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Floyd-Hoare Logic IEATA D
(Forwards and Backwards) N

* Hoare triple {P} C;1 {Q}
 partial and total correctness
if {P} C; {Q}and {Q} Cy {R} then {P} C1:C2 {R}

 strengthening and weakening
Py=P {P}C{Q1} Q1= Qs
{P2} C {Q2}

weakest precondition wp(C, Q)
wp(C1 5 Ca, Q) = wp(Ch,wp(Ce, Q))

similar for strongest postcondition sp(C, P)
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Separation Logic (Reynolds, O’Hearn et al. )| DATA | %

* extension to Hoare logic
* based on separation algebras of abstract heaps

e captures the notion of disjointness in the world
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7~
Frame Rule || @y
N 7

P} C{Q}
{Px R} C{Q *x R}

(mod(C) N fu(R) = 0)

e Ris the ‘Frame’

— extending an environment with a disjoint portion
changes nothing

— local reasoning

— compositional




Separation Logic (Reynolds, O’Hearn et al.)IEATA D
Motivation N7

s, hi=P
wheres is a store, h is a heap, and P is an assertion
over the given store and heap

s,h = Px*(Q
p— E|h1,h2. hl 1 h2 and
h:h1Uh2 and S,hl — P and SahQ :Q
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Separation Logic Il “DATA | &
(Forwards and Backwards)

e problem with frame calculation
e specification: {p — a*q+> b} swap p q {p— bxq — a}

e assume the following precondition for forward reasoning

r—axqg—bxs—cxt—=dxp—a

- how to find the frame
- situation gets worse in case other operators of separation logic

are used
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Separating Implication % | D
Magic Wand N~

e separating Implication P —« ()
— extending by P produces Q over the combination

* describes a mapping between heaps and ‘holes’

s,shEP—=*Q < Vh'.(hL hands h'}EP)
implies s,h' Uh = Q
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Separation Algebras ﬁm D

separation logic can be lifted to algebra

allows abstract reasoning
transfers knowledge
ideal for interactive and automated theorem proving
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. . . . . v
Conjunction version Implication o | Dy

e modus ponens

Qx+(Q—=*P) = P

* currying/decurrying
(P+x@Q = R) & (P = @Q—=R)

Galois connection
(gives plenty of properties for free)
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Relationships between Operators ﬁm D

«— Qalois ™

P x @ P — Q)
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Backwards Reasoning (Recap) ﬁ{m D
N~

» backward reasoning / reasoning in weakest precondition style

« for given postcondition () and given program C determine weakest
precondition wp(C, Q)

e but what about separation logic where frames occur?
{P+R} C {Q* R}

(problem with frame calculation)
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Backwards Reasoning I -
N o

e from Galois connection we get *

(VR.{PxR} C {Q=+R}) < (VR.{Px(Q—=R)} C{R})

 used to transform specifications
for example

{p— _xR}setptrpv {p— v R}

* only in a setting where there are no free variable exist (as in our Isabelle/HOL implementation)

12 Forwards and Backwards in Separation Algebra



. pd
Backwards Reasoning I -
N o

e from Galois connection we get *

(VR.{PxR} C {Q=+R}) < (VR.{Px(Q—=R)} C{R})

 used to transform specifications
for example

{p— _x(p—v—xR)} set_ptr pv {R}

* only in a setting where there are no free variable exist (as in our Isabelle/HOL implementation)
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Backwards Reasoning IlI -
S o

o allows full backwards reasoning without calculating the frame in
every step

 supported by an Isabelle/HOL-framework

* easy patterns (alternation between implication and conjunction)
allow automated simplifications
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Forward Reasoning Il (o | @y
N 7

e ideal world

(VR.{PxR} C{Q+R}) & (VR.{R}C{Qx*x(P —& R)})

where —® is some subtraction operator
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More Separation Logic ﬁm | @

» there is another operator in the literature: septraction
s,hi=P —& Q
< dhg. h subheap of hy and s,hg — h = P and s, hy = ()

* algebraically:

P - Q & —(P—=(—Q))

"Q
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. e
Forward Reasoning Il (o | @y
N 7

 ideal world seemingly impossible
(VR.{PxR} C {Q*xR}) <& (VR.{R} C{Q*(P —® R)})

e can’t describe what happens in case where precondition doesn’t

hold {emp} delete p {77}
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Relationships between Operators @{m D
N 7~

«— Qalois ™

P x @ P — Q)

dual

P —® @
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Separating ‘Coimplication’ % 6D
Magic Snake N~

P~ @Q & —(Px(-Q))

* removing P produces)over the reduction

« every time we can find a P in our heap, the rest of the heap is a®)

Q P

.

S,]’L |: P~ Q & Vhy hg.(hlJ_hg and h = hy U hy and S,hl ): Pl)
implies s, ho = @
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Separating ‘Coimplication’ ﬁ{m | @
Magic Snake N~
PQ < =(Px*(-Q))

(P Q = R) & (Q = (P~x=Q))

(Galois connection)

 many properties come for free from the Galois connection




Relationships between Operators IEATA D
N 7~

(complete)

dual dual

<« Galois __»

«— Qalois ™
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Specifications with Separating ﬁm D

Coimplication N7
P not satisfied by any subheap
P~ false

* specification of delete

{p+— _~> R} delete p {R}
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Back to Forward Reasoning @{m D
N~

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

 Relax specifications/requirements
{P~R} C {Q* R}

e another example
{p— _~ R} setptrpv {p+— vx* R}
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Forward Reasoning Il (o | @y
N 7

* |deal world seemingly impossible
(VR.{PxR} C{Q=+R}) & (VR.{R} C{Q*(P —® R)})

e By Galois connections and dualities we get a rule for forward
reasoning

(VR. {P~«R} C {Q*R}) < (VR.{R}C{Q*(P —® R)})
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. 7~
Forwards Reasoning IV -
N~

allows forwards reasoning without calculating the frame in
every step

* supported in Isabelle/HOL

easy patterns (alternation between implication and conjunction)
allow automated simplifications

e partial correctness only
if failure occurs anything is possible
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Problems,
Excitements &
Open Questions
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. v
Generalised Correctness | |
N~

* introduce explicit one or many failure states
» always describe what actually occurs

1P CAQ} = Vs. P(s) = Q(C(s))

* requirements/wishes:
 failed program execution cannot be recovered
failure is separate from false
used in combination with Hoare logic
keep the algebraic connections
we can determine whether or not we succeeded
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A Single Failure Element |E1ATA D
N~

assumptions:
false * fail = false and P x fail = fail (P # false)

e associativity is lost (or no ‘inverses’ or false = fail )
(P * P) * fail = false x fail = false and

P x (P % fail) = P * fail = fail

predicates define a partial order; where does fail sit
it fail = P
then the weakening rule of Hoare logic is lost
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A Single Failure Element |E1ATA D
N~

e assumptions:
P x fail = fail (for all P)

* the Galois connections are lost
- still gives a decent model
- not useful for our approach for forward and backwards reasoning

* heaps define a partial order; where does fail sit

it fail = P
then the weakening rule of Hoare logic is lost
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Failure ‘Flag’ for Every Set @TA D
N 7

e predicate is set of heaps (satisfying predicate)
* add a single element to this set

* basically same problems as before
(even when considering more sophisticated orderings, such as

Egli-Milner, Hoare, Plotkin, Smyth, ...)
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Failure ‘Flag’ for Every Heap |E1ATA D

e each heap carries a flag
* isomorphic to pairs of sets

* similar problems as before
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Failure ‘Flag’ for Every Heap ﬁATA D

each heap carries a flag
* isomorphic to pairs of sets

* similar problems as before
* however some models ‘work’
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Extending the Model o | o

* New Septraction operator for grabbing resources

s,hEP —® @ Old
< dhsy. h subheap of hy and s,hy — h = P and s, hy = @
< dhi,hs.hy E P and s, h; = Q and

and hlhy, ho = h+ hq

s,hEP —® @ New
< dhi,hs.hy E P and s, h; = Q and

if flag(h) then h_lhy, ho = h + hy

else flag(hs) — (flag(h1) — h1Lhso) A (Hlag(h) — h_Lhso)
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Extending the Model oo | o
N~

e new operators satisfy Galois connections and dualities
“— T
[ 70 J Galois [ P 0 J

dual dual)

=

(=2

~ Galols __~

* separation algebra is identical to the ‘old’ in case of
no failure

in case of failure, associativity of separating conjunction is lost

non-intuitive when failure occurs
does not carry enough information
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Negative Heaps EATA | D

* sets of pairs of heaps (before we had pair of sets of heaps)
* inspired by the construction of integers out of natural numbers

(2,5) = -3 = (0,3)

* operations
s,shi=p—-®q < dhy:h] L h” and s,h; Epand s,hUh; Egq
where h is a pair of heaps and * heap reduction

(p+— v,emp) —® (p — v,emp) = (emp, emp)
(p — v,emp) —® (emp, emp) = (emp, p — v)
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Negative Heaps Il Y o

e but you cannot subtract a heap twice
(p— v,emp) —® (emp,p — v) = false

e can we have something like
(p+— v, emp) —® (emp, p — v) = (emp, [p — v,p — v])
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Conclusion |EATA | €D
The Good, the Bad, the Ugly ~

e framework for
backwards reasoning using weakest preconditions and
forward reasoning using strongest postconditions for partial
(and generalised correctness)

* automation
* basic examples demonstrated

e adding failure to achieve generalised correctness seems to loose
at least one crucial property

» generalised correctness is not nice; can we do better?
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