example

{ p !" # (p !" v $# R)} set ptr p v { R}

(! R. {P " R} C {Q " R}) # (! R. {P " (Q $" R)} C {R})



Backwards	and	Forwards	in	Separation	Algebra

Backwards	Reasoning	III

• Allows	now	full	backwards	reasoning	without	calculating	the	
frame	in	every	step	

• Supported	in	Isabelle/HOL	
• Easy	patterns	(alternation	between	implication	and	conjunction)	
allow	automated	simplifications	
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Forward	Reasoning

(! R. { P " R} C { Q " R} ) # (! R. { R} C { ??} )
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• Ideal	world	

Forward	Reasoning	II

(! R. { P " R} C { Q " R} ) # (! R. { R} C { Q " (P $! R)} )
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More	Separation	Logic

• there	is	another	operator	in	the	literature:	septraction	

• algebraically:	

PQ

P ! ! Q " Â(P !# (ÂQ))

s, h |= P ! ! Q

" # h2. h subheap ofh2 and s, h2 ! h |= P and s, h2 |= Q



Backwards	and	Forwards	in	Separation	Algebra20

• Ideal	world	seemingly	impossible	

• Cannot	describe	what	happens	in	cases	!
where	precondition	does	not	hold

Forward	Reasoning	II

{ emp} delete p { ??}

(! R. { P " R} C { Q " R} ) # (! R. { R} C { Q " (P $! R)} )
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• Ideal	world	seemingly	impossible	

• Cannot	describe	what	happens	in	cases	!
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Forward	Reasoning	II

{ emp} delete p { ??}
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Relationships	between	Operators

P ! Q P "! Q

P ! ! Q P " ! Q

dual

Galois

dual

Galois
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• !
!
!
!
!
!
!
!

• Removing	P	produces	Q	over	the	reduction	

• Every	time	we	can	find	a	P	in	our	heap,	the	rest	of	the	heap	is	a	Q

22

Separating	‘Coimplication’
Magic	Snake

P ! ! Q " Â(P ! (ÂQ))
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Separating	Coimplication

23
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Separating	Coimplication

23

P P
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Separating	Coimplication

23

P
Q

PQ



Backwards	and	Forwards	in	Separation	Algebra

• !
!
!
!
!
!
!
!

• many	properties	come	for	free	from	the	Galois	connection

24

Separating	‘Coimplication’
Magic	Snake

P ! ! Q " Â(P ! (ÂQ))

(P ! ! Q " R) # (Q " (P ! $Q))

(Galois connection)



Backwards	and	Forwards	in	Separation	Algebra

• !
!
!
!
!
!
!
!

• many	properties	come	for	free	from	the	Galois	connection

24

Separating	‘Coimplication’
Magic	Snake

P ! ! Q " Â(P ! (ÂQ))

(P ! ! Q " R) # (Q " (P ! $Q))

(Galois connection)



Backwards	and	Forwards	in	Separation	Algebra

Relationships	between	Operators
(complete)

P ! Q P "! Q

P ! ! Q P " ! Q

dual

Galois

dual

Galois
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• P	not	satisfied	by	any	subhead	

• specification	of	delete

26

Specifications	with	Separating	
Coimplication

P ! ! false

{ p !" ! #R} delete p { R}
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• Ideal	world	seemingly	impossible	

• Relax	specifications/requirements	

• another	example

Back	to	Forward	Reasoning

{ P ! R} C { Q ! R}

{ p !" ! #R} set ptr p v { p !" v # R}

(! R. { P " R} C { Q " R} ) #$ (! R. { R} C { Q " (P %! R)} )
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• Ideal	world	seemingly	impossible	

• By	Galois	connections	and	dualities	we	get	a	rule	for	forward	
reasoning

Forward	Reasoning	III

(! R. { P ! " R} C { Q " R} ) # (! R. { R} C { Q " (P $! R)} )

(! R. { P " R} C { Q " R} ) #$ (! R. { R} C { Q " (P %! R)} )
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Forwards	Reasoning	IV

• allows	backwards	reasoning	without	calculating	the	frame	in	!
every	step	

• supported	in	Isabelle/HOL	
• easy	patterns	(alternation	between	implication	and	conjunction)	
allow	automated	simplifications	
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• we	restricted	ourselves	to	partial	correctness!
-	no	problem	for	backwards	reasoning!
-	but	for	forward	reasoning	postcondition	does	not	need	to	exist	

• rules	are	only	valid	because	we	deal	with	partial	correctness	

• if	failure	occurs	anything	is	possible

Forward	Reasoning	(Problems)

{ p !"# } set ptr p v { P=NP }

{ P} C { Q} ! " s. P(s) # (" s!. Some s! = ( C s) # Q(s!))
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• introduce	explicit	failure	state	
• always	describe	what	actually	occurs	

• requirements:	
• failed	program	execution	stays	failed	

• failure	is	separate	from	False	
• we	can	determine	whether	or	not	we	succeeded	

• closely	related	to	general	correctness	by	Jacobs	&	Gries	(1985)

Unified	Correctness

{ P} C { Q} ! " s. P(s) # Q(C(s))

{ fail} C { fail}



Backwards	and	Forwards	in	Separation	Algebra32

• New	Heap	Model	

• Same	as	standard	heap	model,	but	we	add	a	boolean	flag	for	failure	

• “Infinitely”	many	failure	states	

• But:	Galois	Connections	do	not	hold	any	longer!

Extending	the	Model

[p !" v, q !" v!..] " ([p !" v, q !" v!..], T rue)

(h, False) + ( h!, ! ) = ( h + h!, False)
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• New	Septraction	operator	for	grabbing	resources

Extending	the	Model	(New	Ops)

Old

New

s, h |= P ! ! Q

" # h2. h subheap ofh2 and s, h2 ! h |= P and s, h2 |= Q

" # h1, h2. |= P and s, h1 |= Q and

and h$ h1, h2 = h + h1

s, h |= P ! ! Q

" # h1, h2. |= P and s, h1 |= Q and

if ßag(h) then h$ h1, h2 = h + h1

else ßag(h2) % (ßag(h1) % h1$ h2) & (ßag(h) % h$ h2)
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• Desired	properties	are	satisfied	

• Consuming:	If	the	resource	is	there,	we	succeed	

• Collapsing:	Once	crashed,	remain	crashed	

• Paraconsistent:	Removing	something	that	didn’t	exist	yield	failure

Extending	the	Model	(New	Ops	II)

s, h |= ( p !" v) #! (p !" v) $ h = (emp , true )

s, h |= P ! ! ÔfailÕ" h = ( , false )

s, h |= p !" #! emp $ h = ( , false )
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• New	operators	satisfy	Galois	connections	and	dualities	

• Separation	algebra	is	identical	to	the	‘old’	in	case	of	!
no	failure	

• In	case	of	failure,	associativity	of	separating	conjunction	is	lost	

• Alternative	idea	(R.	Gore):	use	different	negation	!
(intuitionistic	logic	or	Sheffer	stroke)

The	Good	and	The	Bad

P ! Q P "! Q

P ! ! Q P " ! Q

dual

Galois

dual

Galois
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• Framework	for	!
backwards	reasoning	using	weakest	preconditions	and!
forward	reasoning	using	strongest	postconditions	for	Partial	and	
Unified	Correctness	

• Automation	

• Basic	examples	demonstrated	
• e.g.	Linked-List	Reverse	

• for	forward	reasoning:	big	case	study:	system	init	on	seL4

Conclusion
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