Australian
S =/» National

2 University

Applied Formal Methods

Australian
‘e ‘g National

University

Disclaimer

 this is not a normal scientific talk
 introduces my research interests (partly)
* hopefully inspires discussion (and cooperation)
« advertises future talks (if there is interest)

Australian

sa National

University

Formal Methods (FM)

In computer science ... formal methods are a particular kind of mathematically

rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

Australian

sa National

University

Formal Methods (FM)

In computer science ... formal methods are a particular kind of mathematically

rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

 What is “Applied Formal Methods”

Australian

32 National

University

Formal Methods (FM)

In computer science ... formal methods are a particular kind of mathematically

rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

What is “Applied Formal Methods”

bridge the gap between FM and ‘real’ applications

(over the years a lot of FM techniques were developed but not
deployed)

Australian
S/, National
SR

University

Applied Formal Methods

« missing link between ‘theory’/FM and applications

Australian
S/, National
&% O

University

Applied Formal Methods

« missing link between ‘theory’/FM and applications

logic, automata, process

algebra, concurrency ...

Australian

eg National
University

Applied Formal Methods

« missing link between ‘theory’/FM and applications

logic, automata, process

algebra, concurrency ...

protocols, hardware,

kernels, garbage
collection

Australian

eg National
University

Applied Formal Methods

« missing link between ‘theory’/FM and applications

logic, automata, process
algebra, concurrency ...

protocols, hardware,
kernels, garbage
collection

Australian
‘e ‘Q, National

University

Price to Pay

« sometimes it is extremely frustrating

Australian

sa National

University

Price to Pay

sometimes it is extremely frustrating

r

we know that X can
be used forY;

it's just a big case
study; no research!

Australian

eg National

University

Price to Pay

sometimes it is

extremely frustrating

))

who cares? the program runs
most of the time

(correct = we know;
incorrect = not realistic)

Australian

sz National

University

Price to Pay

« sometimes it is extremely frustrating

((] 1\
we who am runs
be|most

it's| (corr

stu inc stic)

Australian
» National

23 University

... however

* rewarding (at least at a personal level)
German prof:
“we do not need another researchers who sits in his office and
proves yet another theorem” (that’s what | did in my Ph.D.)

« challenging (as it requires knowledge in multiple areas)

* reveals shortcomings in FM
(scalability, missing foundations ...)

* long-term impact (hopefully)

Australian
S/, National
University

Part |. Protocol Analysis

* modelling
* analysis

e verification

Australian
» National

23 University

Key Outcomes

* new process algebra (as it was required)
« model checking: quick check for counterexamples
« theorem proving: verification and proof automation

 case studies

« AODV: complete and detailed model (including time)
found short comings (AODV is not loop free)

 OLSR & OSPF model completed (partly funded by DST)

« communication protocols including CAN bus
(funded by DARPA)

* revealed a problem with verifying liveness (see below)

Australian
S/, National
SR

2 University

Vision: Practical Protocol Engineering

Verification /

Design Improvement

REQ, i.e. do nothln, o
ate(rt (31p 0,val,1,sip))] .

answer the RREQ with a RREP/
[zt := update(rt (01p,osn val ,hops + 1, sip

= mdx(sn, dsn)] /*update the sqn of ip
IIrt = update(rt, (sip, 0, val, 1,sip))] /*update the route t
unicast(nhop(rt, o:.p),rrep(O dlp,sn oip,ip)) .
AODV(ip,sn,rt,rregs,store)
+ [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) A(oip, rreqig
(dip & vD(rt) V sqn(rt,dip) < dsn V sqnf(rt,dip) = unk)]
/*forward RREQ*/
[zt := update(rt, (oip, osn, val, hops + 1,sip))] /*updaty
reqs := rregs U {(oip, rreqid)}] /*update the array
= update(rt, (sip, 0, val, 1,sip))] /*update the
dcast(rreq(hops + 1 ;rreqid,dip,max(sqn(rt, d

Implementation

Australian
» National

23 University

What's Next

« “standard” stuff
« formally analyse OLSR & OSPF
« improve tool support (Isabelle, Uppaal, mCRL2, ...)
« vulnerabilities
 Dbuild attack models (DST + Alwen + Ph.D.)
« analyse protocols (backwards reasoning?)
« comparison of Protocols
* not sure how to do this; requires formal definitions
« cooperate with Data61 and UQ
« from process algebra to real code
 maybe PanCake (not CakeML)

10

Australian
S/, National
@ O

University

Possible Talks

 Using Process Algebra to Design better Protocols
(extended version of the talk | gave during my interview)

e AWN: A Process Algebra for Wireless Networks
 How to formalise AWN in Isabelle/HOL

e A Mechanized Proof of Loop Freedom of the (Untimed) AODV
Routing Protocol.

* From Process Algebra to Model Checking in a Correct Way
(mMCRL2 - AWN to come)

* Routing in Networks: details and difference of AODV, OSPF and
OLSR

o Statistical Model Checking of Wireless Mesh Routing Protocols

11

Australian
S/ National
University

Part Il: Multicore SelL4

» from problem analysis to product

* based (most likely) on Rely-Guarantee reasoning

12

Australian
S/ National
&% O

University

Key Outcomes (not by me)

« sel4:
world-first formal machine-checked general-purpose OS kernel

* butitis single core

« eChronos:
interruptible eChronos embedded operating system

13

Australian
S/, National
University

Vision: Verified “multicore SelL4”

14

Australian
» National

23 University

What's Next

understand the fundamental problems (Data61, Michael)
* is Rely-Guarantee Reasoning good enough

« where is concurrency needed
(kernel/kernel, kernel/user, user/user)

* language
« COMPLEX vs Gammie/Hosking (Tony)

 build formally verified (Isabelle) concurrent data structures
(DST+ Data61)

» let’s start with simple locks

* it’s only the beginning

15

Australian
S/, National
&% O

University

Possible Talks

« basics on Rely-Guarantee Reasoning

 the foundations of COMPLEX
(maybe invite Corey from Data61)

16

Australian
S/, National
University

Part Ill: Verifying Liveness Properties

* theoretical foundation

* when progress is too weak and
fairness too strong

17

Australian

» National
23 University

Key Outcomes

« standard techniques, as used since the 80s, do not always
work for verifying liveness of distributed systems.

“When Progress is too Weak and Fairness too Strong”
 a fair scheduler cannot be proven to be fair.

» proposed a replacement of Fairness, called Justness
« we believe it's the right level of abstraction

18

Australian
S/, National
University

Vision:

Theoretical Sound Foundations for
Verifying Liveness Properties in
Distributed Systems

19

Australian
& & National
&% O

University

What's Next

* theoretical sound definition

» replacement/refinement of standard concepts such as
bisimulation (CRP with Data61 + Ph.D.)

» proof of concept
 liveness of GC (Tony)
 liveness of (multicore) selL 4

20

Australian
S/, National
SR

University

d
>

Possible Talks

* Justness:
when progress is too weak and fairness it too strong

« Bisimulation does not work: what's a possible replacement
(early ideas)

21

Australian
» National

>
. .
sae 2y Universit
z <>
P o]

Part IV: Program Algebras

* algebras for program logics
 algebras for program semantics
* algebras for simplifying verification tasks

* slightly orthogonal of the other topics
(takes longer to have impact; but makes live
neater)

22

Australian
» National

23 University

Key Outcomes

» Kleene algebra subsumes Hoare logic (Kozen)
Forward/Backward reasoning is “chaining inequalities”

* quantale subsumes Separation Logic
algebraic version of “frame calculation”

« algebra of rely-guarantee (Hayes et al.)

 mathematics of program construction (e.g. graph algorithms)

23

Australian
S/, National
University

Vision:
Use algebraic reasoning to make
verification easier/redundant

24

Australian
& & National
&% O

University

What's Next

« apply current knowledge to real problems
(graph algorithms, forward backward reasoning ...)

e can algebras for Hoare logic (separation logic) be combined
with RG algebra and refinement

25

Australian
S/, National
University

Possible Talks

* From High-School Math to Program Verification in
30 Minutes

» Kleene Algebra and Hoare logic
e Forwards and Backwards in Separation Algebra

 False Failure: Creating Failure Models for Separation
Algebra

26

