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Peter Höfner⋆ and Bernhard Möller
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Abstract. We extend an earlier algebraic approach to Neighbourhood
Logic (NL) from domain semirings to lazy semirings yielding lazy semir-
ing neighbours. Furthermore we show three important applications for
these. The first one extends NL to intervals with infinite length. The sec-
ond one applies lazy semiring neighbours in an algebraic semantics of the
branching time temporal logic CTL

∗. The third one sets up a connection
between hybrid systems and lazy semiring neighbours.

1 Introduction

Chop-based interval temporal logics, such as ITL [5] and IL [3] are useful for
the specification and verification of safety properties of real-time systems. How-
ever, as it is shown in [16], these logics cannot express all desired properties, like
(unbounded) liveness properties. That is why Zhou and Hansen proposed Neigh-
bourhood Logic (NL) [15], a first-order interval logic which provides extra atomic
formulas. In [7] an embedding and extension into the framework of semirings
has been presented, giving an algebraic version of NL is given. Unfortunately
neither NL nor the algebraic version can handle intervals with infinite length.
To remedy this, we transfer the concept of semiring neighbours from semirings
to lazy semirings [11] and present some important properties for lazy semiring
neighbours.

Surprisingly, lazy semiring neighbours are not only useful for acommodating
the extension of NL; they occur in different situations and structures. So, e.g.,
looking at the algebraic characterisation of the branching time temporal logic
CTL

∗ of [12], the existential path quantifier E as well as the universal path
quantifier A correspond to lazy semiring neighbours. Therefore, temporal logics
like CTL

∗ are a field for applying our theory. Since we introduce more kinds of
lazy semiring neighbours than occur in CTL

∗, we can extend the branching time
temporal logic. Another field of application is in the area of hybrid systems.
Lazy semiring neighbours can be directly transferred to the algebraic model
presented in [8, 9]. It turns out that some of them guarantee liveness, others
guarantee non-reachability, i.e., a form of safety.

⋆ This research was supported by DFG (German Research Foundation).



The paper is structured into two main parts. The first one presents lazy semir-
ing neighbours with some properties in an abstract and formal way. Therefore
we recapitulate the basic algebraic foundations, like lazy semirings, in Section 2.
In Section 3 we define domain and codomain for lazy semirings and give some
important properties. In the next section we introduce and discuss lazy semiring
neighbours and boundaries. That section contains the main contribution from a
theoretical point of view.

The second part presents three different applications for the presented theory.
It starts by extending Neighbourhood Logic to intervals with infinite length in
Section 5. Afterwards, in Section 6, we present lazy semiring neighbours in the
context of the branching time logic CTL

∗. The last application is presented in
Section 7 and shows how to use the theory of Section 4 in the formal description
of hybrid systems.

2 Algebraic Foundations

A lazy semiring (L-semiring or left semiring) is a quintuple (S,+, ·, 0, 1) where
(S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid such that · is left-
distributive over + and left-strict , i.e., 0 ·a = 0. A lazy semiring structure is also
at the core of process algebra frameworks. The lazy semiring is idempotent if +
is idempotent and · is right-isotone, i.e., b ≤ c ⇒ a · b ≤ a · c, where the natural
order ≤ on S is given by a ≤ b ⇔df a+ b = b. Left-isotony of · follows from its
left-distributivity. Moreover, 0 is the ≤-least element and a + b is the join of a
and b. Hence every idempotent L-semiring is a join semilattice. A semiring (for
clarity sometimes also called full semiring) is a lazy semiring in which · is also
right-distributive and right-strict. An L-semiring is Boolean if it is idempotent
and its underlying semilattice is a Boolean algebra. Every Boolean L-semiring
has a greatest element ⊤.

A lazy quantale is an idempotent L-semiring that is also a complete lattice
under the natural order with · being universally disjunctive in its left argument.
A quantale is a lazy quantale in which · is universally disjunctive also in its right
argument. Following [1], one might also call a quantale a standard Kleene algebra.
A lazy quantale is Boolean if it is right-distributive and a Boolean L-semiring.

An important lazy semiring (that is even a Boolean quantale) is REL, the
algebra of binary relations over a set under relational composition.

To model assertions in semrings we use the idea of tests as introduced into
Kleene algebras by Kozen [10]. In REL a set of elements can be modelled as a
subset of the identity relation; meet and join of such partial identities conincide
with their conposition and union. Generalising this, one defines a test in a (left)
quantale to be an element p ≤ 1 that has a complement q relative to 1, i.e.,
p + q = 1 and p · q = 0 = q · p. The set of all tests of a quantale S is denoted
by test(S). It is not hard to show that test(S) is closed under + and · and has
0 and 1 as its least and greatest elements. Moreover, the complement ¬p of a
test is uniquely determined by the definition. Hence test(S) forms a Boolean
algebra. If S itself is Boolean then test(S) coincides with the set of all elements
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below 1. We will consistently write a, b, c . . . for arbitrary semiring elements and
p, q, r, . . . for tests.

With the above definition of tests we deviate slightly from [10], in that we do
not allow an arbitrary Boolean algebra of subidentities as test(S) but only the
maximal complemented one. The reason is that the axiomatisation of domain to
be presented below forces this maximality anyway (see [2]).

In the remainder we give another important example of an L-semiring (espe-
cially with regard to temporal logics like CTL

∗ and hybrid systems). It is based
on trajectories (cf. e.g. [13]) that reflect the values of the variables over time and
was introduced in [9]. We give a slightly extended version of our model in [8].

Let V be a set of values and D a set of durations (e.g. IN, Q, IR, . . .). We
assume a cancellative addition + on D and an element 0 ∈ D such that (D,+, 0)
is a commutative monoid and the relation x ≤ y ⇔df ∃ z . x + z = y is a linear
order on D. Then 0 is the least element and + is isotone w.r.t. ≤. Moreover, 0
is indivisible, i.e., x+ y = 0 ⇔ x = y = 0. D may include the special value ∞.
It is required to be an annihilator w.r.t. + and hence the greatest element of D
(and cancellativity of + is restricted to elements in D − {∞}). For d ∈ D we
define the interval intv d of admissible times as

intv d =df

{

[0, d] if d 6= ∞
[0, d[ otherwise .

A trajectory t is a pair (d, g), where d ∈ D and g : intv d→ V . Then d is the
duration of the trajectory. This view models oblivious systems in which the
evolution of a trajectory is independent of the history before the starting time.

The set of all trajectories is denoted by TRA. Composition of trajectories
(d1, g1) and (d2, g2) is defined by

(d1, g1) · (d2, g2) =df







(d1 + d2, g) if d1 6= ∞ ∧ g1(d1) = g2(0)
(d1, g1) if d1 = ∞
undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x+ d1) = g2(x) for all x ∈ intv d2.
For a value v ∈ V , let v =df (0, g) with g(0) = v be the corresponding

zero-length trajectory.
A process is a set of trajectories. The infinite and finite parts of a process

A are the processes inf A =df {(d, g) ∈ A | d = ∞} and finA =df A − inf A.
Composition is lifted to processes as follows:

A · B =df infA ∪ {a · b | a ∈ finA, b ∈ B} .

With I =df {v | v ∈ V } being the set of all zero-length trajectories, the structure

PRO =df (P(TRA),∪, ·, ∅, I) ,

forms a lazy Boolean quantale which can be extended to a test quantale by
test(PRO) =df P({v | v ∈ V }).
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Note that A ∈ PRO consists of infinite trajectories only, i.e., A = infA, iff
A · B = A for all B ∈ PRO. We call such a process infinite, too. Contrarily, A
consists of finite trajectories only, i.e., A = finA, iff A · ∅ = ∅. We call such a
process finite, too.

Finally, we note that for a discrete infinite set D of durations, e.g. D = IN,
trajectories are isomorphic to nonempty finite or infinite words over the value
set V . If V consists of states of computations, then the elements of PRO can be
viewed as sets of computation streams; therefore we also write STR(V ) instead
of PRO in this case.

We now generalise the notions of infinite and finite parts of processes from
PRO to an arbitrary L-semiringS. An element a ∈ S is called infinite if it is
a left zero, i.e., a · b = a for all b ∈ S, which is equivalent to a · 0 = a. By
this property, a · 0 may be considered as the infinite part of a, i.e., the part
consisting just of infinite computations (if any). We assume that there exists a
largest infinite element N, i.e.,

a ≤ N ⇔df a · 0 = a .

Dually, we call an element a finite if its infinite part is trivial, i.e., if a · 0 = 0.
We also assume that there is a largest finite element F, i.e.,

a ≤ F ⇔df a · 0 = 0 .

In Boolean quantales N and F always exist1 and satisfy N = ⊤ · 0 and F = N,
where denotes complementation. Moreover, every element can be split into its
finite and infinite parts: a = fin a + inf a, where fin a =df a ⊓ F and inf a =df

a ⊓ N. In particular, ⊤ = N+ F.
Other examples of lazy (test) semirings will be given in Sections 5–7, where

applications for lazy semiring neighbours are presented.

3 Domain and Codomain in L-Semirings

Domain and codomain are intended to abstractly characterise, in the form of
tests, the sets of initial and final states of a set of computations. In contrast to
the domain and codomain operators of full semirings and Kleene algebras [2]
the operators for L-semirings are not symmetric. Therefore we recapitulate their
definitions [11] and establish some properties which we need afterwards.

Definition 3.1 A lazy semiring with domain (p-L-semiring) is a structure (S, p),
where S is an idempotent lazy test semiring and the domain operation p: S →
test(S) satisfies for all a, b ∈ S and p ∈ test(S)

a ≤ pa · a (d1), p(p · a) ≤ p (d2), p(a · pb) ≤ p(a · b) (d3).

1 In general N and F need not exist. In [11] lazy semirings where these elements exist
are called separated .
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The axioms are the same as in [2]. Since the domain describes all possible
starting states of an element, it is easy to see that “laziness” of the underlying
semiring doesn’t matter. Most properties of [2, 11] can still be proved in L-semi-
rings with domain. We only give some properties which we need in the following
sections. First, the conjunction of (d1) and (d2) is equivalent to each of

pa ≤ p ⇔ a ≤ p · a (llp), pa ≤ p ⇔ ¬p · a ≤ 0 (gla).

(llp) says that pa is the least left preserver of a; (gla) that ¬pa is the greatest left
annihilator of a. By Boolean algebra, (gla) is equivalent to

p · pa ≤ 0 ⇔ p · a ≤ 0 . (1)

Lemma 3.2 [11] Let S be a p-L-semiring.

(a) pis isotone.
(b) pis uiversally disjunctive;

in particular p0 = 0 and p(a+ b) = pa+ pb.
(c) pa ≤ 0 ⇔ a ≤ 0. (Full Strictness)
(d) pp = p. (Stability)
(e) p(p · a) = p · pa. (Import/Export)
(f) p(a · b) ≤ pa.

We now turn to the dual case of the domain operation. In the case where we
have (as in full semirings) right-distributivity and right-strictness, a codomain
operationq is easily defined as a domain operation in the opposite L-semiring
(i.e., the one that swaps the order of composition). But due to the absence of
right-distributivity and right-strictness we need an additional axiom.

Definition 3.3 A lazy semiring with codomain (q-L-semiring) is a structure
(S, q), where S is an idempotent lazy test semiring and the codomain operation
q : S → test(S) satisfies for all a, b ∈ S and p ∈ test(S)

a ≤ a · aq (cd1), (a · p)q ≤ p (cd2),

(aq · b)q ≤ (a · b)q (cd3), (a+ b)q ≥ aq + bq (cd4).

(cd4) guarantees isotony of the codomain operator. As for domain, the conjunc-
tion of (cd1) and (cd2) is equivalent to

aq ≤ p ⇔ a ≤ a · p , (lrp)

i.e., aq is the least right preserver of a. However, due to lack of right-strictness ¬aq

need not be the greatest right annihilator; we only have the weaker equivalence

aq ≤ p ⇔ a · ¬p ≤ a · 0 . (wgra)

Lemma 3.4 Let S be a q-L-semiring.

(a) q is isotone.
(b) q is universally disjunctive;

in particular 0q = 0 and (a+ b)q = aq + bq.
(c) aq ≤ 0 ⇔ a ≤ N.
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(d) pq = p. (Stability)
(e) (a · p)q = aq · p. (Import/Export)
(f) (a · b)q ≤ bq.

Lemma 3.2(c) and Lemma 3.4(c) show the asymmetry of domain and codomain.
As in [11], a modal lazy semiring (ML-semiring) is an L-semiring with domain

and codomain. The following lemma has some important consequences for the
next sections, and illustrates again the asymmetry of L-semirings.

Lemma 3.5 In an ML-semiring with a greatest element ⊤, we have

(a) ¬p · a ≤ 0 ⇔ pa ≤ p ⇔ a ≤ p · a ⇔ a ≤ p · ⊤.
(b) a · ¬p ≤ a · 0 ⇔ aq ≤ p ⇔ a ≤ a · p ⇔ a ≤ ⊤ · p.
(c) a ≤ F ⇔ (a ≤ a · p ⇔ a · ¬p ≤ 0) ⇔ (a ≤ ⊤ · p ⇔ a · ¬p ≤ 0).

Therefore, in general, a ≤ a · p 6⇒ a · ¬p ≤ 0 and a ≤ ⊤ · p 6⇒ a · ¬p ≤ 0.

Proof.

(a) The first equivalence is (gla), the second (llp). a ≤ p · a ⇒ a ≤ p · ⊤
holds by isotony of · and a ≤ p · ⊤ ⇒ pa ≤ p by isotony of domain and

p(p · ⊤)
3.2(e)
= p · p⊤ = p, since p⊤ ≥ p1 = 1 by Lemma 3.2(d).

(b) Symmetrically to (a).
(c) a ≤ F ⇒ (a ≤ a · p ⇔ a · ¬p ≤ 0) holds by (b) and a · 0 ≤ 0 ⇔ a ≤ F.

The converse implication is shown by setting p = 1, Boolean algebra and
definition of F: a ≤ a ⇒ a · ¬1 ≤ 0 ⇔ a · 0 ≤ 0 ⇔ a ≤ F.
The second equivalence follows from a ≤ a · p ⇔ a ≤ ⊤ · p (see (b)). ⊓⊔

(c) says that we do not have a law for codomain that is symmetric to (a).
Further properties of (co)domain and ML-semirings can be found in [2, 11].

4 Neighbours — Definitions and Basic Properties

In [7] semiring neighbours and semiring boundaries are motivated by Neighbour-
hood Logic [15, 16]. The definitions there require full semirings as the underlying
algebraic structure. In this section we use the same axiomatisation as in [7] to de-
fine neighbours and boundaries in L-semirings. Since the domain and codomain
operators are not symmetric we also discuss some properties and consequences of
the lack of right-distributivity and right-strictness. Note that in [7] the semiring
neighbours and boundaries work on predomain and precodomain, i.e., assumed
only (d1)–(d2) and (cd1)–(cd2), resp. Here we assume (d3)/(cd3) as well.

In the remainder some proofs are done only for one of a series of similar cases.

Definition 4.1 Let S be an ML-semiring and a, b ∈ S. Then
(a) a is a left neighbour of b (or a ≤ �

n
lb for short) iff aq ≤ pb ,

(b) a is a right neighbour of b (or a ≤ �
n
rb for short) iff pa ≤ bq ,

(c) a is a left boundary of b (or a ≤ �b lb for short) iff pa ≤ pb ,
(d) a is a right boundary of b (or a ≤ �b rb for short) iff aq ≤ bq .
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We will see below that the notation using ≤ is justified. By lazy semiring neigh-
bours we mean both, left/right neighbours and boundaries. Most of the proper-
ties given in [7] use Lemma 3.5(a) in their proofs and a symmetric version of it
for codomain which holds in full semirings. Unfortunately, by Lemma 3.5(b) and
3.5(c), we do not have this symmetry. Hence we have to check all properties in
the setting of L-semirings again. Definition 4.1 works for all ML-semirings. How-
ever, most of the interesting properties postulate a greatest element ⊤. Therefore
we assume the existence of such an element in the remainder.

Lemma 4.2 Neighbours and boundaries can be expressed explicitly as

�n lb = ⊤ · pb , �n rb = bq · ⊤ , �b lb = pb · ⊤ , �b rb = ⊤ · bq .

Proof. We use the principle of indirect (in)equality.
By definition and Lemma 3.5(b) we get

a ≤ �
n

lb ⇔ aq ≤ pb ⇔ a ≤ ⊤ · pb . ⊓⊔

For nested neighbours we have the following cancellation properties.

Lemma 4.3

(a) �
n

l �
n
rb = �b rb and �

n
r �

n
lb = �b lb,

(b) �b l �
n
rb = �

n
rb and �b r �

n
lb = �

n
lb,

(c) �b l �b lb = �b lb and �b r �b rb = �b rb,
(d) �

n
l �b lb = �

n
lb and �

n
r �b rb = �

n
rb.

Proof. The proof of [7] can immediately be adopted, since it only uses the explicit
representations of neighbours and boundaries, which are identical for L-semirings
and full semirings. E.g., by definition (twice), pp · ⊤ = p and definition again,

�n l �n rb = �n l(bq · ⊤) = ⊤ · p(bq · ⊤) = ⊤ · bq = �b rb . ⊓⊔

Now we draw some conclusions when S is Boolean.

Lemma 4.4 For a Boolean ML-semiring S, we have

(a) ¬pa ≤ pa and ¬aq ≤ aq.
(b) p · ⊤ = ¬p · ⊤
(c) If S is right-distributive, ⊤ · p = F · ¬p

Proof.

(a) By Boolean algebra and additivity of domain we have

1 = p⊤ = p(a+ a) = pa+ pa

and the first claim follows by shunting. The second inequality can be shown
symmetrically.

(b) By Boolean algebra we only have to show that ¬p · ⊤ + p · ⊤ = ⊤ and
¬p · ⊤ ⊓ p · ⊤ = 0. The first equation follows by left-distributivity, the
second one by Boolean algebra and the law [11]

p · a ⊓ q · a = p · q · a . (2)
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(c) By left and right distributivity, Boolean algebra and N being a left zero,

F · ¬p+⊤ · p = F · ¬p+ (F+ N) · p = F · ¬p+ F · p+ N · p
= F · (¬p+ p) + N = F+ N = ⊤ .

Next, again by distributivity,

F · ¬p ⊓ ⊤ · p = F · ¬p ⊓ (F+ N) · p = F · ¬p ⊓ (F · p+ N · p)
= (F · ¬p ⊓ F · p) + (F · ¬p ⊓ N · p) .

The first summand is 0, since the law symmetric to (2) holds for finite a
and hence for F. The second summand is, by p,¬p ≤ 1 and isotony, below
F ⊓ N = 0 and thus 0, too. ⊓⊔

Similarly to [7], we now define perfect neighbours and boundaries.

Definition 4.5 Let S be a Boolean ML-semiring and a, b ∈ S.

(a) a is a perfect left neighbour of b (or a ≤ �n lb for short) iff aq · pb ≤ 0,

(b) a is a perfect right neighbour of b (or a ≤ �nrb for short) iff bq · pa ≤ 0,

(c) a is a perfect left boundary of b (or a ≤ �b lb for short) iff pa · pb ≤ 0,

(d) a is a perfect right boundary of b (or a ≤ �b rb for short) iff aq · bq ≤ 0.

From this definition, we get the following exchange rule for perfect neighbours.

a ≤ �n lb ⇔ b ≤ �nra . (3)

Lemma 4.6 Perfect neighbours and perfect boundaries have the following ex-
plicit forms:

�n lb = ⊤ · ¬pb , �n rb = ¬bq · ⊤ , �b lb = ¬pb · ⊤ , �b rb = ⊤ · ¬bq .

Proof. By definition, shunting and Lemma 3.5(b)

a ≤ �n lb ⇔ aq · pb ≤ 0 ⇔ aq ≤ ¬pb ⇔ a ≤ ⊤ · ¬pb . ⊓⊔

Lemma 4.7 Each perfect neighbour (boundary) is a neighbour (boundary):

�n lb ≤ �
n

lb , �n rb ≤ �
n

rb , �b lb ≤ �b lb , �b rb ≤ �b rb .

Proof. The claim follows by definition, shunting, Lemma 4.4(a), Boolean algebra
and definition again:

a ≤ �n lb ⇔ aq · pb ≤ 0 ⇔ aq ≤ ¬pb ⇒ aq ≤ pb ⇔ a ≤ �
n

lb . ⊓⊔

Similarly to Lemma 4.3, we have cancellative laws for all box-operators. By

��a = � �a for all kinds of perfect lazy semiring neighbours, we have

Corollary 4.8

(a) �n l�
n
rb = �b rb and �nr�

n
lb = �b lb,

(b) �b l�
n
rb = �n rb and �b r�

n
lb = �n lb,

(c) �b l�b lb = �b lb and �b r�b rb = �b rb,
(d) �n l�b lb = �n lb and �nr�b rb = �nrb.
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There are also cancellation rules for mixed diamond/box expressions, e.g.,

�b l�b lb = �b lb and �b l �b lb = �b lb . (4)

By straightforward calculations we get the de Morgan duals of right neigh-
bours and left boundaries, respectively.

�n rb = �nrb and �nrb = �n rb ,

�b lb = �b lb and �b lb = �b lb .
(5)

Furthermore, we have the following Galois connections.

Lemma 4.9 We have �
n
ra ≤ b ⇔ a ≤ �n lb and �b la ≤ b ⇔ a ≤ �b rb .

Proof. By de Morgan duality, Boolean algebra and the exchange rule (3)

�n ra ≤ b ⇔ �nra ≤ b ⇔ b ≤ �nra ⇔ a ≤ �n lb . ⊓⊔

Since Galois connections are useful as theorem generators and dualities as theo-
rem transformers we get many properties of (perfect) neighbours and (perfect)
boundaries for free. For example we have

Corollary 4.10

(a) �
n
r, �b l and �n l , �b r are isotone.

(b) �n r, �b l are disjunctive and �n l , �b r are conjunctive.
(c) We also have cancellative laws:

�
n
r�
n
la ≤ a ≤ �n l �

n
ra and �b l�b ra ≤ a ≤ �b r �b la.

But, because of Lemma 4.4(c), we do not have the full semiring de Morgan
dualities of left neighbours and right boundaries, respectively. We only obtain

Lemma 4.11 Let S be right-distributive.

(a) �
n

lb ≤ �n lb and �n lb ≤ �
n

lb ,

(b) �b rb ≤ �b rb and �b rb ≤ �b ry .

Proof. (a) By Lemma 4.2, 4.4(c), isotony and Lemma 4.6,

�
n

lb = ⊤ · pb = F · ¬pb ≤ ⊤ · ¬pb = �n lb.

The equation �n lb ≤ �
n

lb then follows by shunting. ⊓⊔

The converse inequations do not hold. For example, setting b = ⊤ implies

�
n

l⊤ = ⊤ · p0 = ⊤ · 0 = N = F and �n l⊤ = ⊤ · ¬p0 = ⊤. But in general,
⊤ ≤ F is false (if there is at least one infinite element a 6= 0). Also, the Galois
connections of [7] are not valid for left neighbours and right boundaries, but one
implication can still be proved.

Lemma 4.12 Let S be right-distributive, then

�
n

la ≤ b ⇒ a ≤ �n rb , �b ra ≤ b ⇒ a ≤ �b rb .
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Proof. By Lemma 4.11(a), Boolean algebra and the exchange rule (3)

�
n

la ≤ b ⇒ �n la ≤ b ⇔ b ≤ �n la ⇔ a ≤ �nrb . ⊓⊔

By lack of Galois connections, we do not have a full analogue to Corollary 4.10.

Lemma 4.13

(a) �
n

l , �b r, �nr and �b l are isotone.
(b) If S is right-distributive, then

�
n

l , �b r are disjunctive and �n r, �b l are conjunctive.

Proof.
(a) The claim follows directly by the explicit representation of (perfect) neigh-

bours and boundaries (Lemma 4.2 and Lemma 4.6).
(b) By Lemma 4.2, additivity of domain and right-distributivity we get

�
n

l(a+ b) = ⊤ · p(a+ b) = ⊤ · (pa+ pb) = ⊤ · pa+⊤ · pb = �
n

la+ �
n

lb . ⊓⊔

Until now, we have shown that most of the properties of [7] hold in L-semirings,
too. At some points, we need additional assumptions like right-distributivity.
Many more properties, like bq ≤ �

n
rb, can be shown. Most proofs use the explicit

forms for lazy semiring neighbours or the Galois connections (Lemma 4.9) and
Lemma 4.12. However, since L-semirings reflect some aspects of infinity, we get
some useful properties, which are different from all properties given in [7]. Some
are summarised in the following lemma.

Lemma 4.14

(a) �
n

lF = �
n
rF = �b lF = �b rF = ⊤ .

(b) b ≤ N ⇔ �
n
rb ≤ 0 ⇔ �b rb ≤ N .

(c) �n lN = �b rN = N and �n rN = �b lN = 0 .
(d) b ≤ N ⇔ F ≤ b ⇔ �nrb = ⊤ ⇔ �b rb = ⊤ .

Proof. First we note that by straightforward calculations using Lemma 3.2 and
3.4, we get

⊤ · p ≤ ⊤ · q ⇔ p ≤ q ⇔ p · ⊤ ≤ q · ⊤ . (6)

(a) Directly by Lemma 4.2 and pF = Fq = 1, since 1 ≤ F:

�
n

lF = ⊤ · pF = ⊤ · 1 = ⊤ .
(b) By Lemma 3.4, (6), left-strictness and definition of �

n
l

b ≤ N ⇔ bq ≤ 0 ⇔ bq · ⊤ ≤ 0 · ⊤ ⇔ �
n
rb ≤ 0 .

(c) By Lemma 4.6 and pF = 1 we get

�n lN = ⊤ · ¬pN = ⊤ · ¬pF = ⊤ · 0 = N.
(d) Similar to (b). ⊓⊔

Note that (a) implies �
n

l⊤ = �
n
r⊤ = �b l⊤ = �b r⊤ = ⊤ using isotony.

(c) shows again that the inequations of Lemma 4.11 cannot be strengthened to
equations.

Since the above theory concerning lazy semiring neighbours is based on lazy
semirings, it is obvious that one can use it also in the framework of lazy Kleene
algebra and lazy omega algebra [11]. The former one provides, next to the L-semi-
ring operators, an operator for finite iteration. The latter one has an additional
operator for infinite iteration.
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5 Neighbourhood Logic with Infinite Durations

Using the theory of the previous section, we can now formulate a generalisation
of NL, which includes infinite elements (intervals with infinite duration). Those
intervals are not included in the original Neighbourhood Logic of [15, 16], i.e., if
we compose two intervals [a, b] and [b, c] (where intervals are defined, as usual,
as [a, b] =df {x | a ≤ x ≤ b, a ≤ b}), it is assumed that the points of [b, c] are
reached after finite duration b−a. However, for many applications, e.g. for hybrid
systems, as we will see in Section 7, a time point ∞ of infinity is reasonable. But
then the composition of the intervals [a,∞[ and [b, c] never reaches the second
interval. This gives rise to an L-semiring.

Neighbourhood Logic and its Embedding. In this paragraph the Neigh-
bourhood Logic [15, 16] and its embedding [7] are briefly recapitulated.

Chop-based interval temporal logics, such as ITL [5] and IL [3] are useful for
the specification and verification of safety properties of real-time systems. In
these logics, one can easily express a lot of properties such as “if φ holds for
an interval, then there is a subinterval where ψ holds”. As shown in [16], these
logics cannot express all desired properties. E.g., (unbounded) liveness properties
such as “eventually there is an interval where φ holds” are not expressible in
these logics. As it is shown in [16] the reason is that the modality chop ⌢ is
a contracting modality, in the sense that the truth value of φ⌢ψ on [a, b] only
depends on subintervals of [a, b]:

φ⌢ψ holds on [a, b] iff
there exists c ∈ [a, b] such that φ holds on [a, c] and ψ holds on [c, b].

Hence Zhou and Hansen proposed a first-order interval logic called Neighbour-
hood Logic (NL) in 1996 [15]. In this logic they introduce left and right neigh-
bourhoods as new primitive intervals to define other unary and binary modalities
of intervals in a first-order logic. The two proposed simple expanding modalities

�lφ and �rφ are defined as follows:

�lφ holds on [a, b] iff there exists δ ≥ 0 such that φ holds on [a− δ, a], (7)

�rφ holds on [a, b] iff there exists δ ≥ 0 such that φ holds on [b, b+ δ], (8)

where φ is a formula2 of NL. These modalities can be illustrated by

︷ ︸︸ ︷︷ ︸︸ ︷

φ �lφ
✤ ✤ ✤ ✤

c a b

︷ ︸︸ ︷︷ ︸︸ ︷
�rφ φ

✤ ✤✤ ✤

a b d

where c = a− δ where d = b+ δ

With �r( �l) one can reach the left (right) neighbourhood of the beginning (end-
ing) point of an interval. In contrast to the chop operator, the neighbourhood
modalities are expanding modalities, i.e., �l and �r depend not only on subin-
tervals of an interval [a, b], but also on intervals “outside”. In [15] it is shown

2 The exact definition of the syntax of formulas can be found e.g. in [15].
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that the modalities of [6] and [14] as well as the chop operator can be expressed
by the neighbourhood modalities.

In [7] we present an embedding and extension of NL into the framework of
full semirings. There, (perfect) neighbours and boundaries are defined on full
semirings in the same way as we have done this for L-semirings in Section 4.
Consider the structure

INT =df (P(Int),∪, ;, ∅, 1l) ,

where 1l =df {[a, a]} denotes the set of all intervals consisting of one single point
and Int is the set of all intervals [a, b] with a, b ∈ Time and Time is a totally
ordered poset, e.g. IR. Further we assume that there is an operation − on Time,
which gives us the duration of an interval [a, b] by b − a. By this operation 1l
consists of all 0-length intervals.

For the moment we exclude intervals with infinite duration. The symbol ;
denotes the pointwise lifted composition of intervals which is defined by

[a, b] ; [c, d] =df

{

[a, d] if b = c

undefined otherwise .

It can easily be checked that INT forms a full semiring. In [7] we have shown
that

�lφ holds on [a, b] ⇔ {[a, b]} ≤ �
n
rIφ ,

�rφ holds on [a, b] ⇔ {[a, b]} ≤ �
n

lIφ ,

where Iφ =df {i | i ∈ Int, φ holds on i}. This embedding gives us the possibility
to use the structure of a semiring to describe NL. Many simplifications of NL
and properties concerning the algebraic structure are given in [7].

Adding Infinite Durations. Now, we assume a point of infinity ∞ ∈ Time,
e.g. Time = IR ∪ {∞}. If there is such an element, it has to be the greatest
element. Consider the slightly changed structure

INTi =df (P(Int),∪, ;, ∅, 1l) ,

where ; is now the pointwise lifted composition defined as

[a, b] ; [c, d] =df







[a, d] if b = c, b 6= ∞
[a, b] if b = ∞
undefined otherwise .

Again, it is easy to check that INTi forms an L-semiring, which even becomes
an ML-semiring by setting, for A ∈ P(Int),

pA =df {[a, a] | [a, b] ∈ A} and Aq =df {[b, b] | [a, b] ∈ A, b 6= ∞} .

Note that INTi is right-distributive, so that all Lemmas and Corollaries of Sec-
tion 4 hold in this model.

Thereby we have defined a new version NL
i of NL which handles intervals with

infinite durations. NLi also subsumes the theory presented in [17]. In particular
it builds a bridge between NL and a duration calculus for infinite intervals.
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6 Lazy Semiring Neighbours and CTL
∗

Lazy semiring neighbours do not only appear in NL
i. Also in other areas of

computer science they play an important role. We now present an application of
neighbours and boundaries in the field of CTL∗.

The branching time temporal logic CTL
∗ (see e.g. [4]) is a well-known tool

for analysing and describing parallel as well as reactive and hybrid systems.
In CTL

∗ one distinguishes state formulas and path formulas, the former ones
denoting sets of states, the latter ones sets of computation traces.

The language Ψ of CTL∗ formulas over a set Φ of atomic propositions is
defined by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | XΨ | Ψ UΨ | EΨ ,

where X and U are the next-time and until operators and E is the existential
quantifier on paths. As usual,

¬ϕ =df ϕ→ ⊥ , ϕ ∧ ψ =df ¬(ϕ→ ¬ψ) ,
ϕ ∨ ψ =df ¬ϕ→ ψ , Aϕ =df ¬E¬ϕ .

In [12] a connection between CTL
∗ and Boolean modal quantales is presented.

Since these are right-distributive, all the lemmas of the previous sections are
again available. If A is a set of states one could, e.g., use the algebra STR(A)
of finite and infinite streams of A-states as a basis. For an arbitrary Boolean
modal quantale S, the concrete standard semantics for CTL

∗ is generalised to
a function [[ ]] : Ψ → S as follows, where [[ϕ]] abstractly represents the set of
paths satisfying formula ϕ. One fixes an element n (n standing for “next”) as
representing the transition system underlying the logic and sets

[[⊥]] = 0 ,
[[p]] = p · ⊤ ,

[[ϕ→ ψ]] = [[ϕ]] + [[ψ]] ,
[[Xϕ]] = n · [[ϕ]] ,

[[ϕUψ]] =
⊔

j≥0

(nj · [[ψ]] ⊓
d

k<j

nk · [[ϕ]]) ,

[[Eϕ]] = p[[ϕ]] · ⊤ .

Using these definitions, it is straightforward to check that [[ϕ ∨ ψ]] = [[ϕ]] + [[ψ]],
[[ϕ ∧ ψ]] = [[ϕ]] ⊓ [[ψ]] and [[¬ϕ]] = [[ϕ]].

By simple calculations we get the following result.

Lemma 6.1 [12] Let ϕ be a state formula of CTL∗. Then

[[Aϕ]] = ¬p([[ϕ]]) · ⊤ .

Hence we see that [[Eϕ]] corresponds to a left boundary and [[Aϕ]] to a perfect
left boundary, i.e.,

[[Eϕ]] = �b l [[ϕ]] and [[Aϕ]] = �b l [[ϕ]] .

13



With these equations we have connected lazy neighbours with CTL
∗. From

Lemma 4.3, Corollary 4.8 and equations (4) we obtain immediately

[[EEϕ]] = [[Eϕ]] , [[AAϕ]] = [[Aϕ]] ,
[[EAϕ]] = [[Aϕ]] , [[AEϕ]] = [[Eϕ]] .

The other two boundaries as well as all variants of (perfect) neighbours do not
occur in CTL

∗ itself.
A connection to hybrid systems will be set up in the next section.

7 Lazy Semiring Neighbours and Hybrid Systems

Hybrid systems are dynamical heterogeneous systems characterised by the inter-
action of discrete and continuous dynamics. In [9] we use the L-semiring PRO
of processes from Section 2 for the description of hybrid systems.

Hybrid systems and NL. In PRO the left/right neighbours describe a kind of
composability, i.e., for processes A, B,

A ≤ �
n

lB iff ∀ a ∈ A : ∃ b ∈ B : a · b is defined, (9)

A ≤ �
n
rB iff ∀ a ∈ A : ∃ b ∈ fin (B) : b · a is defined. (10)

These equivalences are closely related to (7) and (8), respectively. �
n
r and �

n
l

each guarantee existence of a composable element. Especially, �
n
r 6= 0 guaran-

tees that there exists a process, and therefore a trajectory, that can continue
the current process (trajectory). Therefore it is a form of liveness assertion. In
particular, the process �

n
rB contains all trajectories that are composable with

the “running” one. If �
n
rB = ∅, we know that the system will terminate if all

trajectories of the running process have finite durations. Note that in the above
characterisation of �

n
l the composition a · b is defined if either f(d1) = g(0)

(assuming a = (d1, f) and b = (d2, g)) or a has infinite duration, i.e., d = ∞.
As we will see in the next paragraph, left and right boundaries of lazy semirings
are closely connected to temporal logics for hybrid systems. But, by Lemma 4.3,
they are of course also useful as operators that simplify nestings of semiring
neighbours.

The situation for right/left perfect neighbours is more complicated. As shown
in [7], �nrB is the set of those trajectories which can be reached only from B,
not from B. Hence it describes a situation of guaranteed non-reachability from
B. The situation with �n l is similar for finite processes, because of the symmetry
between left and right perfect neighbours.

Hybrid systems and CTL
∗. Above we have shown how lazy semiring neigh-

bours are characterised in PRO. Since they are also closely connected to CTL
∗

(cf. Section 6) we have built a bridge between CTL
∗ and hybrid systems in an

algebraic manner. As shown above, we have on the one hand [[Eϕ]] = �b l [[ϕ]]
and on the other hand that �b l is connected to hybrid systems. Therefore we
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now have an interpretation of the existence operator E of CTL∗ in hybrid sys-
tems. That the existence fits well into our model, can be seen in equations (9)
and (10), where the existence quantifier occurs. Of course all other kinds of left
and right (perfect) neighbours and boundaries have their own interpretation in
PRO and in (the extended) CTL∗, respectively. A detailed discussion of all these
interpretations is part of our future work (cf. Section 8).

8 Conclusion and Outlook

In the paper we have presented a second extension of Neighbourhood Logic. Now
this logic is able to handle intervals which either have finite or infinite length.
Therefore we established semiring neighbours over lazy semirings. During the
development of lazy semiring neighbours it turned out that they are not only
useful and necessary for NL but also in other areas of computer science. We have
sketched a connection to temporal logics and to hybrid systems.

Since we have only given a short overview over the connections between lazy
semiring neighbours, CTL∗ and hybrid systems, one of our aims for further work
is a longer treatment of CTL∗ interpreted for hybrid system. Furthermore it will
be interesting to see if there are even more applications for semiring neighbours.

Acknowledgement. We are grateful to Kim Solin and the anonymous referees
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References

1. J. H. Conway. Regular Algebra and Finite State Machines. Chapman & Hall, 1971
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P. Höfner: Semiring Neighbours. Technical Report 2005-19, Universität Augsburg,
2005

15
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11. B. Möller: Kleene getting lazy. Science of Computer Programming, Special issue
on MPC 2004 (to appear). Previous version: B. Möller: Lazy Kleene algebra. In
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