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Peter Höfner 1,2

Institute for Computer Science
Universität Augsburg

D-86135 Augsburg, Germany

Abstract

In 1996 Zhou and Hansen proposed a first-order interval logic called Neighbourhood
Logic (NL) for specifying liveness and fairness of computing systems and defining
notions of real analysis in terms of expanding modalities. After that, Roy and Zhou
developed a sound and relatively complete Duration Calculus as an extension of NL.

We present an embedding of NL into an idempotent semiring of intervals. This
embedding allows us to extend NL from single intervals to sets of intervals as well
as to extend the approach to arbitrary idempotent semirings. We show that most of
the required properties follow directly from Galois connections, hence we get many
properties for free. As one important result we obtain that some of the axioms
which were postulated for NL can be dropped since they are theorems in our gener-
alisation. Furthermore, we discuss other interval operations like Allen’s 13 relations
between intervals and their relationship to semiring neighbours. Then we present
some possible interpretations for neighbours beyond interval settings. Here we dis-
cuss for example reachability in graphs and applications to hybrid systems. At the
end of the paper we add finite and infinite iteration to NL and extend idempo-
tent semirings to Kleene algebras and ω algebras. These extensions are useful for
formulating properties of repetitive procedures like loops.

Key words: Neighbourhood Logic, Temporal Logic, ITL, IL,
Semiring, Quantale, Kleene Algebra, Omega Algebra.

1 Introduction

Chop-based interval temporal logics, such as ITL [10] and IL [8] are useful for
the specification and verification of safety properties of real-time systems over
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time intervals. In these logics, one can easily express properties such as

“if φ holds for an interval, then there is a subinterval where ψ holds”.

As it is shown in [26], these logics cannot express all desired properties. For
example (unbounded) liveness properties such as

“eventually there will be an interval where φ holds”

is not expressible in these logics. Surprisingly, these logics cannot even express
state transitions. Obviously, such properties are essential for describing and
specifying real-time systems. As it is shown in [26], the reason is that the
modality chop, denoted by _, is a contracting modality, in the sense that the
truth value of φ_ψ on [b, e] only depends on subintervals of [b, e]:

φ_ψ holds on [b, e] iff
there exists m ∈ [b, e] such that φ holds on [b,m] and ψ holds on [m, e].

Hence, in 1996, Zhou and Hansen have introduced extra atomic formulas
to propose a first-order interval logic, called Neighbourhood Logic (NL) [27,28],
for specifying liveness and fairness of computing systems and also defining no-
tions of real analysis in terms of expanding modalities. These atomic formulas
relate time intervals to their (left and right) interval neighbours. In 1997, Roy
and Zhou presented a sound and relatively complete Duration Calculus as an
extension of NL [23]. They had already shown that the basic unary interval
modalities of [12] and the three binary interval modalities (C, T and D) of [24]
could be defined using the modalities of NL. Hence they presented an embed-
ding of the logics of [12] and [24] in NL. Unfortunately the use of NL yields
long formulas which are difficult to read, to understand and to calculate with.
An “unreadable” example is given by the chop operator in the next section.

To overcome this deficiency, we present in this paper an algebraic embed-
ding of NL into the semiring of intervals presented e.g. in [14]. This embedding
allows us to extend NL from single intervals to sets of intervals as well as to ex-
tend the approach to arbitrary idempotent semirings. The former step extends
NL in the sense that one can formulate properties for sets of intervals (which
is a nice extension), but also paves the way to axiomatise NL in an algebraic
way. The latter step allows us to shift and re-use the knowledge of NL to other
areas of Computer Science as we will show in later sections. Because of work
in [27] our extension is also an extension of the logics of [12] and [24]. Before
we embed NL in Section 3, we recapitulate the main ideas of Neighbourhood
Logic in Section 2. In Section 4 we show that most of the required properties
follow directly from Galois connections, hence we get properties for free. As
one important result we obtain that some of the axioms which were postu-
lated for NL can be dropped since they are theorems in our generalisation.
Afterwards, in Section 5, we discuss how the chop operator as well as Allen’s
13 relations between intervals [1,2] are connected to our algebraic framework.
In Section 6 we briefly present some possible interpretations of neighbours
in other models. Here we discuss for example reachability in graphs and ap-
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plications to hybrid systems. At the end of the paper, in Section 7, we add
finite and infinite iteration to NL by extending the semiring model to Kleene
algebras and ω algebras. These extensions are useful for formulating repetitive
properties and procedures like loops in programs.

2 About Neighbourhood Logic

In [27] Zhou and Hansen introduce left and right neighbourhoods as new prim-
itives to define other unary and binary modalities of intervals in a first-order
logic. For this, we need intervals as carrier sets. That is why we define intervals
over a poset T of time points in the usual way as

[b, e] =df {a | b ≤ a ≤ e} , where b ≤ e ,

a, b, e ∈ T and (T,+, 0) is assumed to be a commutative monoid. Note that
we only consider non-empty intervals. Furthermore, we postulate a subtrac-
tion − on T satisfying for any interval [b, e] the equations e − b ≥ 0 and
e−b = 0 ⇔ e = b. Hence, it is possible to calculate the length ` of the interval
[b, e] as e− b 3 . Sometimes the length is also called duration of [b, e]. Addition-
ally, T has to be cancellative with respect to +, i.e., a+ c = b+ c ⇒ a = b.
For example one can use IR, the set of real numbers, as T.

Following [27] the two simple expanding modalities �lφ and �rφ are de-
fined as follows:

�rφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [e, e+ δ],

�lφ holds on [b, e] iff there exists δ ≥ 0 such that φ holds on [b− δ, b],
or, by setting a =df b− δ and c =df e+ δ,

�rφ holds on [b, e] iff there exists c ≥ e such that φ holds on [e, c],

�lφ holds on [b, e] iff there exists a ≤ b such that φ holds on [a, b].

Here φ is a formula of NL. More precisely, the set of terms θ, θi ∈ Term is
defined by the abstract syntax [26]

θ ::= x|v|fn(θ1, . . . , θn) ,

where x stands for global variables , v for temporal variables and f for global
function symbols . Here x is called global since its meaning is independent of
time and time intervals; v is a called temporal since it represents real-valued
interval functions, i.e., the functions’ domains are time intervals. A special
temporal variable is ` which returns the length of the respective interval as its
value. At last, fn stands for n-ary functions on real-numbers, which are again
independent of time and time intervals. Using this definition of terms, the set

3 Note: − need not be the inverse of +; − only has to fit well with interval composition.
As example we can define e− b as 0 if e = b and 1 otherwise.
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of formulas of NL is then defined by

φ ::= X|Gn(θ1, . . . , θn)|¬φ|φ ∨ ψ|(∃x)ψ| �lφ| �rφ ,

where Gn stands for global n-ary relation symbols and X for temporal propo-
sitional letters . Since, except for G and X, the definition is standard, we give
a brief interpretation of these two symbols. Gn represents n-ary truth-valued
({true, false}) functions on real numbers, which is independent of time and
time intervals. A temporal propositional letter is a truth-valued interval func-
tion, i.e., it depends on time intervals. More details as well as examples can be
found e.g. in [26]. The use of intervals instead of time points has the advantage
that time points can be modelled as intervals [b, e] with b = e and therefore
intervals are more general.

With the modality �r( �l) one can reach the left (right) neighbourhood of
the beginning (end) point of an interval:

︷ ︸︸ ︷︷ ︸︸ ︷φ �lφ� � � �

a b e

︷ ︸︸ ︷︷ ︸︸ ︷�rφ φ
� � � �

b e c

In contrast to the chop operator the neighbourhood modalities are ex-
panding modalities, i.e., they are not contracting operators. Thus �l and �r
depend not on subintervals of an interval [b, e], but on intervals “outside”. To
simulate situations inside an interval one has to combine these modalities. In
[27] it is shown that the modalities of [12] and [24] as well as the chop oper-
ator can be expressed by the neighbourhood modalities. For example, using
the interval’s length `, therefore _ can be defined as

φ_ψ ⇔ (∃x, y)((` = x+ y) ∧ �l �r((` = x) ∧ φ ∧ �r((` = y) ∧ ψ))) , (1)

where (` = x + y) stipulates that the two consecutive right expansions of
lengths x and y exactly cover the original interval. In Section 5, we will see a
much easier characterisation using semirings and our embedding of NL.

3 Embedding Neighbourhood Logic into Semirings

In this section we show an algebraic embedding of NL into the setting of
semirings. Before this we recapitulate the algebraic background and illustrate
our definitions with the algebra of time intervals, which will be the base for
our embedding.

3.1 Basic Definitions

As already mentioned we will use sets of intervals as elements of our algebra.
This shift to sets extends NL in the manner that we can now formulate expres-
sions and properties for sets of time intervals and not only for single intervals.
To formulate properties concerning single intervals one can use the singleton
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set that only consists of one interval. Additionally, as we will see later, it turns
out that this shift yields the well-known algebraic structure of a semiring (see
e.g. [13]). Let us have a look at the structure

INT =df (P(I),∪, ;, ∅, 1l) ,

where I =df {[b, e] | b ≤ e, b, e ∈ T} is the set of all intervals, 1l =df {[b, b] | b ∈ T}
is the set of all “one point intervals” and ; : P(I)×P(I)→ P(I) is the element-
wise interval composition, where two intervals [a, b] and [c, d] are composable
with result [a, d] iff b = c. In other words the intervals are composeable iff the
interval [c, d] is part of the “right neighbourhood” of [a, b], or, symmetrically,
iff [a, b] is part of the “left neighbourhood” of [c, d].

In the remainder we repeat the basic definitions of semirings and related
algebraic structures and operators since, as we will see, INT is such a structure.
More details about semirings, domain semirings, etc. can be found in [6,9,13].

A semiring is a quintuple (S,+, · , 0, 1) such that (S,+, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · is distributive over + and strict ,
i.e., 0 · x = 0 = x · 0. The semiring is idempotent if + is, i.e. x+ x = x. On
idempotent semirings the relation x ≤ y ⇔df x + y = y is a partial order,
called the natural order on S. The definition implies that 0 is the least element
and + and · are isotone with respect to ≤. If S has a greatest element, we
denote it by >. It is straightforward to show that INT forms an idempotent
semiring, where the natural order coincides to the subset order, 0 to the empty
set, 1 to 1l and the greatest element to the set of all intervals I.

An idempotent semiring S is called a quantale if S is a complete lattice un-
der the natural order and · preserves arbitrary suprema. Following Conway [4]
one might also call a quantale a standard Kleene algebra. A quantale is called
Boolean if the underlying lattice is Boolean, i.e., the lattice is equipped with
a complement function, which is denoted by . An important semiring (that
is even a quantale) is, next to INT, REL(M), the algebra of binary relations
over a set M under union and relational composition.

A test semiring (quantale) is a pair (S, test(S)), where S is an idempotent
semiring (a quantale) and test(S) ⊆ [0, 1] is a Boolean subalgebra of the
interval [0, 1] of S such that 0, 1 ∈ test(S) and join and meet in test(S) coincide
with + and ·. This definition corresponds to that of Kozen [18]. In INT an
element is a test iff it is a subset of 1l, i.e., the element only consists of point
intervals. We will use x, y, z for arbitrary S-elements and p, q, r, . . . for tests.
By ¬ we denote complementation in test(S). As above, a, b, c, . . . are used for
time points and are often used as starting and end points of intervals.

We introduce a domain operator that assigns to a set of intervals the test
of all its starting points, i.e., for x ∈ P(I) we want

px = {[b, b] | [b, e] ∈ x} .
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Abstractly, a domain semiring (quantale) is a pair (S, p), where S is a test
semiring (quantale) and the domain operation p : S → test(S) satisfies

x ≤ px · x , (d1) p(p · x) ≤ p . (d2)

The relevant consequences of p are shown in [6]. To further explain (d1) and
(d2) we note that their conjunction is equivalent to each of

px ≤ p ⇔ ¬p · x ≤ 0 , (gla) px ≤ p ⇔ x ≤ p · x , (llp)

which constitute elimination laws for domain. (gla) says that ¬p · x is the
greatest left annihilator of x. (llp) says that p · x is the least left preserver of
x. Moreover, domain is universally disjunctive and hence strict, i.e., p0 = 0.
Furthermore we can strengthen (d1) to the equation

x = px · x . (d1′)

The domain operator need not exist on every test semiring [19], but in the case
of quantales, and therefore in INT, domain is guaranteed to exist. Most pub-
lications concerning semirings with domain (e.g. [6]) claim another additional
axiom. Therefore our form of domain is sometimes also called predomain.

A corresponding codomain operation q : S → test(S) can be defined analo-
gously and can be seen as the domain operation in the opposite semiring, where
opposition just changes the order of multiplication. In INT, the codomain op-
erator characterises the ending points, i.e., xq = {[e, e] | [b, e] ∈ x}. In particu-
lar, a codomain semiring (quantale) is a pair (S, q), where S is a test semiring
(quantale) and the codomain operation q : S → test(S) fulfils

x ≤ x · xq , (cd1) (x · p)q ≤ p . (cd2)

Again,the conjunction of these two equations is equivalent to each of

xq ≤ p ⇔ x · ¬p ≤ 0 , (gra) xq ≤ p ⇔ x ≤ x · p . (lrp)

Here, (gra) says that x · ¬p is the greatest right annihilator of x, whereas
(lrp) says that x · p is the least right preserver of x.

S is called a bidomain semiring (quantale) if it has both domain and
codomain operations. In bidomain semirings we have the following separa-
bility property:

xq · py ≤ 0 ⇔ xq · y ≤ 0 ⇔ x · py ≤ 0 . (sep)

Proof. The first assertion holds by shunting 4 and (gla): xq · py ≤ 0 ⇔ py ≤
¬xq ⇔ xq ·y ≤ 0; the second (xq ·py ≤ 0 ⇔ x ·py ≤ 0) by shunting and (gra).2

4 Shunting means for p, q, r ∈ test(S), that p ≤ q · r ⇔ p+ ¬q ≤ r (see e.g. [11]).
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In any quantale the left residual x/y and the right residual x\y exist and
are characterised by the Galois connections

z ≤ x/y ⇔df z · y ≤ x and z ≤ x\y ⇔df x · z ≤ y .

In INT the first of these operations is characterised pointwise by t ∈ V/U ⇔
∀u ∈ U : t ; u ∈ V (provided t ; u is defined). The second one is symmet-
rical. Based on the left and right residuals, in a Boolean quantale the right
detachment xby and the left detachment xcy can be defined as

xby =df x/y and xcy =df x\y .

In general, we call a Boolean semiring, where detachments exist, a detachment
semiring . The pointwise characterisation of right detachment in INT is t ∈
V bU ⇔ ∃u ∈ U : t ; u ∈ V . Informally, V bU cuts intervals from U off the
right ends of intervals of V , where possible. By de Morgan’s laws the Galois
connection for / transforms into the exchange law

xby ≤ z ⇔ z · y ≤ x (exc)

that generalises the Schröder rule of relational calculus. More details concern-
ing residuals and detachments can be found in [21].

3.2 From Detachments and Domain to Neighbourhoods

In the remainder of the section we show how to embed NL into semirings.
We start by deriving a connection between the neighbourhood modalities
of [26] and detachments. Therefore, we have a look at the special case of
V bU where V = I (the set of all intervals) and U = Iφ =df {[b, e] | [b, e] ∈ I,
φ holds on [b, e]} (the set of all intervals where φ holds) and derive an algebraic
expression for the right neighbourhood modality �rφ using detachments.

�rφ holds on [b, e] ⇔ ∃ [e, u2] ∈ I such that φ holds on [e, u2]

⇔ ∃ [u1, u2] ∈ Iφ : u1 = e

⇔ ∃ [u1, u2] ∈ Iφ : [b, e] ; [u1, u2] is defined

⇔ ∃ [u1, u2] ∈ Iφ : ([b, e] ; [u1, u2]) ∈ >

⇔ [b, e] ∈ >bIφ .

Looking again at the figure of page 4, it is easy to observe the “graphical”
connection between the modalities of NL and detachments. Similarly, we get
for left neighbourhoods

�lφ holds on [b, e] ⇔ [b, e] ∈ Iφc> .
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Hence, in a quantale, we can generalise the neighbourhood modalities to sets
of intervals by setting

�rφ holds on x ∈ P(I) ⇔ x ≤ >bIφ , (2)

�lφ holds on x ∈ P(I) ⇔ x ≤ Iφc> . (3)

Nearly all results given by Zhou, Hansen and Roy can be adapted easily to the
semiring of intervals INT. Later on we discuss a situation where the embedding
is a bit more complicated.

On the other hand, we know that INT also forms a bidomain semiring. As
shown above, the domain (codomain) characterises the starting points (end
points) of intervals. This implies another view of �rφ and �lφ.

�rφ holds on {[b, e]} ⇔ ∃ [u1, u2] ∈ Iφ : [b, e] ; [u1, u2] is defined

⇔ ∃ [u1, u2] ∈ Iφ : e = u1

⇔ {[b, e]}q ≤ pIφ,

In general we get an alternative definition of �lφ and �rφ.

�rφ holds on x ∈ P(I) ⇔ xq ≤ pIφ , (4)

�lφ holds on x ∈ P(I) ⇔ px ≤ Iφq , (5)

and therefore we get the equivalences x ≤ Iφc> ⇔ px ≤ Iφq and x ≤ >bIφ ⇔
xq ≤ pIφ in INT. This relation holds generally between detachments and domain
in any detachment semiring when, like INT, it is modal , i.e., satisfies p(x ·py) =
p(x · y). To show this and further results we first need the following auxiliary
lemma.

Lemma 3.1 [6] In a semiring S we have the following equivalences:

(a) x · p ≤ 0 ⇔ x ≤ x · ¬p ⇔ x ≤ > · ¬p
(b) p · x ≤ 0 ⇔ x ≤ ¬p · x ⇔ x ≤ ¬p · >
Now, we are able to prove the desired result.

Lemma 3.2 If S forms a detachment semiring as well as a bidomain semiring
and has a greatest element >, then

(a) >by ≤ >bpy = > · py and yc> ≤ yqc> = yq · >.

(b) x ≤ >by ⇒ xq ≤ py and x ≤ yc> ⇒ px ≤ yq.

(c) If S is modal, we get equations in (a) and equivalences in (b).

Proof. We only show the left (in)equalities. The right ones are symmetrically.
First we get by isotony, annihilation and (d1′)

x · py ≤ 0 ⇒ x · py · y ≤ 0 · y ⇔ x · y ≤ 0 . (6)
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(a) Now we use the principle of indirect inequality and get by (exc), (6) and
(exc) again

>by ≤ w ⇔ w · y ≤ 0 ⇐ w · py ≤ 0 ⇔ >bpy ≤ w .

The second assertion holds since in general zbp = z · p. The proof can be
found e.g. in [21].

(b) By (a), Lemma 3.1 and (lrp):

x ≤ >by ⇒ x ≤ > · py ⇔ x ≤ x · py ⇔ xq ≤ py .

(c) If S is modal, we have x · y ≤ 0 ⇔ x · py ≤ 0 (see e.g. Lemma 5.7 in [6])
and therefore the second step in the proof of (a) and the first step of (b)
become equivalences. 2

After this short excursus about relationships between detachment and (co)do-
main, we continue to embed NL. As a first result we note that at least one
of the eight axioms, which are claimed in [27] can be dropped, since it is a
theorem in domain semirings. Further simplifications on calculations are given
in Section 4.1 after introducing a more general framework of neighbourhoods.

Theorem 3.3 �(φ ∨ ψ) ⇔ �φ ∨ �ψ, where � is either �r or �l.
Hence Axiom 4 of [27], which postulates the distributivity of � over disjunc-
tion, is now a conclusion.

The proof will be given in Section 4 in a more general environment (see
Lemma 4.7).

Now we will discuss the box operators �lφ =df ∼ �l∼φ and �r =df

∼ �l∼φ of Zhou and Hansen in detachment and bidomain semirings, respec-
tively. Here, ∼ is the negation of truth values, i.e., ∼(true) = false and
∼(false) = true. In [26,27,28] it is denoted, as usual, by ¬. We have used
∼, since ¬ clashes with the negation symbol for tests. The meaning of �lφ
and �rφ is the following:

�rφ holds on [b, e] iff φ holds on all right neighbours of [b, e] ,

�lφ holds on [b, e] iff φ holds on all left neighbours of [b, e] .

Again we start with the pointwise characterisation of � in INT. Note that
INT is a Boolean algebra and therefore the equation > = 0 holds.

�rφ holds on [b, e] ⇔ ∼ �r∼φ holds on [b, e]

⇔ ∼([b, e] ∈ >bI∼φ)

⇔ [b, e] 6∈ >bI∼φ
⇔ [b, e] ∈ >bI∼φ
⇔ [b, e] ∈ 0/I∼φ ,
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where I∼φ =df Iφ is the set of all intervals where φ does not hold. Using the
same generalisation as above we get

�lφ holds on x ∈ P(I) ⇔ x ≤ I∼φ\0 ⇔ I∼φ ; x ≤ 0 ,

�rφ holds on x ∈ P(I) ⇔ x ≤ 0/I∼φ ⇔ x ; I∼φ ≤ 0 .

Using modality we immediately get a (co)domain view for boxes:

�lφ holds on x ∈ P(I) ⇔ (I∼φ)q ; px ≤ 0 , (7)

�rφ holds on x ∈ P(I) ⇔ xq ; p(I∼φ) ≤ 0 . (8)

The equivalence in modal detachment semirings between the two settings of
�l (�r) is immediate by definition of modality and (sep).

Calculations with (co)domain instead of detachments is more general be-
cause we do not use residuals and detachments and therefore do not need to
assume their existence. That is the reason why we use the bidomain interpre-
tation in the remainder.

In [27] the authors introduce the composed neighbourhood modalities

�r �lφ and �l �rφ and call them converses . Since these are quite unhandy in
calculations, we show that they are again diamonds closely related to �l and

�r. First we want to illustrate the meaning of �r �lφ.

︷ ︸︸ ︷
︸ ︷︷ ︸

�r �lφ
� �� �

b a e where a = e− δ

φ

Here, [a, e] is a postfix of [b, e]. However, one should mention that it is also
possible that [b, e] is a postfix of [a, e].

︷ ︸︸ ︷
︸ ︷︷ ︸

�r �lφ
� � � �

a b e where a = e− δ

φ
In contrast to neighbourhoods, where some starting points have to be equal
to some end points of sets of intervals, here only end points occur. The end
points of �l �rφ have to form a subset of the ones of φ. Now we have a look
at �r �lφ ( �l �rφ) using the (co)domain interpretation of (4) and (5).

�r �lφ holds on x ⇔ xq ≤ p
(
I
�lφ

)
⇔ xq ≤ p{[b, e] | p{[b, e]} ≤ Iφq}

⇔ xq ≤ {[b, b] | [b, b] ∈ Iφq}

⇔ xq ≤ Iφq ,

�l �rφ holds on x ⇔ px ≤ pIφ .
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We see in our setting the characterisation of �r �lφ and �l �rφ is no more
complicated than that of the single neighbourhood modalities. The four neigh-
bourhood operators ( �l, �r, �l �r, �r �l) represent all combinations for com-
paring domain and codomain and therefore motivate the generalised definition
in the next section.

4 Generalised Neighbourhoods and some Properties

Starting with the definitions of neighbourhoods given in Section 3 and moti-
vated by NL we give general definitions which work on bidomain semirings. In
the remainder, we shorten the proofs and show the calculations only for one
of multiple similar cases.

Definition 4.1 Let S be a bidomain semiring and x, y ∈ S. Then

(a) x is a left neighbour of y (or x ≤ �n ly for short) iff xq ≤ py,

(b) x is a right neighbour of y (or x ≤ �n ry for short) iff px ≤ yq,

(c) x is a left boundary of y (or x ≤ �b ly for short) iff px ≤ py,

(d) x is a right boundary of y (or x ≤ �b ry for short) iff xq ≤ yq.

We will see below that the use of ≤ is justified. Now we have a closer look
at the definition and its interpretation in INT. For example 4.1.(a) describes
the situation where for each element [a, b] of x there exists at least one interval
in y with starting point b. Hence �rφ holds on x if and only if all elements of
x are left neighbours of intervals in Iφ. Therefore we call such elements left;
whereas the original notation of [23] is right. The change in direction (left,
right) follows from exactly changing that point of view. �rφ starts with an
interval of x and has a look at elements of Iφ at its right which satisfy φ.
Contrarily, our definitions start with elements of Iφ (intervals where φ holds)
and look at all intervals which are composable to the left of such intervals.

In Definition 4.1 we do not postulate modality of S, which we used when
motivating and deriving the formulas in Section 3. Hence we get more general
calculations. Of course we cannot use the equivalences given for detachment
semirings given in Lemma 3.2. Starting from our definitions of neighbours and
boundaries we calculate an explicit form of these operations if the existence
of a greatest element > is guaranteed.

Lemma 4.2 If > exists, neighbours and boundaries can be expressed by

�n ly = > · py , �n ry = yq · > ,

�b ly = py · > , �b ry = > · yq .

Consequently, ( �n ly)q = py, p( �n ry) = yq, p( �b ly) = py and ( �b ry)q = yq.

Proof. By definition, (lrp), and Lemma 3.1:

x ≤ �n ly⇔xq ≤ py⇔x ≤ x · py⇔x ≤ > · py . 2
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In the case where we have also a complement function on S, we define
perfect neighbours and boundaries. Here a complement function : S → S
has to satisfy the following three equations

x = x , (c1) x+ x = > , (c2) x ≤ y ⇔ y ≤ x , (c3)

We call a semiring with a complement semiring. Note that complement
semirings form a larger class than Boolean algebras even if we define meet by
x u y =df x+ y. The reason is that we do not postulate the distributivity
laws for join and meet. In the remainder we assume S to be a complement
bidomain semiring. Therefore, we can freely use (co)domain as well as the
complement operation.

Definition 4.3

(a) x is a perfect left neighbour of y (or x ≤ �n ly) iff xq · py ≤ 0,

(b) x is a perfect right neighbour of y (or x ≤ �n ry) iff yq · px ≤ 0,

(c) x is a perfect left boundary of y (or x ≤ �b ly) iff px · py ≤ 0,

(d) x is a perfect right boundary of y (or x ≤ �b ry) iff xq · yq ≤ 0.

(a) and (b) correspond to the box-operators of NL. By (c) and (d) we have
an additional extension of NL. These two definitions provide “box-operators”
for the converses of neighbourhood modalities, which are not defined in the
semantics of NL in [26]. To justify the definitions above we have

Lemma 4.4 Each perfect neighbour (boundary) is a neighbour (boundary):

�n ly ≤ �n ly , �n ry ≤ �n ry , �b ly ≤ �b ly , �b ry ≤ �b ry .

Proof. First we get by 1 = p> = p(x+x) = px+px and by shunting ¬px ≤ px.

x ≤ �n ly
⇔ {[ definition and shunting ]}

xq ≤ ¬py
⇒ {[ calculations above and (c1) ]}

xq ≤ py
⇔ {[ definition ]}

x ≤ �n ly 2

Like neighbours/boundaries we can characterise the box operations in an ex-
plicit form.

Lemma 4.5 Perfect neighbours and boundaries can be expressed by

�n ly = > · ¬py , �n ry = ¬yq · > ,

�b ly = ¬py · > , �b ry = > · ¬yq .

Consequently, (�n ly)q = ¬py, p(�n ry) = ¬yq, p(�b ly) = ¬py and (�b ry)q = ¬yq.
12
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Proof. By definition, (sep), and Lemma 3.1:

x ≤ �n ly ⇔ xq · py ≤ 0 ⇔ x · py ≤ 0 ⇔ x ≤ > · ¬py . 2

In the remainder of this section we show some properties of (perfect) neigh-
bors and boundaries and compare them to properties of NL. To reduce calcula-
tions we introduce � and � as parameterised versions that can be instantiated
by either �n l , �n r, �b l or �b r and �n l , �n r, �b l or �b r, respectively. The instanti-
ation must be consistent for all occurrences of � and �. The following proofs
are only done for one instance of � or �; for all other instances they are
similar. If the “direction” of � or � is important we use formulas like �l and
�r where only one degree of freedom remains. The above explicit forms show
that boxes and diamonds are connected via the de Morgan dualities

�y = �y and �y = �y ;

hence they form proper modal operators. Additionally, we show that diamonds
and boxes are lower and upper adjoints of Galois connections:

Lemma 4.6 Diamonds and boxes form the following Galois connections.

�lx ≤ y ⇔ x ≤ �ry , �rx ≤ y ⇔ x ≤ �ly .

Proof.

�n lx ≤ y
⇔ {[ de Morgan duality ]}
�n lx ≤ y

⇔ {[ (c3) ]}
y ≤ �n lx

⇔ {[ definition of �n l and (c1) ]}
yq · px ≤ 0

⇔ {[ definition of �n r ]}
x ≤ �n ry 2

Looking at the proof, we observe that for perfect neighbours we get the ex-
change rule for Boxes

x ≤ �n ly ⇔ y ≤ �n rx . (bexc)

4.1 Simplifications of Neighbourhood Logic

Since Galois connections are useful as theorem generators and dualities as the-
orem transformers (see e.g. [3]) we get many properties of (perfect) neighbours
and (perfect) boundaries for free. For example we have, with x u y = x+ y,

Corollary 4.7 (a) � and � are isotone.

(b) � is disjunctive and � is conjunctive, i.e.,

�(x+ y) = �x+ �y , �(x u y) = �x u�y .

13
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(c) We also have the cancellative laws

�l �r x ≤ x ≤ �r �lx , �r �l x ≤ x ≤ �l �rx .

With Lemma 4.7.(b) we have now proved the claim given in Theorem 3.3.
So at least one axiom of the Neighbourhood Logic of Zhou and Hansen is a
theorem in the generalised setting of bidomain semirings.
Since 0 is the least element with respect to ≤ and domain as well as codomain
are strict, 0 is a neighbour and boundary of each element. Furthermore, special
neighbours and boundaries are summarised in

Lemma 4.8

(a) �1 = �> = �> = >, �0 = �0 = 0.

(b) �x ≤ 0 ⇔ x ≤ 0.

(c) By isotony we get px ≤ �lx and xq ≤ �rx. Additionally, we have that x
is a left (right) boundary of itself, i.e., x ≤ �b lx and x ≤ �b rx.

(d) By the Galois connections and (a) we get > ≤ �y ⇔ > ≤ y.

Lemma 4.8.(c) cannot be translated from � to �, i.e., x ≤ �b x, px ≤ �n lx, . . .
do not hold, since in general px 6= ¬px.
In sum, nearly all theorems of NL given in [23,26,27] hold in the generali-
sation. Most of them are already proved by the Galois connection and the
Lemmas above. We give a translation table between [26] and our approach in
the Appendix.

With Corollary 4.7.(c) we have already shown a cancellation law for neigh-
bours. Using the explicit forms of neighbours we can calculate many more
cancellative laws that are summarised in the second table of the Appendix.
Within the calculations the relation ��y = � �y turns out to be very useful.
Furthermore, the “inner” operator dominates the “outer” one; i.e., in those
cases, where � � or �� fulfils one of the cancellation laws, the expression is
the same as � � and ��, resp.

As an example of a proof and to show that Axiom 6 of [27], which postulates
that left and right neighbourhoods of an interval always end and start at the
same point, is also a theorem, we show

Lemma 4.9 �n l �n ry = �b ry = �n l �n ry.

Proof. Using the explicit forms, p(p · >) = p and p · > = ¬p · >, we get

�n l �n ry = > · p(yq · >) = > · yq = �b ry ,

�n l �n ry = > · ¬p(yq · >) = > · ¬p(¬yq · >) = > · ¬¬yq = �b ry . 2

There are many more simplifications and extensions for NL which we do not
discuss here. We only want to derive a much simpler form of �r�r�l�lφ (read
“for all intervals: φ”). This expression was used in [23,26] for a deduction
theorem and is hard to understand and very unhandy (for example because of
its size). In our notation we have to look at �n l�n l�n r�n rIφ. Unfortunately, the
following simplification is not valid for all bidomain semirings. We say that

14
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the greatest element > weakly dominates tests iff for all p ∈ test(S)\{0}

p(> · (p · >)q
)

= 1 and
(
p(> · p) · >

)q = 1 (WTT)

It can easily be checked that INT as well as REL(M) satisfy (WTT). This
shortens the expression �n l�n l�n r�n ry enormously.

Lemma 4.10 If S satisfies (WTT) then

(a) �n l �n l �n r �n ry = �n r �n r �n l �n ly =

 0 if y = 0

> otherwise,

(b) �n l�n l�n r�n ry = �n r �n r �n l �n ly =

> if y = >

0 otherwise.

Proof.

(a) We get �n l �n l �n r �n ry = �n l �b r �n ry = > · p(> · (yq · >)q) by Lemma 4.9
and 4.2. Now we can use (WTT) and get the claim.

(b) Immediate by �n l�n l�n r�n ry = �n l �n l �n r �n ry, by > = 0 and (a). 2

Since in all cases except y = 0 the result of �n l �n l �n r �n ry is the greatest
element > which is, in INT, the set of all intervals, the way of speaking (“for
all intervals”) is justified. Note that it is also possible that a bidomain semiring
fulfils only one of the equations of (WTT). Then only one of �n l �n l �n r �n ry
and �n r �n r �n l �n ly needs to satisfy Lemma 4.10 and therefore possibly

�n l �n l �n r �n ry 6= �n r �n r �n l �n ly .

The last properties we want to discuss reflect those situations where �
collapses to 0 and � becomes the greatest element. We call an element x
surjective if 1 ≤ xq and total if 1 ≤ px.

Lemma 4.11

(a) x is surjective iff �rx = > iff �rx = 0.

(b) x is total iff �lx = > iff �lx = 0.

The proof is immediate by Lemma 4.2 and 4.5.

5 Beyond Neighbours

So far, we have discussed semiring neighbours and boundaries, their properties
and their connection to NL. This section gives a short overview over further
interval operations in our algebraic treatment. In particular we will have a look
at the chop operator as well as Allen’s 13 relations between intervals [1,2].

As mentioned in the introduction, φ_ψ holds on [b, e] iff there is m ∈ [b, e]
such that φ holds on [b,m] and ψ holds on [m, e]. Equation (1) shows the
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connection to NL. In the treatment of the semiring INT this becomes

φ_ψ holds on z ⇔ ∃x, y : z = x ; y ∧ x ≤ Iφ ∧ y ≤ Iψ
⇔ z ≤ Iφ ; Iψ

This interpretation of chop is much easier than (1) and coincides well with
the standard definition of chop in the setting of semirings. All the explicit
treatment of the intervals’ lengths in (1) can be skipped, since they are encoded
in the concatenation of intervals, abstractly in the equation z = x · y.

Now, let us have a look at Allen’s relations [1,2]. They play an important
role in temporal and modal logics. It is well known that there are 13 different
relations between intervals on a linear ordering (and few more on a partial
ordering). We restrict ourselves to the 7 possibilities presented in Figure 1,
whereas the missing ones are obtained by symmetry:

i before k i k

i equal k
i

k

i meets k i k

i overlaps k
i

k

i during k
i

k

i starts k
i

k

i finishes k
i

k

Fig. 1. Possible relationships

Obviously, starts and finishes coincide with boundaries; meets can be ex-
pressed easily by neighbours (i left neighbour of k and k right neighbour of i)
and equal can be expressed by = in the setting of semirings. Now let’s have a
closer look at before. Apparently we have for intervals or sets of intervals

i before k ⇔ ∃ j : i meets j ∧ j meets k

and therefore we get in the algebraic treatment

i before k ⇔ i ≤ �n l �n lk ∧ k ≤ �n r �n ri .

Since domain and codomain only characterise the starting and end points in
INT, these operations are not able to characterise the remaining relations.
In Section 3 we used detachments to derive algebraic versions of the neigh-
bourhood modalities. As shown there, in INT, detachments cut off parts of
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intervals. Therefore detachments are very useful for characterising the remain-
ing relations of Allen. We assume S to be a quantale, since there detachments
and meet are guaranteed to exist. By straightforward calculations we get

i during k ⇔ i ≤ >ckb> ,

i overlaps k ⇔ (>cib>) u (>ckb>) 6= 0 .

Note that the right hand side of the algebraic formula of during is the same as
one of von Karger’s temporal diamonds [14,17]. Our characterisation of over-
laps includes the case that i meets k. If one wants to have a proper overlapping,
one can use (>cib>) u (>ckb>) u 1l 6= 0 instead. Another (equivalent) char-
acterisation of overlaps is to use neighbours (boundaries) for finishes (starts)
and the relation

i overlaps k ⇔ ∃ : j finishes i ∧ j starts k .

Recapitulating, we have that bidomain semirings are able to embed NL in
an algebraic framework. In particular, we used the semiring of intervals INT.
To get more relationships for intervals, we have to postulate more properties
for our algebra. It has turned out, that, using quantales (see Section 3.1),
Allen’s interval relations can be embedded, too.

6 Other Interpretations of Neighbours

In this section we have a look at the interpretations of (perfect) neighbours
and (perfect) boundaries in other semirings. We will show that the interpreta-
tions vary from interval properties already shown by Zhou, Hansen and Roy
over reachability in graphs to an application to hybrid systems. These inter-
pretations are possible only, since we have abstracted NL from intervals to
semirings. All semirings, which we will present are well known. Further details
about them can e.g. found in [7,16].

6.1 Neighbours in the Algebras of Formal Languages and Binary Relations

Formal languages can be made into a semiring by setting

LAN(Σ) =df (P(Σ∗),∪, . , ∅, {ε}) ,

where P(Σ∗) denotes the set of languages over some finite alphabet Σ, ∪
denotes set union and L1.L2 = {vw | v ∈ L1, w ∈ L2}, where vw is the
concatenation of v and w. Furthermore ∅ denotes the empty language and ε
the empty word.
Since test(LAN(Σ)) is discrete, i.e., test(LAN(Σ)) = {∅, {ε}}, we have

pL = Lq =

 {ε} if L 6= ∅

∅ otherwise
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Thus we have, as in all bidomain semirings with discrete test set,

�L =

 0 if L = ∅

> otherwise ,
�L =

> if L = >

0 otherwise .

That is why all diamonds ( �n l , �n r, �b l , �b r) as well as all boxes collapse to
one sort of diamonds and boxes, respectively.

In REL(M) the situation is also easy. Before calculating the neighbours
there, we recapitulate the definition of the semiring of binary relations.

Consider an arbitrary set M and the structure

REL(M) =df (P(M ×M),∪, ◦, ∅,∆) ,

where ∪ denotes again set union, ◦ denotes relation composition, ∅ is the
empty relation and ∆ denotes the identity relation {(m,m) |m ∈ M}. Then
REL(M) forms an idempotent semiring where the natural order coincides with
the subset relation and > = M ×M .
REL(M) can be extended to a bidomain semiring by defining test(REL(M)) =df

{R |R ⊆ ∆} and the (co)domain function, similarly as in INT, as

pR = {(p, p) | (p, x) ∈ R} and Rq = {(p, p) | (x, p) ∈ R} .

For an element P ∈ test(REL(M)), P ◦ > restricts the first components, i.e.,
P ◦ > = {(p, x) | (p, p) ∈ P, x ∈ M}, whereas > ◦ P restricts the second
components, the range. Now, we are able to calculate the right neighbour
explicitly.

�n rR = Rq ◦ > = {(x, y) | ∃w : (w, x) ∈ R, y ∈M}

is the set of all pairs (x, y) for which there is a pair r ∈ R such that the
composition of r and (x, y) is defined. So, �n rR is the set of pairs that can
be composed to R from the right, whereas �n l contains all pairs that can be
composed to R from the left. For �n rR we calculate

�n rR = ¬(R)q ◦ >
= {(x, y) | (x, x) ∈ ¬(R)q, y ∈M}
= {(x, y) | (x, x) 6∈ (R)q, y ∈M}
= {(x, y) | ∀w : (w, x) 6∈ R, y ∈M}
= {(x, y) | ∀w : (w, x) ∈ R, y ∈M} .

Hence, roughly spoken, �n rR is the set of all pairs, whose “predecessors” (ele-
ments which can be composed from the left) all are elements of R. As already
mentioned, REL(M) satisfies (WTT). Thus, we have the cancellative laws of
Lemma 4.10.
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Höfner

6.2 Reachability – Neighbours in the Path Algebra

Following [6] we can describe graphs as elements of an idempotent bidomain
semiring. Consider a set of vertices Σ. Then subsets of Σ∗ can be viewed as
sets of possible graph paths. The partial operation of join or fusion product
of elements of Σ∗ is defined as

ε ./ ε

ε ./ (y.t) is undefined

(s.x) ./ ε is undefined

(s.x) ./ (y.t) =

 s.x.t if x = y

undefined otherwise

for all s, t ∈ Σ∗ and x, y ∈ Σ. It describes the “gluing” of paths at a common
point. This operation is extended to subsets of Σ∗ by

S ./ T = {s ./ t|s ∈ S, t ∈ T, s ./ t is defined} .

Then PAT(Σ) =df (P(Σ∗),∪, ./, ∅,Σ ∪ {ε}) forms an idempotent semiring
which can be extended to a bidomain semiring, where pdescribes the starting
points of the paths, i.e.,

pS = {x|(x.s) ∈ S} ∪

 ε if ε ∈ S

∅ otherwise .

Analogously, q characterises sets of end points. �n rS is the set of all vertex
sequences that start in an end point of S. In other words �n rS describes all
paths that are reachable through S.

Similarly to the calculations in REL(M) we get �n r by

�n rS = ¬(S)q ./ >
= {x.t |x ∈ ¬(S)q, x.t ∈ >}
= {x.t |x 6∈ (S)q, x.t ∈ Σ∗}
= {x.t | ∀ s ∈ Σ∗ : s.x 6∈ S, t ∈ Σ∗}
= {x.t | ∀ s ∈ Σ∗ : s.x ∈ S, t ∈ Σ∗}

Hence �n rS is the set of those paths which can only be reached from S, not from
S. Therefore �n r describes a kind of non-reachability from S and guaranteed
reachability from S. All other (perfect) neighbours and boundaries characterise
other kinds of reachability. The characterisations of reachability in graphs do
not lead to better reachability algorithms. By the above calculations we only
want to show that neighbours also occur in graphs and therefore we can shift
knowledge from NL to graphs and vice versa.
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6.3 Neighbours in PRO – Applications in Hybrid Systems

In [16] we have introduced an algebra of processes . Processes are sets of tra-
jectories and are very useful for describing hybrid systems in an algebraic way.
In the paper we use both finite and infinite trajectories. Admitting the latter
ones entails that we have no full idempotent semiring anymore, since · is only
left-strict. The situation changes when we restrict ourself to finite trajectories.

Again we briefly repeat the definitions. A trajectory is a pair (d, g), where
d ∈ T and g : [0, d] → V , where V is a set of values . Here, we only use
intervals with finite length and therefore have only finite trajectories. We define
composition of trajectories (d1, g1) and (d2, g2) as

(d1, g1) · (d2, g2) =df

 (d1 + d2, g) if g1(d1) = g2(0)

undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x + d1) = g2(x) for all x ∈ [0, d2].
Composition is lifted to processes pointwise, i.e., for processes A,B we have
A · B =df {a · b | a ∈ A, b ∈ B, a · b is defined}. The set of all trajectories is
denoted by TRA and we denote for a value v ∈ V the corresponding zero-
length trajectory by v =df (0, g), where g(0) = v. Then the structure

PRO =df (P(TRA),∪, ∅, ·, I, p, q)

forms a bidomain quantale with test(PRO) = P({v | v ∈ V }), pA = {g(0) |
(d, g) ∈ A} and Aq = {g(d) | (d, g) ∈ A}. Since trajectories include intervals
of the form [0, d] as one component, first, the behaviour of (perfect) neigh-
bours and (perfect) boundaries seems to be as in INT. However the interval
composition in PRO is defined everywhere, in contrast to those in INT. And
in fact the behaviours are not comparable. As the second component, tra-
jectories contain functions, hence (perfect) neighbours and boundaries should
be as in PAT. And in fact the behaviour of neighbours and boundaries are
similar to those of PAT. That is why we do not want to discuss neighbours
in PRO. However they are very useful in calculations for hybrid systems. A
longer example for an explicit hybrid system using neighbours is partly done
in [15] but also part of our future work (cf. Section 8).

7 Adding Finite and Infinite Iteration

Following [5] every quantale can be extended to a Kleene algebra by the def-
inition x∗ =df µy . x · y + 1, where µf denotes the least fixed point of f . If
the quantale is even a completely distributive lattice then it can be extended
to an ω-algebra by setting xω =df νy.x · y as the greatest fixed point of x · y.
Hence INT as well as PRO form Kleene and ω-algebras. In the remainder we
want to discuss the effects of ∗ and ω on the neighbour modalities. First we
want to recapitulate the basic definitions.
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A Kleene algebra is a pair (S, ∗), where S is an idempotent semiring and
∗ satisfies the following unfold and induction laws.

1 + x · x∗ ≤ x∗ , (∗-1) 1 + x∗ · x ≤ x∗ , (∗-2)

y + x · z ≤ z ⇒ x∗ · y ≤ z , (∗-3) y + z · x ≤ z ⇒ y · x∗ ≤ z . (∗-4)

An ω-algebra is a pair (S, ω), where S is a Kleene algebra and ω satisfies

xω ≤ x · xω , (ω-1) z ≤ y+x·z ⇒ z ≤ xω+x∗·y . (ω-2)

The star operation characterises finite iteration and ω infinite iteration. So,
for example, one can describe loops and other repeating procedures with these
operators. A Kleene algebra (ω-algebra) is called bidomain iff the underlying
semiring is a bidomain semiring. If we set a+ =df a·a∗, we get useful properties
for neighbours and boundaries.

Lemma 7.1 If S forms a Kleene algebra, then

(a) �(y∗) = > and �(y+) = �y,

(b) x∗ ≤ �ly ⇔ 1 ≤ py and x∗ ≤ �ry ⇔ 1 ≤ yq,

(c) x+ ≤ �y ⇔ x ≤ �y.

The proof is straightforward. In ω-algebras the situation is much more com-
plicated, since the domain/codomain operators do not behave symmetrically.
Hence we first have a look at ω and domain.

Lemma 7.2

(a) p(xω) ≤ px.
If x is dense, i.e., x ≤ x · x, we have p(xω) = px.

(b) If x is dense, we have xq ≤ (xω)q

Proof.

(a) p(xω) = p(x · xω) ≤ px.
By (ω-2) we get x ≤ x · x ⇒ x ≤ xω and the claim follows by isotony.

(b) Again by (ω-2) and isotony. 2

Now we briefly discuss the interaction between the ω-operator and neighbours
or boundaries

Lemma 7.3

(a) xω ≤ �n ry ⇒ x ≤ �n ry, and xω ≤ �b ly ⇒ x ≤ �b ly.

(b) If x is dense, we have x ≤ �y ⇒ xω ≤ �y.

Proof.

(a) By definition, Lemma 7.2, and definition again:

xω ≤ �n ry ⇔ p(xω) ≤ yq ⇐ px ≤ yq ⇔ x ≤ �n ry .

(b) Similar to (a). 2
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In particular, from (a) and (b) we get, for dense x, xω ≤ �n ry ⇔ x ≤ �n ry
and xω ≤ �b ly ⇔ x ≤ �b ly.

Applying ∗ and ω to all the models of Section 6, we have now the oppor-
tunity to equip them with iteration operators. Especially for PRO the omega
operator is very helpful, since most of hybrid systems are characterised by
infinite (loop-based) computations.

8 Conclusion and Outlook

In this paper we started with the Neighbourhood Logic developed by Zhou and
Hansen. We showed how to embed NL into the theory of semirings. With the
help of the embedding we showed that at least two axioms can be dropped in
the definition of NL and that neighbours can be expressed in a much more gen-
eral framework, namely in bidomain semirings, and satisfy important Galois
connections. Afterwards we showed that the algebraic setting can also be used
for characterising further interval operations. In particular, we gave a com-
mon framework for NL and Allen’s 13 interval relations. Then we discussed
neighbours and boundaries in many different models. We showed properties of
reachability in the path algebra and a useful interpretation for hybrid systems.
At the end we showed how the neighbours and boundaries interact with finite
and infinite iteration in the structures of Kleene algebra and ω-algebra.

Möller developed the theory of lazy semirings [20], which relax the struc-
ture of semirings by giving up strictness and right-distributivity. This allows
to handling infinite elements and subsumes theories like Dijkstra’s computa-
tion calculus. In [16] we presented an algebra for hybrid systems using lazy
semirings. This model handles finite as well as infinite trajectories. Thus we
started to adapt neighbours and boundaries to the framework of lazy semi-
rings [15]. Doing this we have a further application for NL in a theory where
we can express unlimited processes and, in general, infinite elements. As one of
our first results we get that neighbours and boundaries occur in an algebraic
version of the branching time logic CTL as the existential and universal tem-
poral operator [15,22]. The first aim of further work in this area is on the one
hand to get more applications for neighbours and boundaries in both settings
(full and lazy semirings) and, on the other hand, using a concrete example of a
hybrid system and investigate wether neighbours can be used for properties of
safety and liveness. Finally it has to be checked, if our algebraic setting helps
to find the answer wether NL is decidable (which is still an open question).
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A Appendix

Translation Table

The following table gives an overview about the relationship between the Lem-
mas presented in this paper and the concerning Lemmas of [26]. It shows that
nearly all Lemmas of Zhou and Hansen are conclusions of the Galois connec-
tion. Please note that the summarised meaning follows the notation of [26].

Theorems of [26] related Lemma meaning

NL1 4.7.(a) isotony of � and �

NL2 4.8.(a) �> = >

NL3 4.7.(b) disjunctivity of � and

conjunctivity of �

NL4 4.7.(b) and 4.4 � ⇒ �

NL5 4.7.(c) cancellative laws

NL6 4.7.(c) cancellative laws

Table A.1
Translation table between [26] and our approach

Table of Cancellative Laws

Table A.2 summarises all cancellative laws. For example, �n r �n ly = �b ly.

�n l �n r �b l �b r �n l �n r �b l �b r

�n l — �b r �n l — — �b r �n l —

�n r �b l — — �n l �b l — — �n r

�b l — �n r �b l — — �n r �b l —

�b r �n l — — �b r �n l — — �b r

�n l — �b r �n l — — �b r �n l —

�n r �b l — — �n r �b l — — �n r

�b l — �n r �b l — — �n r �b l —

�b r �n l — — �b r �n l — — �b r

Table A.2
Cancellative laws for neighbours and boundaries
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