
Omega Algebra, Demonic Refinement Algebra

and Commands

Peter Höfner1⋆, Bernhard Möller1, and Kim Solin1,2

1 Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
{hoefner,moeller}@informatik.uni-augsburg.de

2 Turku Centre for Computer Science
Lemminkäinengatan 14 A, FIN-20520 Åbo, Finland

kim.solin@utu.fi

Abstract. Weak omega algebra and demonic refinement algebra are
two ways of describing systems with finite and infinite iteration. We
show that these independently introduced kinds of algebras can actually
be defined in terms of each other. By defining modal operators on the
underlying weak semiring, that result directly gives a demonic refinement
algebra of commands. This yields models in which extensionality does
not hold. Since in predicate-transformer models extensionality always
holds, this means that the axioms of demonic refinement algebra do not
characterise predicate-transformer models uniquely. The omega and the
demonic refinement algebra of commands both utilise the convergence
operator that is analogous to the halting predicate of modal µ-calculus.
We show that the convergence operator can be defined explicitly in terms
of infinite iteration and domain if and only if domain coinduction for
infinite iteration holds.

1 Introduction

An omega algebra [2] is an extension of Kleene algebra [10] adding an infinite
iteration operator to the signature. Demonic refinement algebra is an extension
of a relaxed version of Kleene algebra (right-strictness, a · 0 = 0, does not hold
in general) adding a strong iteration operator to the signature. Demonic refine-
ment algebra was devised in [20] for reasoning about total-correctness preserving
program transformations. A structure satisfying all the axioms of omega algebra
except right strictness (called a weak omega algebra [14]) always has a greatest
element ⊤. As one of the main contributions of this paper, we show that weak
omega algebra with the extra axiom ⊤x = ⊤ is equivalent to demonic refinement
algebra in the sense that they can be defined in terms of each other.

We then consider commands, that is, pairs (a, p) such that a describes the
state transition behaviour and p characterises the states with guaranteed termi-
nation. Möller and Struth have already shown how the addition of modal opera-
tors on the underlying semiring facilitates definitions of operators on commands

⋆ This research was supported by DFG (German Research Foundation).

such that they form a weak Kleene and a weak omega algebra, respectively [14].
The definitions of these operators use modal operators, defined from the domain
operator of Kleene algebra with domain [4]. To define a demonic refinement al-
gebra of commands, we need a strong iteration operator on commands [19]. We
define this operator with the aid of the above-mentioned result. The demonic
refinement algebra of commands gives rise to a model that is not extensional,
thus showing that the axioms of demonic refinement algebra do not characterise
predicate-transformer models uniquely.

The definition of infinite iteration and strong iteration on commands both
utilise the convergence operator of [13], that is, the underlying structure is actu-
ally assumed to be a convergence algebra. The convergence operator is analogous
to the halting predicate of modal µ-calculus [8]. As the third result in this pa-
per, we show that the convergence operator can be explicitly defined in terms of
infinite iteration and domain if and only if domain coinduction for the infinite
iteration operator is assumed to hold in general.

The historic development of this paper has it starting point in Kozen’s ax-
iomatisation of Kleene algebra and his injection of tests into the algebra [11],
rendering reasoning about control structures possible. As mentioned earlier, Co-
hen [2] conservatively extends Kleene algebra with an infinite iteration opera-
tor. Von Wright’s demonic refinement algebra, introducing the strong iteration
operator, was the first algebra that was genuinely an algebra intended for total-
correctness reasoning about programs. Desharnais, Möller and Struth’s domain-
operator extension [4] was the seminal work for modal operators in Kleene alge-
bra. The domain operator was investigated in the context of refinement algebra
in [18]. Möller later weakened the axiomatisation to form left semirings and left
Kleene algebras [12]. The former is one of the most foundational structures found
in this paper.

The paper is organised as follows. We begin in Sect. 2 by the result concerning
the equivalence of top-left-strict weak omega algebra and demonic refinement
algebra, upon which in Sect. 3 we construct the demonic refinement algebra
of commands and relate it to the demonic algebras with domain of de Carufel
and Desharnais [3]. In Sect. 4 we give some remarks on refinement algebra in
the light of Sect. 3. Before concluding, we consider the explicit definition of the
convergence operator in Sect. 5.

2 Omega and Demonic Refinement Algebra

We begin by recapitulating some basic definitions. By a left semiring we shall
understand a structure (+, 0, ·, 1) such that the reduct (+, 0) is a commutative
and idempotent monoid, and the reduct structure (·, 1) is a monoid such that
· distributes over + in its left argument and is left-strict, i.e., 0 · a = 0. A
weak semiring is a left semiring that is also right-distributive. A weak semiring
with right-strictness is called a full semiring or simply semiring. When no risk
for confusion arises · is left implicit. We define the natural order ≤ on a left
semiring by a ≤ b ⇔df a + b = b for all a and b in the carrier set. With respect

2

to that order, 0 is the least element and multiplication as well as addition are
isotone. Moreover, a + b is the join of a and b.

A (weak) Kleene algebra is a structure (+, 0, ·, 1,∗) such that the reduct
(+, 0, ·, 1) is a (weak) semiring and the star ∗ satisfies the axioms

1 + aa∗ ≤ a∗ , 1 + a∗a ≤ a∗ , (∗ unfold)

b + ac ≤ c ⇒ a∗b ≤ c , b + ca ≤ c ⇒ ba∗ ≤ c , (∗ induction)

for a, b and c in the carrier set of the structure. A (weak) omega algebra [14] is
a structure (+, 0, ·, 1,∗ ,ω) such that the reduct (+, 0, ·, 1,∗) is a (weak) Kleene
algebra and the infinite iteration ω satisfies the axioms

aω = aaω , (ω unfold)

c ≤ b + ac ⇒ c ≤ aω + a∗b , (ω coinduction)

for a, b and c in the carrier set of the structure. In particular, aω is the greatest
fixpoint of the function f(x) = ax. The element 1ω is the greatest element and
we denote it by ⊤. Since, by the ω unfold law, aω⊤ is a fixpoint of f , we have
aω = aω⊤ for all a. We call a weak omega algebra top-left-strict iff the equation
⊤a = ⊤ holds for all a. In that case we get

aωb = aω⊤b = aω⊤ = aω . (1)

In general omega algebra only the inequation aωb ≤ aω holds. The above deriva-
tion (1) strengthens it to an equation. In fact we have the following result.

Proposition 2.1. Top-left-strictness is equivalent to left ω annihilation, i.e.,

⊤b = ⊤ ⇔ (∀ a • aω ≤ aωb) .

Proof. The implication (⇒) follows from (1), whereas (⇐) can be calculated by

(∀ a • aω ≤ aωb)

⇒ {[set a = 1]}

1ω ≤ 1ωb

⇔ {[1ω = ⊤]}

⊤ ≤ ⊤b .

The other inequation (⊤b ≤ ⊤) holds since ⊤ is the greatest element. ⊓⊔

A demonic refinement algebra [19] is a structure (+, 0, ·, 1,∗ ,ω) such that the
reduct (+, 0, ·, 1,∗) is a weak Kleene algebra and the strong iteration operator ω

satisfies the axioms

aω = aaω + 1 , (ω unfold)

aω = a∗ + xω0 , (ω isolation)

c ≤ ac + b ⇒ c ≤ aωb , (ω coinduction)

3

for a, b and c in the carrier set of the structure. It is easily shown that 1ω is
the greatest element and satisfies 1ωa = 1ω for all a in the carrier set [20]. This
element is again denoted by ⊤.

In the remainder of this section we present one of our main contributions,
namely that top-left-strict weak omega algebra is equivalent to demonic refine-
ment algebra in the sense that they can be defined in terms of each other. This
is done in two steps: First we show that weak omega algebra subsumes demonic
refinement algebra, then we show the converse subsumption.

Lemma 2.2. Top-left-strict weak omega algebra subsumes demonic refinement
algebra.

Proof. Given a top-left-strict weak omega algebra, the strong iteration is defined
by aω =df a∗ + aω. It is sufficient to show that this definition satisfies the
axioms of strong iteration; the other axioms of demonic refinement algebra are
immediate from the axioms of top-left-strict weak omega algebra.

1. ω unfold:

aω

= {[definition]}

a∗ + aω

= {[∗ and ω unfold]}

aa∗ + 1 + aaω

= {[commutativity]}

aa∗ + aaω + 1

= {[distributivity]}

a(a∗ + aω) + 1

= {[definition]}

aaω + 1

2. isolation:

aω

= {[definition]}

a∗ + aω

= {[neutrality of 0 and (1)]}

a∗(1 + 0) + aω0

= {[right-distributivity]}

a∗ + a∗0 + aω0

= {[left-distributivity]}

a∗ + (a∗ + aω)0

= {[definition]}

a∗ + aω0

4

3. ω coinduction:

c ≤ aωb

⇔ {[definition]}

c ≤ (a∗ + aω)b

⇔ {[left-distributivity]}

c ≤ a∗b + aωb

⇔ {[(1)]}

c ≤ a∗b + aω

⇐ {[ω coinduction]}

c ≤ ac + b

⊓⊔

In a concrete predicate-transformer algebra, the same definition of ω is made
by Back and von Wright [1]. In the present paper the definition is given in
an abstract setting for which (conjunctive) predicate transformers constitute a
model.

Lemma 2.3. Demonic refinement algebra subsumes top-left-strict weak omega
algebra.

Proof. Given a demonic refinement algebra, infinite iteration is defined as
aω =df aω0. It is sufficient to show that this definition satisfies the axioms
for infinite iteration; the other axioms of the top-left-strict weak omega algebra
are immediate from demonic refinement algebra.

1. ω unfold:

aω

= {[definition]}

aω0

= {[ω unfold]}

(aaω + 1)0

= {[left-distributivity and neutrality of 1]}

aaω0 + 0

= {[neutrality of 0]}

aaω0

= {[definition]}

aaω

2. top-left-strictness:

⊤ ≤ ⊤a

⇔ {[⊤ = 1ω]}

⊤ ≤ 1ωa

5

⇐ {[ω coinduction]}

⊤ ≤ ⊤ + a

⇔ {[join]}

true

⊤a ≤ ⊤ holds since ⊤ is the greatest element.

3. ω coinduction:

c ≤ a∗b + aω

⇔ {[definition]}

c ≤ a∗b + aω0

⇔ {[annihilation]}

c ≤ a∗b + aω0b

⇔ {[distributivity]}

c ≤ (a∗ + aω0)b

⇔ {[isolation]}

c ≤ aωb

⇐ {[ω coinduction]}

c ≤ ac + b

⊓⊔

The above lemmas directly yield the following theorem.

Theorem 2.4. Top-left-strict weak omega algebra and demonic refinement al-
gebra are equivalent in the sense that they can be defined in terms of each other.

3 The Demonic Refinement Algebra of Commands

So far, our semiring elements could be viewed as abstract representations of
state transition systems. We now want to introduce a way of dealing with sets
of states in an abstract algebraic way. This is done using tests. A test semiring
is a structure (S, test(S)), where S = (S, +, 0, ·, 1) is a semiring and test(S) is
a Boolean subalgebra of the interval [0, 1] ⊆ S with 0, 1 ∈ test(S). Join and
meet in test(S) coincide with + and ·, the complement is denoted by ¬, 0 is the
least and 1 is the greatest element. Furthermore, this definition of test semiring
coincides with the definition on Kleene algebras given in [11]. We use a, b, . . . for
general semiring elements and p, q, . . . for tests.

On a test semiring we axiomatise a domain operator p : S → test(S) by

a ≤ pa · a , (d1)

p(pa) ≤ p , (d2)

p(apb) ≤ p(ab) , (d3)

6

for all a ∈ S and p ∈ test(S). Inequations (d1) and (d3) can be strengthened to
equations. Many properties of domain can be found in [4]. For example, we have
stability of tests and additivity of domain, i.e.,

pp = p , (2)

p(a + b) = pa + pb . (3)

With the aid of this operator, we can define modal operators by

|a〉p =df
p(ap) and |a]p =df ¬|a〉¬p .

This is the reason why we shall call a test semiring with a domain operator modal.
All the structures above extending a weak semiring are called modal when the
underlying weak semiring is modal.

Given a modal semiring S = (S, +, 0, ·, 1) we define the set of commands
(over S) as COM(S) =df S × test(S). Three basic non-iterative commands and
two basic operators on commands are defined by

fail =df (0, 1)
skip =df (1, 1)
loop =df (0, 0)

(a, p) [] (b, q) =df (a + b, pq)
(a, p) ; (b, q) =df (ab, p · [a]q)

As noted by Möller and Struth in [14] the structure (COM(S), [] , fail, ; , skip)
forms a weak semiring. The natural order on the command weak semiring is
given by (a, p) ≤ (b, q) ⇔ a ≤ b ∧ q ≤ p. We will discuss below how it connects
to the usual refinement relation.

If S is even a weak Kleene algebra, a star operator can be defined by

(a, p)∗ =df (a∗, |a∗]p)

and then (COM(S), [] , fail, ; , skip,∗) forms a weak Kleene algebra [14].
Defining an omega operator over the set of commands does not work as

simply as for star. To do this, we also need to assume that the underlying modal
omega algebra (S, +, 0, ·, 1,∗ ,ω) comes equipped with a convergence operator [14]
△ : S → test(S) satisfying

|a](△a) ≤ △a , (△ unfold)

q · |a]p ≤ p ⇒ △a · |a∗]q ≤ p . (△ induction)

In [14] it is shown that △a is the least (pre-)fixed point of |a]. The test △a

characterises the states from which no infinite transition paths emanate. It cor-
responds to the halting predicate of the modal µ-calculus [8].

The infinite iteration operator on commands can then be defined by

(a, p)ω =df (aω,△a · [a∗]p) .

7

The greatest command is chaos =df skipω = (⊤, 0).

The semiring of commands reflects the view of general correctness as intro-
duced in [17]. Therefore it is not to be expected that it forms a demonic refine-
ment algebra which was designed for reasoning about total correctness. Indeed,
top-left-strictness fails unless it is already satisfied in the underlying semiring S,
since chaos ; (a, p) = (⊤a, 0) = chaos iff ⊤a = ⊤.

There is, however, another possibility. One can define a refinement preorder
on commands by

(a, p) ⊑ (b, q) ⇔df q ≤ p ∧ qa ≤ b .

This is the converse of the usual refinement relation: k ⊑ l for any two commands
k, l means that k refines l. We have chosen this direction, since by straightforward
calculation we get the implication k ≤ l ⇒ k ⊑ l. The associated equivalence
relation ≡ is defined by

k ≡ l ⇔df k ⊑ l ∧ l ⊑ k .

Componentwise, it works out to (a, p) ≡ (b, q) ⇔ p = q ∧ pa = pb. The equiva-
lence classes correspond to the designs of the Unifying Theories of Programming
of [9] and hence represent a total correctness view.

It has been shown in [7] (in the setting of condition semirings that is iso-
morphic to that of test semirings) that the set of these classes forms again a
left semiring and can be made into a weak Kleene and omega algebra by using
exactly the same definitions as above (as class representatives).

Now top-left-strictness holds, since chaos ≡ loop and loop is a left zero by the
definition of command composition. Therefore the set of ≡-classes of commands
can be made into a demonic refinement algebra. Let CCOM(S) be the set of all
these classes.

By Lemma 2.2 the strong iteration of commands is

(a, p)ω = (a, p)∗ [] (a, p)ω ,

and thus (CCOM(S), [] , fail, ; , skip,∗ ,ω) constitutes a demonic refinement alge-
bra of commands. The above expression can be simplified by

(a, p)∗ [] (a, p)ω

= {[definition of ∗ and ω on commands]}

(a∗, [a∗]p) [] (aω,△a · [a∗]p)

= {[definition of []]}

(a∗ + aω, [a∗]p · △a · [a∗]p)

= {[definition of ω, commutativity and idempotence of tests]}

(aω,△a · [a∗]p) .

Thus strong iteration of commands can also be expressed as

(a, p)ω = (aω,△a · [a∗]p) .

8

We conclude this section by relating the command algebra to the demonic
algebras (DA) of [3]. These are intended to capture the notion of total correct-
ness in an algebraic fashion. Since their axiomatisation is extensive, we do not
want to repeat it here. We only want to point out that a subalgebra of the com-
mand algebra yields a model of DA. This is formed by the ≡-classes of feasible
commands which are pairs (a, p) with p ≤ pa. So these model programs where no
miraculous termination can occur; they correspond to the feasible designs of [9].
In [7] it is shown that the set F(S) classes of feasible commands can isomor-
phically be represented by simple semiring elements. The mediating functions
are

E : F(S) → S , D : S → F(S) ,

E((a, p)) =df pa , D(a) =df (a, pa) .

Then one has E(D(a)) = a and D(E(a, p)) ≡ (a, p). Moreover, the demonic
refinement ordering of [3] is induced on S by

a ⊑ b ⇔df D(a) ⊑ D(b) ⇔ pb ≤ pa ∧ pb · a ≤ b

and demonic join and composition by

a ⊔ b =df E(D(a) ⌈⌋D(b)) = pa · pb · (a + b) ,

a 2 b =df E(D(a) ; D(b)) = |a]pb · a · b .

Using pairs (p, p) as demonic tests in F(S) one even obtains a DA with domain.
Further details are left to a future publication.

4 Two Remarks on Refinement Algebra

In this section we remark that demonic refinement algebra does not characterise
predicate transformer models uniquely. We also remark that an equivalence sim-
ilar to that of Theorem 2.4 cannot be established between general refinement
algebra [20] and a top-left-strict strong left omega algebra.

Characterisation of the predicate transformer models. To connect the
algebra of commands to predicate transformer models we first define

wp.(a, p).q =df p · [a]q

and get

wp.fail.q = 1 and wp.chaos.q = 0 .

Hence fail can be interpreted as magic in the refinement calculus tradition and
chaos as abort. Indeed, chaos is refined by every command and every command
is refined by fail. Furthermore, we have the implications, for commands k, l,

k ≤ l ⇒ k ⊑ l ⇒ (∀p ∈ test(S) • wp.k.p ≥ wp.l.p) .

9

However, the command model of demonic refinement algebra is, unlike predicate
transformer models as presented in [19, 20], in general not extensional in that
we do not necessarily have the converse implications. In particular,

(∀p ∈ test(S) • wp.k.p = wp.l.p) ⇒ k = l

holds iff already the underlying semiring S is extensional, i.e., satisfies, for a, b ∈
S,

[a] = [b] ⇒ a = b .

Contrarily, in concrete predicate transformer models the elements are mappings
T, U : ℘(Σ) → ℘(Σ), where Σ is any set. They can be seen as semantic values
that arise by applying the wp operator to concrete programming constructs.
Their equality is defined by

T = U ⇔df (∀p ∈ ℘(Σ) • T.p = U.p) .

Hence in concrete predicate transformer models extensionality always holds.
Since the command model of DRA is non-extensional, this observation shows

that the DRA axioms do notrestrict their models to algebras isomorphic to
predicate transformer algebras and hence do not uniquely capture this type of
algebras.

A similar move for general refinement algebra? A left Kleene algebra is
a left semiring extended with two axioms for ∗

1 + aa∗ ≤ a∗ and b + ac ≤ c ⇒ a∗b ≤ c ,

laid down in Sect. 2. A left omega algebra is a left Kleene algebra extended
with an infinite iteration operator ω axiomatised as in Sect. 2. Clearly, every left
omega algebra has a greatest element ⊤, and along the lines above we call a left
omega algebra top-left-strict when ⊤ satisfies ⊤a = ⊤. A general refinement
algebra [20] is a left Kleene algebra extended with the axioms for ω found in
Sect. 2, except the isolation axiom, i.e., aω = a∗ +aω0 does not hold in general.
A general refinement algebra becomes a demonic refinement algebra by adding
the other two axioms for ∗ of Sect. 2, right-distributivity and isolation.

It is tempting to try to show that top-left-strict left omega algebra corre-
sponds to general refinement algebra in a similar way as top-left-strict weak
omega algebra corresponds to demonic refinement algebra (Theorem 2.4). How-
ever, this is not possible as the following argument shows.

Let Σ be any set and let T : ℘(Σ) → (Σ) be any predicate transformer. If
p, q ∈ ℘(Σ) and T satisfies p ⊆ q ⇒ T.p ⊆ T.q then T is isotone1. If T satisfies
T.(

⋂
i∈I pi) =

⋂
i∈I(T.pi), for any index set I, it is conjunctive. The isotone

predicate transformers constitute a model for general refinement algebra [20].
The reason why isolation is dropped is that it does not hold for isotone predicate

1 In the literature these predicate transformers are usually called monotone [1]. How-
ever, in other contexts the term monotone can mean isotone or antitone.

10

transformers in general [1, 20]. Since isolation is an essential property needed for
proving ω coinduction under the interpretation aω =df aω0, it is not possible
to prove that demonic refinement algebra subsumes top-left-strict strong left
omega algebra. For the same reason, one cannot define strong iteration as aω =df

a∗ + aω since this is valid only for conjunctive predicate transformers [1]. I.e.,
one cannot prove that top-left-strict strong left omega algebra subsumes general
refinement algebra in an analogous way to the proof of Lemma 2.3.

5 Making Convergence Explicit

In this section, we prove a result concerning the convergence operator of Sect. 3:
having a convergence operator such that △a = ¬paω is equivalent to having
ω coinduction for the domain operator. Since △a = ¬paω does not hold in all
models of weak omega algebra [5], we also know that ω coinduction for domain
does not follow from the axioms of omega algebra.

Proposition 5.1. Omega coinduction for the domain operator, i.e.,

p ≤ p(q + ap) ⇒ p ≤ p(aω + a∗q) ,

holds if and only if △a = ¬paω does.

Proof. The convergence operator is given by the implicit axiomatisation of
Sect. 2. It is unique by the fact that it is a least fixpoint. We show that ¬paω

always satisfies the △ unfold axiom and that it satisfies the △ induction axiom
if and only if ω coinduction for the domain operator holds:

1. |a]¬paω ≤ ¬paω

⇔ {[definition of |] and Boolean algebra]}

¬|a〉paω ≤ ¬paω

⇔ {[shunting]}
paω ≤ 〈a〉paω

⇔ {[definition of | 〉]}
paω ≤ p(apaω)

⇔ {[(d3)]}
paω ≤ p(aaω)

⇔ {[ω unfold]}
paω ≤ paω

⇔ {[reflexivity]}

true

2. q · |a]p ≤ p ⇒ ¬paω · [a∗]q ≤ p

⇔ {[Boolean algebra]}

¬p ≤ ¬|a]p + ¬q ⇒ ¬p ≤ paω + ¬|a∗]q

⇔ {[definition of |] and Boolean algebra]}

11

¬p ≤ |a〉¬p + ¬q ⇒ ¬p ≤ paω + |a∗〉¬q

⇔ {[definition of | 〉]}

¬p ≤ p(a¬p) + ¬q ⇒ ¬p ≤ paω + p(a∗¬q)

⇔ {[set ¬p = r and ¬q = s]}

r ≤ p(ar) + s ⇒ r ≤ paω + p(a∗s)

⇔ {[(2) and (3)]}

r ≤ p(ar + s) ⇒ r ≤ p(aω + a∗s)

Assume now that ω coinduction for the domain operator holds. By the above
calculations ¬paω then satisfies both △ unfold and △ induction. Since these
axioms impose uniqueness, we have that △a = ¬paω. If, conversely, △a = ¬paω

is assumed then the implication in the first line of the above calculation for 2.
is true by △ induction and hence ω coinduction for domain holds. ⊓⊔

This means that in a command omega or demonic refinement algebra based
on an omega algebra where ω coinduction for the domain operator holds, infinite
and strong iteration can be defined as

(a, p)ω =df (aω,¬paω · [a∗]p) and (a, p)ω =df (aω,¬paω · [a∗]p) ,

respectively.
We finally note that the special case q = 0 of the ω coinduction rule for do-

main (Prop. 5.1) has been termed cycle rule and used as an additional postulate
in the computation calculus of R. Dijkstra [6].

6 Conclusion

Top-left-strict omega algebra and demonic refinement algebra are equivalent in
the sense that they can be defined in terms of each other. In particular, results
from one of these frameworks can now be reused in the other. The equivalence
also facilitates the definition of a demonic refinement algebra of commands, yield-
ing a model in which extensionality does not hold. Since extensionality always
holds in predicate-transformer models, it can be concluded that demonic refine-
ment algebra does not characterise predicate transformers uniquely. A similar
equality between general refinement algebra and top-left-strict left omega algebra
as between demonic refinement algebra and top-left-strict weak omega algebra
cannot be shown. The demonic refinement algebra and the omega algebra of
commands are based on the convergence operator. In a modal demonic refine-
ment or omega algebra that satisfies domain coinduction for infinite iteration,
the convergence operator can be defined explicitly in terms of infinite iteration
and domain.

Having set up the connections between various algebraic structures allows
mutual re-use of the large existing body of results about Kleene/ω algebra with
tests and modal Kleene/ω algebra as well as demonic refinement algebra and
action systems. Having embedded the command algebras we can also apply the
general algebraic results to UTP and related systems.

12

References

1. R.J. Back, J. von Wright: Refinement calculus: a systematic introduction. Springer
1998

2. E. Cohen: Separation and reduction. In R. Backhouse, J. Oliveira (eds.): Mathe-
matics of Program Construction. LNCS 1837. Springer 2000, 45–59

3. J.-L. de Carufel, J. Desharnais: Demonic algebra with domain. In: R. Schmidt,
G. Struth (eds.): Relations and Kleene Algebra in Computer Science. LNCS (this
volume). Springer 2006 (to appear)

4. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. Technical Report
2003-7, Universität Augsburg, Institut für Informatik, 2003. Revised version to
appear in ACM TOCL

5. J. Desharnais, B. Möller, G. Struth: Termination in modal Kleene algebra. In J.-J.
Lévy, E. Mayr, J. Mitchell (eds.): Exploring new frontiers of theoretical informatics.
IFIP International Federation for Information Processing Series 155. Kluwer 2004,
653–666

6. R.M. Dijkstra: Computation calculus bridging a formalisation gap. Science of Com-
puter Programming 37, 3-36 (2000)

7. W. Guttmann, B. Möller: Modal design algebra. In S. Dunne, B. Stoddart (eds.):
Proc. First International Symposium on Unifying Theories of Programming. LNCS
4010. Springer 2006, 236–256

8. D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press 2000
9. C.A.R. Hoare, J. He: Unifying theories of programming. Prentice Hall 1998

10. D. Kozen: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110, 366–390 (1994)

11. D. Kozen: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems 19, 427–443 (1997)

12. B. Möller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics of Program Con-
struction. LNCS 3125. Springer 2004, 252–273. Revised version: B. Möller: Kleene
getting lazy. Sci. Comput. Prog. (to appear)

13. B. Möller, G. Struth: Modal Kleene algebra and partial correctness. In C. Rattray,
S. Maharaj, C. Shankland (eds.): Algebraic methodology and software technology.
LNCS 3116. Springer 2004, 379–393. Revised and extended version: B. Möller, G.
Struth: Algebras of modal operators and partial correctness. Theoretical Computer
Science 351, 221–239 (2006)

14. B. Möller, G. Struth: wp is wlp. In W. MacCaull, M. Winter, I. Düntsch (eds.):
Relational methods in computer Science. LNCS 3929. Springer 2006, 200-211

15. C. Morgan: Data Refinement by Miracles. Inf. Process. Lett. 26, 243-246 (1988)
16. J.M. Morris, Laws of data refinement, Acta Informatica (26), 287-308 (1989)
17. G. Nelson: A generalization of Dijkstra’s calculus. ACM TOPLAS 11, 517–561

(1989)
18. K. Solin and J. von Wright: Refinement algebra with operators for enabledness and

termination. In T. Uustalu (ed.): Mathematics of Program Construction. LNCS
4014. Springer 2006, 397–415

19. J. von Wright: From Kleene algebra to refinement algebra. In E. Boiten, B. Möiller
(eds.): Mathematics of Program Construction. LNCS 2386. Springer 2002, 233–262

20. J. von Wright: Towards a refinement algebra. Sci. Comput. Prog. 51, 23–45 (2004)

13

