
Quantales and Temporal Logics

Bernhard Möller1, Peter Höfner1⋆, and Georg Struth2

1 Institut für Informatik, Universität Augsburg
D-86135 Augsburg, Germany

{hoefner,moeller}@informatik.uni-augsburg.de
2 Department of Computer Science, University of Sheffield

Sheffield S1 4DP, UK
G.Struth@dcs.shef.ac.uk

Abstract We provide an algebraic semantics for the temporal logic
CTL

∗ and simplify it for its sublogics CTL and LTL. We abstractly rep-
resent state and path formulas over transition systems in Boolean left
quantales. These are complete lattices with an operation of multiplica-
tion that is completely disjunctive in its left argument and isotone in
its right argument. On these quantales, the semantics of CTL∗ formulas
can be encoded via finite and infinite iteration operators, the CTL and
LTL operators can be related to domain operators. This yields interest-
ing new connections between representations as known from the modal
µ-calculus and Kleene/ω-algebraic ones.

1 Introduction

The temporal logic CTL∗ and its sublogics CTL and LTL are prominent tools in
the analysis of parallel and reactive systems. Although they are by now well-
understood, one rarely finds attempts to set up formal connections between
them that go beyond mere inclusion of the sublogics into the overall logic. First
results along these lines were obtained by B. von Karger in his work on temporal
algebra [19]. But he stayed with implicit fixpoint characterisations of the involved
semantic operators. In the present paper we show that we can map both CTL

and LTL to closed expressions using modal operators as well as Kleene star and
ω iteration.

This is achieved in two steps. First we provide an algebraic semantics for
the full logic CTL∗ on the basis of quantales, i.e., complete lattices with an
operation of multiplication that is completely disjunctive in its left and positively
disjunctive in its right argument.

In such a quantale, sets of states and hence the semantics of state formulas
can be represented as test elements in the sense of Kozen [12], while general
elements represent the semantics of path formulas.

We define suitable mappings that, for the CTL and LTL formulas, transform
their general CTL∗ semantics into simplified versions in ω-regular form. This
yields interesting new connections between representations as known from the
modal µ-calculus [10] and Kleene/ω-algebraic ones.

⋆ This research was supported by DFG (German Research Foundation)

2 Modelling CTL
∗

In CTL∗ (see e.g. [8]) one distinguishes path formulas and state formulas, the
former ones denoting sets of computation traces and the latter ones denoting
sets of states.

The language Ψ of CTL∗ formulas over a set Φ of atomic propositions is
defined by the grammar

Ψ ::= ⊥ | Φ | Ψ → Ψ | XΨ | Ψ UΨ | EΨ,

where X and U are the next-time and until operators and E is the existential
quantifier on paths. As usual,

¬ϕ =df ϕ→ ⊥, ϕ ∧ ψ =df ¬(ϕ→ ¬ψ),
ϕ ∨ ψ =df ¬ϕ→ ψ, Aϕ =df ¬E¬ϕ.

The sublanguages Σ of state formulas and Π of path formulas are given by

Σ ::= ⊥ | Φ | Σ → Σ | EΠ,
Π ::= Σ | Π → Π | XΠ | Π UΠ.

To motivate our algebraic semantics, we briefly recapitulate the standard
semantics of CTL∗ formulas. It uses a set S of states and traces σ ∈ S+ ∪ Sω

as its basic objects. By σi one denotes the i-th element of σ (numbering staring
with 0) and by σi the trace that results from σ by removing its first i elements.

With each atomic proposition π ∈ Φ one associates the set Sπ ⊆ S of states
for which p is true. Then one inductively defines when a formula ϕ holds for a
trace σ, in signs σ |= ϕ:

σ 6|= ⊥,
σ |= π iff σ0 ∈ Sπ,

σ |= ϕ→ ψ iff σ |= ϕ implies σ |= ψ,

σ |= Xϕ iff σ1 |= ϕ,

σ |= ϕUψ iff ∃ j ≥ 0 . σj |= ψ and ∀ k < j . σk |= ϕ,

σ |= Eϕ iff ∃ τ . τ0 = σ0 and τ |= ϕ.

This implies σ |= ¬ϕ iff not σ |= ϕ.
From this semantics one can extract a set-based one by assigning to each

formula ϕ the set [[ϕ]] =df {σ | σ |= ϕ}. This is the basis of the algebraic model
to be given below.

We quickly repeat the proof of validity of the CTL∗ axiom

¬Xϕ↔ X¬ϕ, (1)

since this will be crucial for the characterisation of the algebraic representation
of X in Section 4:

σ |= ¬Xϕ ⇔ σ 6|= Xϕ ⇔ σ1 6|= ϕ ⇔ σ1 |= ¬ϕ ⇔ σ |= X¬ϕ .

2

3 Quantales, Fixpoints and Modal Operators

Let us now transfer this to an algebraic setting. A left quantale [16] is a structure
(S,≤, 0, ·, 1) where (S,≤) is a complete lattice and · is completely disjunctive
in its left and positively disjunctive in its right argument. The infimum and
supremum of two elements a, b ∈ S are denoted by a ⊓ b and a + b, resp. Both
operators have equal binding power. The greatest element of S is denoted by ⊤.
The definition implies that · is left-strict, i.e., that 0 · a = 0 for all a ∈ S.

A right quantale is defined symmetrically. Finally, (S,≤, 0, ·, 1) is a quantale
if it is both a left and right one. In a (right) quantale multiplication is right-
strict, i.e., a · 0 = 0 for all a ∈ S. The notion of a quantale is equivalent that of
a standard Kleene algebra [3].

A quantale is called Boolean if its underlying lattice is distributive and com-
plemented, whence a Boolean algebra. An important Boolean quantale is REL,
the algebra of binary relations under union and composition over a set.

We now introduce two important Boolean left quantales. Both are based on
finite and infinite strings over an alphabet A. Next to their classical interpre-
tation as characters, the elements of A may e.g. be thought of as states in a
computation system, or, in connection with graph algorithms, as graph nodes.
As usual, A∗ is the set of all finite words over A; the empty word is denoted by
ε. Moreover, Aω is the set of all infinite words over A. We set A∞ =df A∗ ∪Aω.
The length of word s is |s|. As usual, concatenation is denoted by juxtaposition,
where st =df s if |s| = ∞. A language over A is a subset of A∞. As usual, we
identify a singleton language with its only element. For language S ⊆ A∞ we
define its infinite and finite parts by

inf S =df {s ∈ S : |s| = ∞}, finS =df S − inf S .

The left quantale WOR(A) = (P(A∞),⊆, ∅, , ε) is obtained by extending
concatenation to languages in the following way:

S T =df inf S ∪ {st : s ∈ finS ∧ t ∈ T } .

Note that in general S T 6= {st : s ∈ S ∧ t ∈ T }; using the set on the right
hand side as the definition of S T one would obtain a right-strict operation.
With the above definition, S ∅ = inf S and hence S ∅ = ∅ iff inf S = ∅. It is
straightforward to show that WOR(A) is an left quantale. The algebra is well-
known from the classical theory of ω-languages (see e.g. [18] for a survey).

Besides this model we use a second one with a more refined view of com-
position and hence allows more interesting modal operators. It uses the join or
fusion product ✶ of words as a language-valued operation. For s ∈ A∗, t ∈ A∞

and x, y ∈ A,

ε ✶ ε =df ε ε ✶ s =df s ✶ ε =df ∅ if s 6= ε ,

sx ✶ xt =df sxt , sx ✶ yt =df ∅ if x 6= y .

Finally, s ✶ t =df s if |s| = ∞.

3

Informally, a non-empty finite word s can be joined with a non-empty word
t iff the last letter of s coincides with the first one of t; only one copy of that
letter is kept in the joined word.

Since we view the infinite words as streams of computations, we call the
left quantale based on this composition operation STR(A) and define it by
STR(A) =df (P(A∞),⊆, ∅,✶, A ∪ ε), where ✶ is extended to languages in the
following way:

S ✶ T =df inf S ∪ {s ✶ t : s ∈ finS ∧ t ∈ T } .

As above, we have S ✶ ∅ = inf S and hence S ✶ ∅ = ∅ iff inf S = ∅. A transition
relation can be modelled in STR as a set R of words of length 2. The powers Ri

of R then consist of the words (or paths) of length i + 1 that are generated by
R-transitions.

Arbitrary finite and infinite iteration are defined in a quantale by the usual
recursions:

a∗ =df µx . 1 + a · x , aω =df νx . a · x .

If, as in a Boolean quantale, + is completely conjunctive then, as shown in [1],
these operations satisfy the axioms of a left Kleene/omega algebra [11,2]. The
two operations are connected as follows (see e.g. [1]):

a∗ · b = µx . b+ a · x , aω + a∗ · b = νx . b+ a · x . (2)

To model state formulas we use the idea of tests as introduced into Kleene
algebras by Kozen [12]. Based on the observation that, relationally, a set of
elements can be modelled as a subset of the identity relation, one defines a (left)
test quantale as a pair (S, test(S)), where S is a (left) quantale and test(S) ⊆ [0, 1]
is a Boolean subalgebra of the interval [0, 1] of S such that 0, 1 ∈ test(S) and join
and meet in test(S) coincide with + and · . We use a, b, . . . for general quantale
elements and p, q, . . . for tests. By ¬p we denote the complement of p in test(S)
and set p→ q = ¬p+ q. We freely use the Boolean laws for tests.

A set of states will now abstractly be represented by a test. Pre- and post-
multiplication by a test correspond to restricting an element on the input and
output side, resp. This allows us to represent the set of all possible paths that
start with a state in set p by the test ideal p · ⊤.

The set of starting states of paths in a set represented by a ∈ S can be
retrieved by the domain operation p : S → test(S) characterised by the Galois
connection

pa ≤ p ⇔ a ≤ p · ⊤ .

This is well defined, since in a Boolean left quantale · preserves arbitrary infima
of tests in its left argument [4]. By the general properties of Galois connections,
the domain operation is completely disjunctive. For further domain properties
see [5].

We list a number of important properties of tests and test ideals; for the
proofs see [13].

4

Lemma 3.1 Assume a Boolean left test quantale S and consider elements a, b ∈
S and p, q ∈ test(S).

1. p(p · ⊤) = p.
2. p ≤ q ⇔ p · ⊤ ≤ q · ⊤.
3. p · a ⊓ b = p · (a ⊓ b).

Hence also p · ⊤ ⊓ a = p · a and p · (a ⊓ b) = p · a ⊓ p · b.
4. p · a ⊓ q · a = p · q · a.
5. If S is Boolean then ¬p · ⊤ = p · ⊤.

By property 2. the set of test ideals is isomorphic to the set of tests.
To use the above properties freely, we assume for the remainder that S is a

Boolean left quantale.
Using domain, we can also define (forward) modal operators by setting, for

a ∈ S and q ∈ test(S),

〈a〉q =df p(a · q) , [a] =df ¬〈a〉¬q .

The box generalises the notion of the weakest liberal precondition wlp to Boolean
left quantales. If we view a as the transition relation of a command then the test
[a]p characterises those states from which no transition under a is possible or
the execution of a is guaranteed to end up in a final state that satisfies test q.
Both operators are isotone in their test argument. Hence in a Boolean quantale
we have the full power of the modal µ-calculus [10] available.

In particular, we can define the convergence △a ∈ test(S) of an element a by

△a =df µx . [a]x .

This characterises the set of states from which no infinite transition paths emerge.
To make the modal operators well-behaved w.r.t. composition we need to

assume the underlying quantale to satisfy

p(a · b) = p(a · pb), (3)

since then 〈a · b〉 = 〈a〉 ◦ 〈b〉 and [a · b] = [a] ◦ [b]. Therefore we call a (left)
quantale with this property modal.

In a modal left quantale, star, omega, box and convergence interact according
to the following induction and coinduction laws [5,6]:

x ≤ p · [a]x ⇒ x ≤ [a∗]p, (4)

△a · [a∗]p = µx . p · [a]x. (5)

Dual laws hold for the diamond operator.
In modal quantales (and, more generally, modal ω/convergence algebras)

we have additional flexibility compared to PDL [10] and the µ-calculus, since
the modal operators are defined for ω-regular expressions, not only for atomic
actions.

5

4 Algebraic Semantics of CTL∗

Now we give our algebraic interpretation of CTL∗ over a Boolean modal quantale
S. To save some notation we set Φ = test(S). Moreover, we fix an element a as
representing the transition system underlying the logic. The precise requirements
for a will be discussed in Section 5. Then the concrete semantics above generalises
to a function [[]] : Ψ → S:

[[⊥]] = 0,
[[p]] = p · ⊤,

[[ϕ→ ψ]] = [[ϕ]] + [[ψ]],
[[Xϕ]] = a · [[ϕ]],

[[ϕUψ]] = ⊔
j≥0

(aj · [[ψ]]⊓ ⊓
k<j

ak · [[ϕ]]),

[[Eϕ]] = p[[ϕ]] ·⊤.

Using these definitions, it is straightforward to check that

[[ϕ ∨ ψ]] = [[ϕ]] + [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ⊓ [[ψ]], [[¬ϕ]] = [[ϕ]].

An important check of the adequacy of our definitions is provided by the
following theorem.

Theorem 4.1 The element [[ϕUψ]] is the least fixpoint µf of the function
f(x) =df [[ψ]] + ([[ϕ]] ⊓ a · x).

Proof. Since in a Boolean quantale multiplication and meet are completely dis-
junctive, f is completely disjunctive, too, and hence continuous. So by Kleene’s
fixpoint theorem µf =⊔

j≥0
f j(0). A straightforward induction that goes through

provided multiplication by a distributes from the left through meet shows

f i(0) =⊔
j≤i

(aj · [[ψ]]⊓ ⊓
k<j

ak · [[ϕ]]),

from which the claim follows. That a has the mentioned property will be dis-
cussed in the next section. ⊓⊔

We define the usual abbreviations:

Aϕ =df ¬E¬ϕ, Fϕ =df ⊤Uϕ, Gϕ =df ¬F¬ϕ.

The above theorem and (2) yield the following closed representation of F:

Corollary 4.2 [[Fϕ]] = a∗ · [[ϕ]].

6

5 The Next-Time Operator

We now want to find out the suitable requirements on a by transferring the
axiom (1) to the algebraic frame. To satisfy it, we need to have for all formulas
ϕ and their semantical values b =df [[ϕ]],

a · b = [[¬Xϕ]] = [[X¬ϕ]] = a · b. (6)

This semantic property can equivalently be characterised as follows (property 1.
was already shown in [4]).

Lemma 5.1 Consider a Boolean left quantale S and a ∈ S such that a · 0 = 0.

1. ∀ b ∈ S : a · b ≤ a · b ⇔ ∀ b, c ∈ S : a · (b ⊓ c) = a · b ⊓ a · c.
2. ∀ b ∈ S : a · b ≤ a · b ⇔ a · ⊤ = ⊤ ⇔ aω = ⊤.

Proof. 1. (⇒) It suffices to show (≥), since the reverse inequality follows by
isotony.

a · b ⊓ a · c ≤ a · (b ⊓ c)

⇔ {[by shunting]}

a · b ≤ a · c+ a · (b ⊓ c)

⇐ {[assumption a · b ≤ a · b]}

a · b ≤ a · c+ a · (b ⊓ c)

⇔ {[distributivity]}

a · b ≤ a · (c+ (b ⊓ c))

⇔ {[Boolean algebra]}

a · b ≤ a · (c+ b)

⇔ {[lattice algebra and isotony]}

TRUE.

(⇐) We calculate, using the assumption in the third step:

0 = a · 0 = a · (b ⊓ b) = a · b ⊓ a · b.

Now the claim is immediate by shunting.
2. a · b ≤ a · b

⇔ {[by shunting]}

⊤ ≤ a · b+ a · b

⇔ {[distributivity]}

⊤ ≤ a · (b + b)

⇔ {[complement]}

⊤ ≤ a · ⊤

⇔ {[greatest element]}

⊤ = a · ⊤

⇔ {[aω = νx . a · x]}

aω = ⊤.
⊓⊔

7

In relation algebra, the special case a · 1 ≤ a of the property in 1. charac-
terises partial functions and is equivalent to the full property [17]. But in general
quantales the special and the general case are not equivalent [4]. Moreover, again
from [4], we know that in quantales such as LAN and PAT an element a is left-
distributive over meet iff it is prefix-free, i.e. if no member of a is a prefix of
another member. This holds in particular if all words in a have equal length,
which is the case if a models a transition relation and hence consists only of
words of length 2. The equivalent condition ∀ b . a · b ⊓ a · b = 0 was used in the
computation calculus of R.M. Dijkstra [7].

But what about property 2? Only rarely will a quantale be “generated”
by an element a in the sense that aω = ⊤. The solution is to choose a left-
distributive element a and restrict the set of semantical values to the subset
SEM(a) =df {b : b ≤ aω}, taking complements relative to aω. This set is clearly
closed under + and ⊓ and under prefixing by a, since by isotony

a · b ≤ a · aω = aω .

Finally, it also contains all elements p · aω with p ∈ test(S), since p ≤ 1. Hence
the above semantics is well-defined in SEM(a) if we replace ⊤ by aω.

6 The Semantics of State Formulas

In this section we relate state formulas and test ideals.

Theorem 6.1 Let ϕ be a state formula of CTL∗.

1. [[ϕ]] is a test ideal, and hence, by Lemma 3.1.1, we have [[ϕ]] = p[[ϕ]] ·⊤.
2. [[Eϕ]] = [[ϕ]].

3. [[Aϕ]] = ¬ p([[ϕ]]) ·⊤.

Proof. 1. The proof is by induction on the structure of ϕ.
– For ⊥ and p ∈ test(S) this is immediate from the definition.
– Assume that the claim already holds for state formulas ϕ and ψ. We

calculate, using the definitions, the induction hypothesis, Lemma 3.1.5,
distributivity and the definitions again,

[[ϕ→ ψ]] = [[ϕ]] + [[ψ]] = p[[ϕ]] ·⊤+ p[[ψ]] ·⊤ = ¬ p[[ϕ]] ·⊤+ p[[ψ]] ·⊤
= (¬ p[[ϕ]] + p[[ψ]]) · ⊤ = (p[[ϕ]] → p[[ψ]]) · ⊤.

– For Eϕ the claim is immediate from the definition.
2. Immediate from 1. and the definition of [[Eϕ]].
3. Similar. ⊓⊔

Moreover, state formulas are closed under ¬,∧,∨ and A.
Next, we derive some properties of U and its relatives for state formulas. For

this we need some knowledge about dual functions and their fixpoints. The dual
f◦ of a function f : S → S over a Boolean quantale is, as usual, defined by

f◦(x) =df f(x). Then µf = νf◦ and νf = µf◦.

8

Lemma 6.2 Let ϕ, ψ be state formulas and p · ⊤ =df [[ϕ]], q · ⊤ =df [[ψ]].

1. [[ϕUψ]] = (p · a)∗ · q · ⊤ = ([[ϕ]] ⊓ a)∗ · [[ψ]].

2. [[Gϕ]] = (p · a)ω = ([[ϕ]] ⊓ a)ω.
Hence we have the shunting rule (p · a)ω = a∗ · ¬p · ⊤.

Proof. 1. Using Theorem 4.1 and Lemma 3.1.3 we calculate

[[ϕUψ]] = µx . q · ⊤+ (p · ⊤ ⊓ a · x) = µx . q · ⊤+ p · a · x,

and the claim follows by (2).

2. Since [[Fϕ]] = µfp where fp(x) = p · ⊤ + a · x, we have, by Lemma 3.1,
[[Gϕ]] = [[¬F¬ϕ]] = νf◦

¬p, where, again by Lemma 3.1 and by (6),

f◦
¬p(x) = ¬p · ⊤+ a · x = ¬p · ⊤ ⊓ a · x = p · ⊤ ⊓ a · x = p · a · x.

Hence the claim follows by the definition of ω. ⊓⊔

The case p = 1 yields again Corollary 4.2. Now we deal with E.

Lemma 6.3 [[EXϕ]] = [[EXEϕ]].

Proof. Using the definitions, a domain property, (3) and the definitions again,
we calculate

[[EXEϕ]] = p(a · p[[ϕ]] ·⊤) ·⊤ = p(a · p[[ϕ]]) ·⊤ = p(a · [[ϕ]]) ·⊤ = [[EXϕ]].

⊓⊔

Next, we collect a number of properties of A; the proofs are straightforward
calculations.

Lemma 6.4

[[A⊥]] = 0, [[A⊤]] =⊤,
[[A(p ∨ ϕ)]] = p+ [[Aϕ]], [[A(p ∧ ϕ)]] = p · [[Aϕ]].

In particular, [[Ap]] = p.

Moreover, for the axiom EX⊤ we obtain

Lemma 6.5 [[EX⊤]] = ⊤ ⇔ pa = 1 ⇔ a total.

Proof. Since [[EX⊤]] = p(a · ⊤) ·⊤ = pa ·⊤, the claim follows from Lemma 3.1.2.
⊓⊔

9

7 From CTL
∗ to CTL

For a number of applications the sublogic CTL of CTL∗ suffices. We will see
that it can be modelled in plain Kleene/convergence algebra. Syntactically, CTL
consists of those CTL∗ state formulas that result by using the restricted path
formulas generated by the grammar Π ::= XΣ | Σ UΣ.

First, we note that EX and AX are duals.

Lemma 7.1 [[AXϕ]] = [[¬EX¬ϕ]].

Proof. By Theorem 6.1.3, the definitions, (6), Lemma 3.1.5 and the definitions
again, we obtain

[[AXϕ]] = ¬ p[[Xϕ]] ·⊤ = ¬ pa · [[ϕ]] ·⊤ = ¬ p(a · [[ϕ]]) ·⊤

= p(a · [[ϕ]]) ·⊤ = [[¬EX¬ϕ]].

⊓⊔

¿From this and Lemma 6.3 we obtain

Corollary 7.2 [[AXϕ]] = [[AXAϕ]].

Since we already know that the semantics of every state formula ϕ is a test
ideal, we can, by Theorem 6.1, use the simplified semantics [[ϕ]]d given by

[[ϕ]]d =df p[[ϕ]] .

This way we only need to calculate with tests.
By disjunctivity of Domain and Lemma 3.1,

[[ϕ ∨ ψ]]d = [[ϕ]]d + [[ψ]]d, [[ϕ ∧ ψ]]d = [[ϕ]]d · [[ψ]]d, [[¬ϕ]]d = ¬[[ϕ]]d.

We transfer the properties of A from Lemma 6.4 to the simplified semantics;
again the proofs are straightforward calculations.

Lemma 7.3

[[A⊥]]d = 0, [[A⊤]]d =1,
[[A(p ∨ ϕ)]]d = p ∨ [[Aϕ]]d, [[A(p ∧ ϕ)]]d = p · [[Aϕ]]d.

In particular, [[Ap]]d = p.

Now we can calculate the inductive behaviour of [[]]d.

Theorem 7.4
1 . [[⊥]]d = 0,
2 . [[p]]d = p,

3 . [[ϕ→ ψ]]d = [[ϕ]]d → [[ψ]]d,
4 . [[EXϕ]]d = 〈a〉[[ϕ]]d,
5 . [[AXϕ]]d = [a][[ϕ]]d = [[AXAϕ]]d,

6 . [[AFϕ]]d = ¬ pa∗ · [[ϕ]]d · ⊤ = ¬ p(¬[[ϕ]]d · a)
ω,

7 . [[E(ϕUψ)]]d = 〈([[ϕ]]d · a)∗〉[[ψ]]d,
8 . [[A(ϕUψ)]]d = [[AFϕ]]d · [b∗]([[ϕ]]d + [[ψ]]d) where b =df ¬[[ϕ]]d · a.

10

Proof. The proof is again by induction on the structure of the state formulas.
The cases 1.–3. of ⊥, p and ϕ → ψ have already been covered in the proof of
Theorem 6.1.

4. Using again Theorem 6.1, the definition of [[]], (3) and the definitions again,
we calculate

[[EXϕ]]d = p[[Xϕ]] = p(a · [[ϕ]]) = p(a · p[[ϕ]]) = 〈a〉[[ϕ]]d.

5. [[AXϕ]]d
= {[by Theorem 6.1.3 and Lemma 3.1.2]}

¬ p[[Xϕ]]

= {[definition and Theorem 6.1]}

¬ pa · [[ϕ]]d · ⊤

= {[by (6)]}

¬ p(a · [[ϕ]]d · ⊤)

= {[by Lemma 3.1.2]}

¬ p(a · ¬[[ϕ]]d · ⊤)

= {[domain property]}

¬ p(a · ¬[[ϕ]]d)

= {[definition]}

[a][[ϕ]]d.
Moreover, [[ϕ]]d = [[Aϕ]]d follows from Lemma 7.3.

6. Assume [[ϕ]] = p ·⊤. By the definition of A and the explicit representation of

F from Corollary 4.2 we obtain [[AFϕ]] = ¬ pa∗ · p · ⊤ ·⊤. Now the claim is
immediate from the shunting rule of Lemma 6.2.2 and the definition of [[]]d.

7. For [[E(ϕUψ)]] we use the principle of least-fixpoint fusion [1]: If h is com-
pletely disjunctive and h ◦ f = g ◦ h then h(µf) = µg.
Set, for abbreviation, p =df [[ϕ]]d and q =df [[ψ]]d. Then, by Lemma 4.1 and
Lemma 3.1.3, u =df [[ϕUψ]] = µf where f(x) =df q ·⊤+(p ·a ·x). Second,
by Theorem 6.1 and (5), 〈(p · a)∗〉 = µg where g(p) =df q + 〈(p · a)〉p. We
need to show p(µf) = µg. By the principle of least-fixpoint fusion this is
implied by p ◦f = g ◦ p, since p is completely disjunctive. We calculate:

p(f(x))

= {[definition f]}
p(q · ⊤+ (p · a · x))

= {[additivity of domain]}
p(q · ⊤)+ p(p · a · x))

= {[by Lemma 3.1.1]}

q + p(p · a · x)

= {[(3)]}

q + p(p · a · px)

= {[definition diamond]}

11

q + 〈p · a〉 · px

= {[definition g]}

g(px).

8. For r =df [[A(ϕUψ)]] we use that, by Theorem 6.1.3, r = ¬ pu, where u =df

[[ϕUψ]]. Let, for abbreviation, p ·⊤ =df [[ϕ]] and q ·⊤ =df [[ψ]]. Since u = µf

where f(x) = q · ⊤+ p · a · x, we have u = νf◦. We calculate

f◦(x)

= {[definitions]}

q · ⊤+ p · a · x

= {[de Morgan]}

q · ⊤ ⊓ p · a · x

= {[by Lemma 3.1.5]}

¬q · ⊤ ⊓ p · ⊤ ⊓ a · x

= {[by Lemma 3.1.3 and de Morgan]}

¬q · (p · ⊤+ a · x)

= {[by Lemma 3.1.5 and (6)]}

¬q · (¬p · ⊤+ a · x)

= {[complement]}

¬q · (¬p · ⊤+ a · x)

= {[distributivity]}

¬q · ¬p · ⊤+ ¬q · a · x

= {[de Morgan]}

¬(p+ q) · ⊤+ ¬q · a · x.

Hence

r

= {[above considerations]}

¬ p(νf◦)

= {[by (2)]}

¬ p((¬q · a)ω + (¬q · a)∗ · ¬(p+ q) · ⊤)

= {[distributivity and de Morgan]}

¬ p((¬q · a)ω) · ¬ p((¬q · a)∗ · ¬(p+ q) · ⊤)

= {[by Lemma 6.2.2 and domain property]}

¬ p(a∗ · q · ⊤) · ¬ p((¬q · a)∗ · ¬(p+ q))

= {[by Theorem 6.1.3 and definition of box]}

A(a∗ · q · ⊤) · [(¬q · a)∗](p+ q)

= {[by Lemma 4.2]}

(AFq) · [(¬q · a)∗](p+ q).

⊓⊔

12

To round off the picture we show the validity of the usual least-fixpoint
characterisation of A(u), where u = [[ϕUψ]] for state formulas ϕ and ψ. Then, by
Lemma 4.1, the definition of f , Lemma 6.4 twice and Corollary 7.2, we obtain

A(u) = A(f(u)) = A(q ·⊤+p ·a ·u) = q ·⊤+p ·A(a ·u) = q ·⊤+p ·A(a ·A(u)).

In general quantales, however, A(u) need not be the least fixpoint of the
associated function. We need an additional assumption, namely that unlimited
finite iteration can be extended to infinite iteration in the following sense:

∀ b ∈ S : ⊓
i∈IN

p(bi) ≤ p(bω) . (7)

In particular, S must have “enough” infinite elements to make bω 6= 0 if all
bi 6= 0. This property is e.g. violated in the subquantale LAN of WOR in which
only languages of finite words are allowed, because in LAN finite languages may
be iterated indefinitely, but no infinite “limits” exist in LAN.

Now we can show the desired leastness of A.

Theorem 7.5 Assume (7).

1. ¬ p(bω) = △b.
2. If [[ϕ]] = p · ⊤ then [[AFϕ]]d = △¬p · a.
3. [[ϕUψ]]d = µh, where h(x) =df q + p · [a]x.

Proof. 1. First, ¬ p(bω) is a fixpoint of [b]:

¬ p(bω) = ¬ p(b · (bω)) = ¬ p(b · ¬¬(bω)) = [b](¬ p(bω)).

Hence △b = µ[b] ≤ ¬ p(bω). For the converse inequation we calculate

¬ p(bω) ≤ △b

⇔ {[shunting]}

¬△b ≤ p(bω)

⇐ {[by (7)]}

¬△b ≤⊓
i∈IN

p(bi)

⇐ {[definition infimum]}

∀ i ∈ IN : ¬△b ≤ p(bi) .

Using ¬△b ≤ 1, isotony of domain, the definition of box and that △b is a
fixpoint of [b], we have indeed

p(bi) ≥ p(bi · ¬△b) = ¬[bi]△b = ¬△b.

2. Immediate from Theorem 7.4.6 and 1.
3. ¿From the definition of h we get by Boolean algebra

h(x) = (q + p) · (q + [a]x).

Now the claim follows from (5), Theorem 7.4.8 and 2. ⊓⊔

13

8 From CTL
∗ to LTL

The logic LTL is the fragment of CTL∗ in which only A may occur, outermost,
as path quantifier. More precisely, the LTL path formulas are given by

Π ::= Φ | ⊥ | Π → Π | XΠ | Π UΠ.

The LTL semantics is embedded into the CTL
∗ one by assigning to ϕ ∈ Π the

semantic value [[Aϕ]].
Unfortunately, except for the cases [[AXϕ]] = [a][[Aϕ]] and [[AGϕ]] = [a∗][[Aϕ]]

the semantics does not propagate nicely in an inductive way into the subformulas,
and so a simplified semantics cannot be obtained directly from the CTL∗ one.

However, by a slight change of view we can still achieve our goal. In the
considerations based on the concrete quantales WOR and STR, the semantic
element a representing X “glued” transitions to the front of traces. However, as
is frequently done, one can also interpret a as a relation that maps a trace σ to
its remainder σ1. This is the basis for a simplified semantics of LTL.

Similarly to before we set

[[Xϕ]]LTL =df 〈a〉[[ϕ]]LTL.

What does axiom (1) mean in this interpretation? It is equivalent to the equation
〈a〉 = [a] which characterises 〈a〉 as a total function. This holds indeed for the
relation sending σ to σ1, since standard LTL considers only infinite traces.

What are the tests involved in this case? They have now to be interpreted
as sets of paths, since they are subrelations of the identity relation on traces. So
in this view the semantics of LTL formulas is again given by test ideals, only in
a different algebra.

Therefore we can re-use the simplified CTL semantics. In particular, with
p =df [[ϕ]]LTL and q =df [[ψ]]LTL, we want [[ϕUψ]]LTL to be the least fixpoint of
the function h(x) =df q + p · 〈a〉x, which by the dual of (5) is 〈(p · a)∗〉q.

By this, the semantics of Fψ and Gψ work out to 〈a∗〉q and [a∗]q.
Further details are omitted for lack of space.

References

1. R. C. Backhouse et al.: Fixed point calculus. Inform. Proc. Letters, 53:131–
136 (1995)

2. E. Cohen: Separation and reduction. In R. Backhouse and J.N. Oliveira
(eds.): Mathematics of Program Construction. Lecture Notes in Computer
Science 1837. Berlin: Springer2000, 45–59

3. J.H. Conway: Regular algebra and finite machines. London: Chapman and
Hall 1971

4. J. Desharnais, B. Möller: Characterizing determinacy in Kleene algebra. Spe-
cial Issue on Relational Methods in Computer Science, Information Sciences
— An International Journal 139, 253–273 (2001)

14

5. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. ACM
Transactions on Computational Logic (to appear)

6. J. Desharnais, B. Möller, G. Struth: Termination in modal Kleene algebra.
In J.-J. Lévy, E. Mayr, and J. Mitchell, editors, Exploring new frontiers of
theoretical informatics. IFIP International Federation for Information Pro-
cessing Series 155. Kluwer 2004, 653–666

7. R.M. Dijkstra: Computation calculus bridging a formalisation gap. Science
of Computer Programming 37, 3-36 (2000)

8. E.A. Emerson: Temporal and modal logic. In J. van Leeuwen (ed.): Hand-
book of theoretical computer science. Vol. B: Formal models and semantics.
Elsevier 1991, 995–1072

9. V. Goranko: Temporal logics of computations. Introductory course, 12th
European summer School in Logic, Language and Information, Birmingham,
6–18 August 2000

10. D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press 2000
11. D. Kozen: A completeness theorem for Kleene algebras and the algebra of

regular events. Information and Computation 110:2, 366–390 (1994)
12. D. Kozen: Kleene algebras with tests. ACM TOPLAS 19, 427–443 (1997)
13. B. Möller: Kleene getting lazy. Science of Computer Programming, Special

issue on MPC 2004 (to appear). Previous version: B. Möller: Lazy Kleene
algebra. In D. Kozen (ed.): Mathematics of program construction. Lecture
Notes in Computer Science 3125. Berlin: Springer 2004, 252–273

14. B. Möller, G. Struth: Modal Kleene algebra and partial correctness. In C.
Rattray, S. Maharaj, C. Shankland (eds.): Algebraic methods and software
technology. Lecture Notes in Computer Science 3116. Berlin: Springer2004,
379–393

15. B. Möller, G. Struth: WP is WLP. In W. MacCaull, M. Winter and I.
Duentsch (eds.): Relational Methods in Computer Science. LNCS 3929 (in
press)

16. K.I. Rosenthal: Quantales and their applications. Pitman Research Notes in
Mathematics Series, Vol. 234. Longman Scientific&Technical 1990

17. G. Schmidt, T. Ströhlein: Relations and Graphs — Discrete Mathematics for
Computer Scientists. EATCS Monographs on Theoretical Computer Science.
Springer 1993

18. L. Staiger: Omega languages. In G. Rozenberg, A. Salomaa (eds.): Handbook
of formal languages, Vol. 3. Springer 1997, 339–387

19. B. von Karger: Temporal algebra. Mathematical Structures in Computer
Science 8:277–320, 1998

15

