
www.csiro.au

Sometimes	Less	is	More: 
Why	too	many	input	languages	can	harm	a	system
Peter	Höfner		

June	2019

Sometimes	Less	is	More�2

Theorem:	We	developed	an	efficient	algorithm	to	solve	a	complex	
problem	using	problem	X,	using	the	Brisbane-methodology	and	
the	FMOz-formalism.	

Remark:	The	system	COOL	is	implemented	in	the	programming	
language	PL,	available	at	
																							http://fmoz_problemX.com.au/2019/	
	

A	Standard	Conference	Talk

http://fmoz_problemx.com.au/2019/

Sometimes	Less	is	More�3

Proof:	By	simple	induction

A	Standard	Conference	Talk

112 Part C. Complete proof of Lemma 4.7

Send (T1): AWN defines the inference rule

SEND (T1)
x ,send(ms).p

send(x (ms))�������! x ,p

There exists an (A1,A2) in A such that send(x (ms)) 2 A1 ^ x ,send(ms).p A1�! x ,p,
namely Pair 2.8 in Table 2.10. This base case can therefore be proven by find-
ing a set of derivations in mCRL2 such that T(x ,send(ms).p) a�!⌘ T(x ,p) for all
a 2 A2 =

�
send(J /0K,J /0K,JTx (ms)K)

.

In mCRL2, the following derivation can be made:
AXIOM

send(/0, /0,Tx (dest))
Jsend(/0, /0,Tx (ms))K
�����������!X

Definition 2.1
send(/0, /0,Tx (dest))

send(J /0K,J /0K,JTx (ms)K)
��������������!X

SEQ 1
send(/0, /0,Tx (dest)).TDOM(x)(x ,q)

send(J /0K,J /0K,JTx (ms)K)
��������������! TDOM(x)(x ,p)

T4
TDOM(x)(x ,send(ms).p)

send(J /0K,J /0K,JTx (ms)K)
��������������! TDOM(x)(x ,p)

T12
T(x ,send(ms).p)

send(J /0K,J /0K,JTx (ms)K)
��������������! T(x ,p)

In conclusion, the induction hypothesis holds for this base case.

Deliver (T1): AWN defines the inference rule

DELIVER (T1)
x ,deliver(data).p

deliver(x (data))���������! x ,p

There exists an (A1,A2) in A such that deliver(x (data)) 2 A1 ^ x ,deliver(data).p A1�!
x ,p, namely Pair 2.9 in Table 2.10. This base case can therefore be proven by finding a set
of derivations in mCRL2 such that T(x ,deliver(data).p) a�!⌘ T(x ,p) for all a 2 A2 =�

del(î,JTx (data)K)
�� î 2 T(IP)

.

In mCRL2, the following derivation can be made for all î 2 T(IP):
AXIOM

del(tî,Tx (data))
Jdel(tî ,Tx (data))K
����������!X

Definition 2.1
del(tî,Tx (data))

del(î,JTx (data)K)
����������!X

SEQ 1
del(tî,Tx (data)).TDOM(x)(x ,q)

del(î,JTx (data)K)
����������! TDOM(x)(x ,p)

Substitution
del(ip,Tx (data)).TDOM(x)(x ,q) [ip := tî]

del(î,JTx (data)K)
����������! TDOM(x)(x ,p)

SUM 2
Âip:T(IP) del(ip,Tx (data)).TDOM(x)(x ,q)

del(î,JTx (data)K)
����������! TDOM(x)(x ,p)

T5
TDOM(x)(x ,deliver(ms).p)

del(î,JTx (data)K)
����������! TDOM(x)(x ,p)

T12
T(x ,deliver(ms).p)

del(î,JTx (data)K)
����������! T(x ,p)

for ip /2 T(V). In conclusion, the induction hypothesis holds for this base case.

some crazy form
al m

ethods

Sometimes	Less	is	More�4

Remark:	Our	tool	also	supports	the	following	input	languages	
• process	algebras	CCS,	CSP,	ABC	
• Petri	Nets	
• Timed	Automata		
• Markov	Decision	Diagrams	and	Markow	Chains	
• …	

Therefore	it	is	really	user-friendly,	isn’t	it?

A	Standard	Conference	Talk

Sometimes	Less	is	More�5

Questions

A	Standard	Conference	Talk

?

Sometimes	Less	is	More�6

Question	Time

You accept all
these input languages and

transform them (internally) into the
formalism FMOz, what guarantees can

you give?  

Sometimes	Less	is	More�7

Question	Time

COOL

output

translation

FMOz calculationwhat guarantees  
do we have for PNs

Petri Nets

Sometimes	Less	is	More�8

• What	structure	does	your	translation	have	
- branching	bisimulation	
- strong/weak	bisimulation		
- justness-preserving	
- …	

• What	properties	can	be	checked	
- deadlock	
- livelock	
- timelock	
- safety	properties	
- liveness	properties	
- security/infoflow	properties

Further	Discussion

Sometimes	Less	is	More�9

Standard	Reply

It’s obvious, …

Sometimes	Less	is	More�10

• From	automata	to	some	formal	language	

• Is	this	a	good	translation?  
(CTL)	Property:	

• It	is	a	(strong)	simulation

A	Trivial	Example

s0

s1

s2

a

a

a

3

EG a

while (true) {
a

}

Sometimes	Less	is	More�10

• From	automata	to	some	formal	language	

• Is	this	a	good	translation?  
(CTL)	Property:	

• It	is	a	(strong)	simulation

A	Trivial	Example

s0

s1

s2

a

a

a

3

AG a

while (true) {
a

}

Sometimes	Less	is	More�11

A	(Non-)Trivial	Example

while (true) {
x == 0 ! x := 1

[] y := y ++
}

• From	automata	to	some	formal	language	

• It	is	a	strong	bisimulation	(roughly)	

• Is	this	a	good	translation?  
good	for	safety,	not	necessary	for	liveness	(see	Rob’s	talk@FMOz’18)  

s0 s1 s2kx:=1 y:=y++

3

Sometimes	Less	is	More�12

• Sometimes	Less	is	More	

• “Do	not	just	add	further	input	languages	to	your	tool”	

• If	you	do,	state	which	properties	 
can	be	shown  
(and	prove	it)	

• ask	others!

Intermediate	Results	and	Observations

COOL

output

translation

FMOz calculationwhat guarantees  
do we have for PNs

Petri Nets

Sometimes	Less	is	More�13

• standard	technique	to	compare	 
labelled	transition	systems	(LTSs)

Bisimulation:	A	Formal	Definition

12 Analysing AWN-specifications using mCRL2

Figure 1. Generalisations of Simulations

(a) p0 q0

p qR

R

a a

9q0.

(b) p0 q0

p qR

R

a f(a)

9q0.

(c) p0 q0

p00 q00

p qR

R

a

⌘

b1 b2 b3 b4

⌘

9q0, ({a}, {b1, b2, b3, b4})2A.

The process algebras AWN and mCRL2 generate each a labelled transition system (S,A,!), where
S is the set of all closed process algebra expressions, A is the set of possible actions, and !✓ S⇥A⇥S
is the labelled transition relation where the transitions Pp a�! Qp0 are derived from the sos rules.

A standard technique to compare two transitions systems is (bi)simulation (e.g. [18]). A binary
relation R ✓ S1 ⇥ S2 is a (strong) simulation3 [19] between transition systems L1 = (S1,A,!1) and
L2 = (S2,A,!2) if it satisfies, for a2A,

if pRq and p a�!1 p0 then 9q0. q a�!2 q0 and p0Rq0 .

Here p a�!1 p0 is a short-hand for (p,a, p0) 2!1. A bisimulation is a symmetric simulationrelation R
with both R and R˘ being simulations.4 If a bisimulation R with pRq exists then p and q are bisimilar.

Figure 1(a) illustrates the situation. Our definition slightly differs from the literature as it builds on
two transition systems; the common definition presupposes L1=L2. The definition requires an exact
match of action labels. AWN and mCRL2 do not feature the same labels. For example, R :*cast(m),
which is an action label of AWN, does not follow the syntax of mCRL2-actions.

We relax the definition of simulation and say that R ✓ S1 ⇥ S2 is a simulation modulo renaming
between L1 = (S1,A1,!1) and L2 = (S2,A2,!2) for a bijective renaming function f : A1 ! A2 if it
satisfies, for a 2 A1,

if pRq and p a�!1 p0 then 9q0. q f (a)��!2 q0 and p0Rq0 ;

see Figure 1(b). A bisimulation modulo renaming is a symmetric simulationrelation R with both R and
R˘ being simulationsmodulo renaming, using f and f�1, respectively. Processes p 2 S1, q 2 S2 are
bisimilar modulo renaming if a bisimulation modulo renaming R with pRq exists.

It is well known that all safety properties are preserved under bisimilarity; and therefore also under
bisimilarity modulo renaming, when the renaming function is applied to the safety property as well.5

Two mCRL2 processes p and q are data congruent, notation p ⌘ q, if q can be obtained by replacing
data expressions t occurring in p by expressions t 0 with JtK = Jt 0K, i.e. evaluating to the same data value.
For example, in mCRL2 a(1+2) ⌘ a(4�1). On AWN, we take ⌘ to be the identity. A (bi)simulation
(modulo renaming) up to ⌘ is defined as above, but with p0 ⌘R⌘ q0 (using relational composition,
denoted by juxtaposition) instead of p0Rq0.

Lemma 2 Data congruence ⌘ in mCRL2 is a strong bisimulation.

The proof is straight forward, using structural induction over the inference rules of mCRL2 (Tables 6–
8). I don’t believe the proof is in the book, but please check again

3This paper does not treat weak simulations, etc.; therefore we omit the word ‘strong’.
4The symbol ˘ denotes the converse of a relation, i.e., R̆ =df {(y,x) | (x,y) 2 R}.
5See [10] for a formal definition of safety property for labelled transition systems.

A binary relation R ✓ S1 ⇥ S2 is a strong simulation between two transition
systems if it satisfies, for all a

if pR q and p
a�!1 p0 then 9q0. q a�!2 q0 and p0 R q0 .

A bisimulation is a relation R with both R and R˘ being strong simulations.

Sometimes	Less	is	More�14

• From	AWN	(Algebra	for	Wireless	Networks)  
to	mCRL2	(milli	Common	Representation	Language)	

• why:	AWN	is	ideal	for	reasoning	about	routing	protocols  
																(see	FMOz’18) 
										mCRL2	provides	more	than	50	tools	 
																(model	checker,	simulator,	analyser,	…) 
																http://mcrl2.org  
											

It’s	Obvious:	A	Case	Study

http://mcrl2.orh

Sometimes	Less	is	More�15

AWN	vs	mCRL2

AWN (process algebra) mCRL2 (process algebra)

choice (+), composition (.), … choice (+), composition (.), …

data structure data structure

process call process call

layered (nodes, networks, …) single layer

4 different synchronisations 1 operator

dynamic topologies ???
creatin

g a bisim
ulatio

n between both  

is obvious
creatin

g a bisim
ulatio

n between both  

is stra
ightfo

rw
ard

creatin
g a bisim

ulatio
n between both  

is obvious

Sometimes	Less	is	More�15

AWN	vs	mCRL2

AWN (process algebra) mCRL2 (process algebra)

choice (+), composition (.), … choice (+), composition (.), …

data structure data structure

process call process call

layered (nodes, networks, …) single layer

4 different synchronisations 1 operator

dynamic topologies ???
creatin

g a bisim
ulatio

n between both  

is stra
ightfo

rw
ard

Sometimes	Less	is	More�16

• 1	Master’s	Thesis	(of	a	very	smart	student)	
• 12	months	of	work		
• 1	conference	publication	
• 60+	pages	proof	
• required	the	introduction	of	2	new	variants	of	bisimulation	
• we	did	several	mistakes	in	our	translation	that	were	only	
discovered	through	formal	proof	

• But	yes,	a	translation	from	any	input	language	is	obvious	and	
straightforward

AWN	to	mCRL2:	A	Summary

Sometimes	Less	is	More�17

• The	formal	translation	(most	parts)

AWN	to	mCRL2
10 Rob van Glabbeek, Peter Höfner, and Djurre van der Wal

Table 4. Translation function T (Sequential Processes)

TV (⇣,broadcast(ms).P) =
P

D:Set(IP) cast(IP, D,ms⇣)·TV (⇣, P)

TV (⇣,groupcast(dests,ms).P) =
P

D:Set(IP) cast(dests
⇣
, D,ms⇣)·TV (⇣, P)

TV (⇣,unicast(dest ,ms).P I Q) = cast({dest⇣}, {dest⇣},ms⇣)·TV (⇣, P)

+ ¬uni({dest⇣}, ;,ms⇣)·TV (⇣, Q)

TV (⇣, send(ms).P) = send(;, ;,ms⇣)·TV (⇣, P)

TV (⇣,deliver(data).P) =
P

ip:IP del(ip, data⇣)·TV (⇣, P)

TV (⇣, receive(m).P) =
P

D,D0:Set(IP)
m:MSG

receive(D, D0, m)·TV [{m}(⇣
\m
, P)

TV (⇣, Jv := expK P) =
P

y:sort(v)(y = exp⇣) !

(
P

v:sort(y)(v = y) ! t·TV [{v}(⇣
\v
, P))

TV (⇣, X(exp1, · · · , expn
)) = X(exp⇣

1, · · · , exp⇣

n
)

TV (⇣, P +Q) = TV (⇣, P) +TV (⇣, Q)

TV (⇣, [']P) =
P

Fv(')\V '
⇣ ! t·TV [Fv(')(⇣, P)

a consequence the action cast carries three arguments: the intended destinations
of a message (a set of addresses), the actual destinations, and the message itself.
For broadcast the set of intended addresses is the set of all IP addresses; for
groupcast this set is determined by the AWN-primitive. The second argument
hinges on the set of reachable destinations (destinations in transmission range),
which is only specified on the level of node expressions—see e.g. Rule 2 of Ta-
ble 2. To allow arbitrary sets of destinations these rules use the sum operator
of mCRL2 (

P
)—the correct set of destinations is chosen later, by using the

parallel operator k. For the translation we have to assume that D and D0 are
fresh variables; in [17] we list all required side conditions, which we skip here to
ease readability. After the broadcast-action has been translated, the remaining
process P is handled by the same translation function. The unicast primitive
uses a similar translation in case of successful transmission, but also allows the
possibility of failure, which is handled by the action ¬uni.

The translation of the send-primitive is straightforward; the only subtlety
is that the translation has to have as many arguments as the cast-action, since
both synchronise with receive—we use the empty set ; as dummy parameter.
The deliver-action delivers data to the client; as this can happen at any network
node, we sum over all possible recipients ip. The translation of receive follows
the style of broadcast and groupcast, and synchronises with the cast-action
later on. Hence it needs the same number of arguments as that action; as all
parameters are unknown, we sum over all of them. After the receive-action, the
variable m is added to the set V of variables maintained by the AWN-process
P . However, since in the mCRL2 translation it occurs under the scope of a sum
operator, it is not instantiated with a concrete message in the translation of P ,
and hence is removed from the domain of ⇣—notation ⇣

\m.
Since mCRL2 does not provide a primitive for assignment, the translation

of [[v := exp]]P is non-trivial. The idea behind our translation is to sum over all

Sometimes	Less	is	More�18

• the	translation	(the	ugly	parts)

AWN	to	mCRL2
12 Rob van Glabbeek, Peter Höfner, and Djurre van der Wal

Table 6. Translation function T (Network Nodes and Networks)

T(ip :P :R) = rV �C(T(P)kG(ip,R))

where V = {t, starcast,arrive,deliver, connect,disconnect}
where C = {cast|cast ! starcast,¬uni|¬uni ! t,

del|del ! deliver, receive|receive ! arrive}

where G(ip, R)
def
=

P
D,D0:Set(IP)
m:MSG

(R \ D = D0) ! cast(D, D0, m)·G(ip, R)

+
P

d:IP
m:MSG

(d /2 R) ! ¬uni({d}, ;, m)·G(ip, R)

+
P

data:DATA del(ip, data)·G(ip, R)
+

P
ip0:IP connect(ip, ip0)·G(ip, R [{ip0})

+
P

ip0:IP connect(ip0, ip)·G(ip, R [{ip0})
+

P
ip0,ip00:IP(ip /2 {ip0, ip00}) ! connect(ip0, ip00)·G(ip, R)

+
P

ip0:IP disconnect(ip, ip0)·G(ip, R\{ip0})
+

P
ip0:IP disconnect(ip0, ip)·G(ip, R\{ip0})

+
P

ip0,ip00:IP(ip /2 {ip0, ip00}) ! disconnect(ip0, ip00)·G(ip, R)

+
P

D,D0:Set(IP)
m:MSG

(ip 2 D0) ! receive(D, D0, m)·G(ip, R)

+
P

D,D0:Set(IP)
m:MSG

(ip /2 D0) ! arrive(D, D0, m)·G(ip, R)

T(MkN) = ⇢RrV �{arrive|arrive!a}�C(T(M)kT(N))

where R = {a ! arrive, c ! connect,d ! disconnect, s ! starcast}
where V = {a, c,d,deliver, s, t}
where C = {starcast|arrive ! s, connect|connect ! c,

disconnect|disconnect ! d}
T([M]) = ⌧{t}rV ⇢{starcast!t}�C(T(M)kH)

where V = {t,newpkt,deliver, connect,disconnect}
where C = {newpkt|arrive ! newpkt}

where H
def
=
P

ip:IP,data:DATA,dest:IP newpkt({ip}, {ip}, newpkt(data, dest))·H

synchronised action into t, which later becomes an internal action ⌧ . To enforce
synchronisation, we apply the allow-operator r, and restrict the set of actions
to those possible. Among others this disallows all proper multi-actions.

Table 6 shows the translation rules for network nodes, networks and encap-
sulated networks. All rules use combinations of the mCRL2-operators r and � ,
similar to the last rule of Table 5. The process G is used to select the correct set
of nodes receiving a message—remember that we sum over all possible sets on
the level of sequential processes (see Table 4). It also introduces the primitives
for changing network topologies, such as connecting and disconnecting two
nodes. The rule for k features two � -operators, as mCRL2 forbids a single one
to have overlapping redexes. The encapsulation allows only actions with name
newpkt, deliver, connect, disconnect, as well as the ‘to-be’ silent action t.
The process H handles the injection of a new data packet, where all parame-
ters (point of injection ip, the destination dest as well the content data of the
message) are unknown; we sum over these values.

Sometimes	Less	is	More�19

• The	formal	translation	(most	parts)

AWN	to	mCRL2

TV (⇣,broadcast(ms).P) =
P

D:Set(IP) cast(IP, D,ms⇣)·TV (⇣, P)

TV (⇣,groupcast(dests,ms).P) =
P

D:Set(IP) cast(dests
⇣
, D,ms⇣)·TV (⇣, P)

TV (⇣,unicast(dest ,ms).P I Q) = cast({dest⇣}, {dest⇣},ms⇣)·TV (⇣, P)

+ ¬uni({dest⇣}, ;,ms⇣)·TV (⇣, Q)

TV (⇣, send(ms).P) = send(;, ;,ms⇣)·TV (⇣, P)

TV (⇣,deliver(data).P) =
P

ip:IP del(ip, data⇣)·TV (⇣, P)

TV (⇣, receive(m).P) =
P

D,D0:Set(IP)
m:MSG

receive(D, D0, m)·TV [{m}(⇣
\m
, P)

TV (⇣, Jv := expK P) =
P

y:sort(v)(y = exp⇣) !

(
P

v:sort(y)(v = y) ! t·TV [{v}(⇣
\v
, P))

TV (⇣, X(exp1, · · · , expn
)) = X(exp⇣

1, · · · , exp⇣

n
)

TV (⇣, P +Q) = TV (⇣, P) +TV (⇣, Q)

TV (⇣, [']P) =
P

Fv(')\V '
⇣ ! t·TV [Fv(')(⇣, P)

10 Rob van Glabbeek, Peter Höfner, and Djurre van der Wal

Table 4. Translation function T (Sequential Processes)

TV (⇣,broadcast(ms).P) =
P

D:Set(IP) cast(IP, D,ms⇣)·TV (⇣, P)

TV (⇣,groupcast(dests,ms).P) =
P

D:Set(IP) cast(dests
⇣
, D,ms⇣)·TV (⇣, P)

TV (⇣,unicast(dest ,ms).P I Q) = cast({dest⇣}, {dest⇣},ms⇣)·TV (⇣, P)

+ ¬uni({dest⇣}, ;,ms⇣)·TV (⇣, Q)

TV (⇣, send(ms).P) = send(;, ;,ms⇣)·TV (⇣, P)

TV (⇣,deliver(data).P) =
P

ip:IP del(ip, data⇣)·TV (⇣, P)

TV (⇣, receive(m).P) =
P

D,D0:Set(IP)
m:MSG

receive(D, D0, m)·TV [{m}(⇣
\m
, P)

TV (⇣, Jv := expK P) =
P

y:sort(v)(y = exp⇣) !

(
P

v:sort(y)(v = y) ! t·TV [{v}(⇣
\v
, P))

TV (⇣, X(exp1, · · · , expn
)) = X(exp⇣

1, · · · , exp⇣

n
)

TV (⇣, P +Q) = TV (⇣, P) +TV (⇣, Q)

TV (⇣, [']P) =
P

Fv(')\V '
⇣ ! t·TV [Fv(')(⇣, P)

a consequence the action cast carries three arguments: the intended destinations
of a message (a set of addresses), the actual destinations, and the message itself.
For broadcast the set of intended addresses is the set of all IP addresses; for
groupcast this set is determined by the AWN-primitive. The second argument
hinges on the set of reachable destinations (destinations in transmission range),
which is only specified on the level of node expressions—see e.g. Rule 2 of Ta-
ble 2. To allow arbitrary sets of destinations these rules use the sum operator
of mCRL2 (

P
)—the correct set of destinations is chosen later, by using the

parallel operator k. For the translation we have to assume that D and D0 are
fresh variables; in [17] we list all required side conditions, which we skip here to
ease readability. After the broadcast-action has been translated, the remaining
process P is handled by the same translation function. The unicast primitive
uses a similar translation in case of successful transmission, but also allows the
possibility of failure, which is handled by the action ¬uni.

The translation of the send-primitive is straightforward; the only subtlety
is that the translation has to have as many arguments as the cast-action, since
both synchronise with receive—we use the empty set ; as dummy parameter.
The deliver-action delivers data to the client; as this can happen at any network
node, we sum over all possible recipients ip. The translation of receive follows
the style of broadcast and groupcast, and synchronises with the cast-action
later on. Hence it needs the same number of arguments as that action; as all
parameters are unknown, we sum over all of them. After the receive-action, the
variable m is added to the set V of variables maintained by the AWN-process
P . However, since in the mCRL2 translation it occurs under the scope of a sum
operator, it is not instantiated with a concrete message in the translation of P ,
and hence is removed from the domain of ⇣—notation ⇣

\m.
Since mCRL2 does not provide a primitive for assignment, the translation

of [[v := exp]]P is non-trivial. The idea behind our translation is to sum over all

Sometimes	Less	is	More�20

• Source	and	target	language	often	 
have	different	primitives 
(different	labels	on	transitions)

Bisimulation	modulo	Renaming

12 Analysing AWN-specifications using mCRL2

Figure 1. Generalisations of Simulations

(a) p0 q0

p qR

R

a a

9q0.

(b) p0 q0

p qR

R

a f(a)

9q0.

(c) p0 q0

p00 q00

p qR

R

a

⌘

b1 b2 b3 b4

⌘

9q0, ({a}, {b1, b2, b3, b4})2A.

The process algebras AWN and mCRL2 generate each a labelled transition system (S,A,!), where
S is the set of all closed process algebra expressions, A is the set of possible actions, and !✓ S⇥A⇥S
is the labelled transition relation where the transitions Pp a�! Qp0 are derived from the sos rules.

A standard technique to compare two transitions systems is (bi)simulation (e.g. [18]). A binary
relation R ✓ S1 ⇥ S2 is a (strong) simulation3 [19] between transition systems L1 = (S1,A,!1) and
L2 = (S2,A,!2) if it satisfies, for a2A,

if pRq and p a�!1 p0 then 9q0. q a�!2 q0 and p0Rq0 .

Here p a�!1 p0 is a short-hand for (p,a, p0) 2!1. A bisimulation is a symmetric simulationrelation R
with both R and R˘ being simulations.4 If a bisimulation R with pRq exists then p and q are bisimilar.

Figure 1(a) illustrates the situation. Our definition slightly differs from the literature as it builds on
two transition systems; the common definition presupposes L1=L2. The definition requires an exact
match of action labels. AWN and mCRL2 do not feature the same labels. For example, R :*cast(m),
which is an action label of AWN, does not follow the syntax of mCRL2-actions.

We relax the definition of simulation and say that R ✓ S1 ⇥ S2 is a simulation modulo renaming
between L1 = (S1,A1,!1) and L2 = (S2,A2,!2) for a bijective renaming function f : A1 ! A2 if it
satisfies, for a 2 A1,

if pRq and p a�!1 p0 then 9q0. q f (a)��!2 q0 and p0Rq0 ;

see Figure 1(b). A bisimulation modulo renaming is a symmetric simulationrelation R with both R and
R˘ being simulationsmodulo renaming, using f and f�1, respectively. Processes p 2 S1, q 2 S2 are
bisimilar modulo renaming if a bisimulation modulo renaming R with pRq exists.

It is well known that all safety properties are preserved under bisimilarity; and therefore also under
bisimilarity modulo renaming, when the renaming function is applied to the safety property as well.5

Two mCRL2 processes p and q are data congruent, notation p ⌘ q, if q can be obtained by replacing
data expressions t occurring in p by expressions t 0 with JtK = Jt 0K, i.e. evaluating to the same data value.
For example, in mCRL2 a(1+2) ⌘ a(4�1). On AWN, we take ⌘ to be the identity. A (bi)simulation
(modulo renaming) up to ⌘ is defined as above, but with p0 ⌘R⌘ q0 (using relational composition,
denoted by juxtaposition) instead of p0Rq0.

Lemma 2 Data congruence ⌘ in mCRL2 is a strong bisimulation.

The proof is straight forward, using structural induction over the inference rules of mCRL2 (Tables 6–
8). I don’t believe the proof is in the book, but please check again

3This paper does not treat weak simulations, etc.; therefore we omit the word ‘strong’.
4The symbol ˘ denotes the converse of a relation, i.e., R̆ =df {(y,x) | (x,y) 2 R}.
5See [10] for a formal definition of safety property for labelled transition systems.

A binary relation R ✓ S1 ⇥S2 is a strong simulation modulo renaming between
two transition systems for a bijective renaming function f , if, for all a

if pR q and p
a�!1 p0 then 9q0. q f(a)�!2 q0 and p0 R q0 .

A bisimulation modulo renaming is a relation R with both R and R˘ being
strong simulations modulo renaming.

Sometimes	Less	is	More�21

• we	also	had	to	take	data	congruence	into	account	 
(actions										,																		and																		should	be	treated	the	way)	

• luckily,	data	congruences	are	“standard”	
• in	our	setting	data	concurrence	()	is	a	strong	bisimulation	
• strong	bisimulations	are	compositional

Bisimulation	and	Data	Congruence

a(3) a(1 + 2) a(6� 3)

⌘

Sometimes	Less	is	More�22

• The	formal	translation	(most	parts)

AWN	to	mCRL2

TV (⇣,broadcast(ms).P) =
P

D:Set(IP) cast(IP, D,ms⇣)·TV (⇣, P)

TV (⇣,groupcast(dests,ms).P) =
P

D:Set(IP) cast(dests
⇣
, D,ms⇣)·TV (⇣, P)

TV (⇣,unicast(dest ,ms).P I Q) = cast({dest⇣}, {dest⇣},ms⇣)·TV (⇣, P)

+ ¬uni({dest⇣}, ;,ms⇣)·TV (⇣, Q)

TV (⇣, send(ms).P) = send(;, ;,ms⇣)·TV (⇣, P)

TV (⇣,deliver(data).P) =
P

ip:IP del(ip, data⇣)·TV (⇣, P)

TV (⇣, receive(m).P) =
P

D,D0:Set(IP)
m:MSG

receive(D, D0, m)·TV [{m}(⇣
\m
, P)

TV (⇣, Jv := expK P) =
P

y:sort(v)(y = exp⇣) !

(
P

v:sort(y)(v = y) ! t·TV [{v}(⇣
\v
, P))

TV (⇣, X(exp1, · · · , expn
)) = X(exp⇣

1, · · · , exp⇣

n
)

TV (⇣, P +Q) = TV (⇣, P) +TV (⇣, Q)

TV (⇣, [']P) =
P

Fv(')\V '
⇣ ! t·TV [Fv(')(⇣, P)

10 Rob van Glabbeek, Peter Höfner, and Djurre van der Wal

Table 4. Translation function T (Sequential Processes)

TV (⇣,broadcast(ms).P) =
P

D:Set(IP) cast(IP, D,ms⇣)·TV (⇣, P)

TV (⇣,groupcast(dests,ms).P) =
P

D:Set(IP) cast(dests
⇣
, D,ms⇣)·TV (⇣, P)

TV (⇣,unicast(dest ,ms).P I Q) = cast({dest⇣}, {dest⇣},ms⇣)·TV (⇣, P)

+ ¬uni({dest⇣}, ;,ms⇣)·TV (⇣, Q)

TV (⇣, send(ms).P) = send(;, ;,ms⇣)·TV (⇣, P)

TV (⇣,deliver(data).P) =
P

ip:IP del(ip, data⇣)·TV (⇣, P)

TV (⇣, receive(m).P) =
P

D,D0:Set(IP)
m:MSG

receive(D, D0, m)·TV [{m}(⇣
\m
, P)

TV (⇣, Jv := expK P) =
P

y:sort(v)(y = exp⇣) !

(
P

v:sort(y)(v = y) ! t·TV [{v}(⇣
\v
, P))

TV (⇣, X(exp1, · · · , expn
)) = X(exp⇣

1, · · · , exp⇣

n
)

TV (⇣, P +Q) = TV (⇣, P) +TV (⇣, Q)

TV (⇣, [']P) =
P

Fv(')\V '
⇣ ! t·TV [Fv(')(⇣, P)

a consequence the action cast carries three arguments: the intended destinations
of a message (a set of addresses), the actual destinations, and the message itself.
For broadcast the set of intended addresses is the set of all IP addresses; for
groupcast this set is determined by the AWN-primitive. The second argument
hinges on the set of reachable destinations (destinations in transmission range),
which is only specified on the level of node expressions—see e.g. Rule 2 of Ta-
ble 2. To allow arbitrary sets of destinations these rules use the sum operator
of mCRL2 (

P
)—the correct set of destinations is chosen later, by using the

parallel operator k. For the translation we have to assume that D and D0 are
fresh variables; in [17] we list all required side conditions, which we skip here to
ease readability. After the broadcast-action has been translated, the remaining
process P is handled by the same translation function. The unicast primitive
uses a similar translation in case of successful transmission, but also allows the
possibility of failure, which is handled by the action ¬uni.

The translation of the send-primitive is straightforward; the only subtlety
is that the translation has to have as many arguments as the cast-action, since
both synchronise with receive—we use the empty set ; as dummy parameter.
The deliver-action delivers data to the client; as this can happen at any network
node, we sum over all possible recipients ip. The translation of receive follows
the style of broadcast and groupcast, and synchronises with the cast-action
later on. Hence it needs the same number of arguments as that action; as all
parameters are unknown, we sum over all of them. After the receive-action, the
variable m is added to the set V of variables maintained by the AWN-process
P . However, since in the mCRL2 translation it occurs under the scope of a sum
operator, it is not instantiated with a concrete message in the translation of P ,
and hence is removed from the domain of ⇣—notation ⇣

\m.
Since mCRL2 does not provide a primitive for assignment, the translation

of [[v := exp]]P is non-trivial. The idea behind our translation is to sum over all

Sometimes	Less	is	More�23

• the	layered	structure	of	AWN	 
required	another	generalisation

Warped	Bisimulation
12 Analysing AWN-specifications using mCRL2

Figure 1. Generalisations of Simulations

(a) p0 q0

p qR

R

a a

9q0.

(b) p0 q0

p qR

R

a f(a)

9q0.

(c) p0 q0

p00 q00

p qR

R

a

⌘

b1 b2 b3 b4

⌘

9q0, ({a}, {b1, b2, b3, b4})2A.

The process algebras AWN and mCRL2 generate each a labelled transition system (S,A,!), where
S is the set of all closed process algebra expressions, A is the set of possible actions, and !✓ S⇥A⇥S
is the labelled transition relation where the transitions Pp a�! Qp0 are derived from the sos rules.

A standard technique to compare two transitions systems is (bi)simulation (e.g. [18]). A binary
relation R ✓ S1 ⇥ S2 is a (strong) simulation3 [19] between transition systems L1 = (S1,A,!1) and
L2 = (S2,A,!2) if it satisfies, for a2A,

if pRq and p a�!1 p0 then 9q0. q a�!2 q0 and p0Rq0 .

Here p a�!1 p0 is a short-hand for (p,a, p0) 2!1. A bisimulation is a symmetric simulationrelation R
with both R and R˘ being simulations.4 If a bisimulation R with pRq exists then p and q are bisimilar.

Figure 1(a) illustrates the situation. Our definition slightly differs from the literature as it builds on
two transition systems; the common definition presupposes L1=L2. The definition requires an exact
match of action labels. AWN and mCRL2 do not feature the same labels. For example, R :*cast(m),
which is an action label of AWN, does not follow the syntax of mCRL2-actions.

We relax the definition of simulation and say that R ✓ S1 ⇥ S2 is a simulation modulo renaming
between L1 = (S1,A1,!1) and L2 = (S2,A2,!2) for a bijective renaming function f : A1 ! A2 if it
satisfies, for a 2 A1,

if pRq and p a�!1 p0 then 9q0. q f (a)��!2 q0 and p0Rq0 ;

see Figure 1(b). A bisimulation modulo renaming is a symmetric simulationrelation R with both R and
R˘ being simulationsmodulo renaming, using f and f�1, respectively. Processes p 2 S1, q 2 S2 are
bisimilar modulo renaming if a bisimulation modulo renaming R with pRq exists.

It is well known that all safety properties are preserved under bisimilarity; and therefore also under
bisimilarity modulo renaming, when the renaming function is applied to the safety property as well.5

Two mCRL2 processes p and q are data congruent, notation p ⌘ q, if q can be obtained by replacing
data expressions t occurring in p by expressions t 0 with JtK = Jt 0K, i.e. evaluating to the same data value.
For example, in mCRL2 a(1+2) ⌘ a(4�1). On AWN, we take ⌘ to be the identity. A (bi)simulation
(modulo renaming) up to ⌘ is defined as above, but with p0 ⌘R⌘ q0 (using relational composition,
denoted by juxtaposition) instead of p0Rq0.

Lemma 2 Data congruence ⌘ in mCRL2 is a strong bisimulation.

The proof is straight forward, using structural induction over the inference rules of mCRL2 (Tables 6–
8). I don’t believe the proof is in the book, but please check again

3This paper does not treat weak simulations, etc.; therefore we omit the word ‘strong’.
4The symbol ˘ denotes the converse of a relation, i.e., R̆ =df {(y,x) | (x,y) 2 R}.
5See [10] for a formal definition of safety property for labelled transition systems.

A binary relation R ✓ S1 ⇥ S2 is a A-warped simulation up to ⌘ between two
transition systems for a relation A (between sets of action labels) if it satisfies

if pR q and p
a�!1 p00 then 9A1,A2, p0, q0.

(a 2 A1, p00 ⌘ p0, A1 AA2, p
A1�!1⌘ p0, q

A2�!2⌘ q0 and p0 R q0) ,

where p
A�!1⌘ p0 :, 8a 2 A.9p00. p a�!1 p00 ^ p00 ⌘ p0.

An A-warped bisimulation up to ⌘ is a relation R with R is an A-warped
bisimulation up to ⌘ and R˘ Ă -warped bisimulation up to ⌘.

Sometimes	Less	is	More�24

• we	have	brilliant	tools	that	give	formal	guarantees	
• adding	another	input	language	carelessly	may	lead  
-	false	results	  
-	reduces	confidence	in	formal	methods	and	formal	tools  
-	reduces	our	credibility

Conclusion

Sometimes	Less	is	More�25

• keep	asking	(raise	awareness	for	the	problem)	

• how	to	scale	the	proof	effort	 
(our	case	study	were	2	process	algebras,	no	time,	no	probabilities)	

• what	structure	is	needed	to	maintain	properties 
-	safety	=	(strong)	bisimulation  
-	liveness	=	justness	(or	fairness)	?  
-	security	=	???	

• is	there	a	generic	way	to	prove	these	translations 
(I	doubt)

Future	Work

www.csiro.au

Thank	you
Data61	
Peter	Höfner

t					+61	2	9490	5861	
e				peter.hoefner@data61.csiro.au	
w			www.data61.csiro.au

http://www.csiro.au/lorem

