
Peter Höfner

Applied Formal Methods

Disclaimer
• this is not a normal scientific talk

• introduces my research interests (partly)
• hopefully inspires discussion (and cooperation)
• advertises future talks (if there is interest)

2

Formal Methods (FM)

3

In computer science … formal methods are a particular kind of mathematically
rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

• What is “Applied Formal Methods”
• bridge the gap between FM and ‘real’ applications

(over the years a lot of FM techniques were developed but not
deployed)

Formal Methods (FM)

3

In computer science … formal methods are a particular kind of mathematically
rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

• What is “Applied Formal Methods”
• bridge the gap between FM and ‘real’ applications

(over the years a lot of FM techniques were developed but not
deployed)

Formal Methods (FM)

3

In computer science … formal methods are a particular kind of mathematically
rigorous techniques for the specification, development and verification of
software and hardware systems. (wikipedia)

• What is “Applied Formal Methods”
• bridge the gap between FM and ‘real’ applications

(over the years a lot of FM techniques were developed but not
deployed)

Applied Formal Methods
• missing link between ‘theory’/FM and applications

4

Applied Formal Methods
• missing link between ‘theory’/FM and applications

4

logic, automata, process
algebra, concurrency …

Applied Formal Methods
• missing link between ‘theory’/FM and applications

4

logic, automata, process
algebra, concurrency …

protocols, hardware,
kernels, garbage
collection ….

Applied Formal Methods
• missing link between ‘theory’/FM and applications

4

logic, automata, process
algebra, concurrency …

protocols, hardware,
kernels, garbage
collection ….

Price to Pay
• sometimes it is extremely frustrating

5

Price to Pay
• sometimes it is extremely frustrating

5

we know that X can
be used for Y;
it’s just a big case
study; no research!

Price to Pay
• sometimes it is extremely frustrating

5

we know that X can
be used for Y;
it’s just a big case
study; no research!

who cares? the program runs
most of the time
(correct = we know;
 incorrect = not realistic)

Price to Pay
• sometimes it is extremely frustrating

5

we know that X can
be used for Y;
it’s just a big case
study; no research!

who cares? the program runs
most of the time
(correct = we know;
 incorrect = not realistic)

… however
• rewarding (at least at a personal level)

German prof:
“we do not need another researchers who sits in his office and
proves yet another theorem” (that’s what I did in my Ph.D.)

• challenging (as it requires knowledge in multiple areas)
• reveals shortcomings in FM

(scalability, missing foundations …)

• long-term impact (hopefully)

6

Part I: Protocol Analysis

• modelling

• analysis

• verification

7

Key Outcomes
• new process algebra (as it was required)
• model checking: quick check for counterexamples
• theorem proving: verification and proof automation

• case studies
• AODV: complete and detailed model (including time)

found short comings (AODV is not loop free)
• OLSR & OSPF model completed (partly funded by DST)
• communication protocols including CAN bus

(funded by DARPA)
• revealed a problem with verifying liveness (see below)

8

Vision: Practical Protocol Engineering

9

Design
Verification /
Improvement

Implementation

What’s Next
• “standard” stuff

• formally analyse OLSR & OSPF
• improve tool support (Isabelle, Uppaal, mCRL2, …)

• vulnerabilities
• build attack models (DST + Alwen + Ph.D.)
• analyse protocols (backwards reasoning?)

• comparison of Protocols
• not sure how to do this; requires formal definitions
• cooperate with Data61 and UQ

• from process algebra to real code
• maybe PanCake (not CakeML)

10

Possible Talks
• Using Process Algebra to Design better Protocols

(extended version of the talk I gave during my interview)
• AWN: A Process Algebra for Wireless Networks
• How to formalise AWN in Isabelle/HOL
• A Mechanized Proof of Loop Freedom of the (Untimed) AODV

Routing Protocol.
• From Process Algebra to Model Checking in a Correct Way

(mCRL2 - AWN to come)
• Routing in Networks: details and difference of AODV, OSPF and

OLSR
• Statistical Model Checking of Wireless Mesh Routing Protocols

11

Part II: Multicore SeL4

• from problem analysis to product

• based (most likely) on Rely-Guarantee reasoning

12

Key Outcomes (not by me)
• seL4:

world-first formal machine-checked general-purpose OS kernel
• but it is single core

• eChronos:
interruptible eChronos embedded operating system

13

Vision: Verified “multicore SeL4”

14

What’s Next
• understand the fundamental problems (Data61, Michael)

• is Rely-Guarantee Reasoning good enough
• where is concurrency needed

(kernel/kernel, kernel/user, user/user)
• language

• COMPLEX vs Gammie/Hosking (Tony)
• build formally verified (Isabelle) concurrent data structures

(DST+ Data61)
• let’s start with simple locks

• it’s only the beginning

15

Possible Talks
• basics on Rely-Guarantee Reasoning
• the foundations of COMPLEX

(maybe invite Corey from Data61)

16

Part III: Verifying Liveness Properties

• theoretical foundation

• when progress is too weak and
fairness too strong

17

Key Outcomes
• standard techniques, as used since the 80s, do not always

work for verifying liveness of distributed systems.

“When Progress is too Weak and Fairness too Strong”

• a fair scheduler cannot be proven to be fair.

• proposed a replacement of Fairness, called Justness
• we believe it’s the right level of abstraction

18

Vision:
Theoretical Sound Foundations for
Verifying Liveness Properties in
Distributed Systems

19

What’s Next
• theoretical sound definition
• replacement/refinement of standard concepts such as

bisimulation (CRP with Data61 + Ph.D.)
• proof of concept

• liveness of GC (Tony)
• liveness of (multicore) seL4

20

Possible Talks
• Justness:

when progress is too weak and fairness it too strong
• Bisimulation does not work: what’s a possible replacement

(early ideas)

21

Part IV: Program Algebras

• algebras for program logics

• algebras for program semantics

• algebras for simplifying verification tasks

• slightly orthogonal of the other topics
(takes longer to have impact; but makes live
neater)

22

Key Outcomes
• Kleene algebra subsumes Hoare logic (Kozen)

Forward/Backward reasoning is “chaining inequalities”

• quantale subsumes Separation Logic
algebraic version of “frame calculation”

• algebra of rely-guarantee (Hayes et al.)

• mathematics of program construction (e.g. graph algorithms)

23

Vision:
Use algebraic reasoning to make
verification easier/redundant

24

What’s Next
• apply current knowledge to real problems

(graph algorithms, forward backward reasoning …)

• can algebras for Hoare logic (separation logic) be combined
with RG algebra and refinement

25

Possible Talks
• From High-School Math to Program Verification in

30 Minutes
• Kleene Algebra and Hoare logic
• Forwards and Backwards in Separation Algebra
• False Failure: Creating Failure Models for Separation

Algebra

26

