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Abstract. It has often been claimed that model checking, special pur-
pose automated deduction or interactive theorem proving are needed for
formal program development. Recently, it has been demonstrated that
off-the-shelf automated proof and counterexample search is an interesting
alternative if combined with the right domain model. Furthermore it has
been shown that variants of Kleene algebra might provide light-weight
formal methods with heavy-weight automation.
In this paper we give a brief overview of a number of program analy-
sis and computer mathematics tasks where (variants of) Kleene algebra
combined with automated theorem provers are already applied.

1 Introduction

Formal systems verification often requires the integration of domain-specific
knowledge. This is usually achieved through higher-order theorem proving at
the expense of computational power or through model checking at the expense
of expressive power. For automated deduction, this task is still a challenge.

In [8, 10] an alternative approach to automated deduction is proposed: domain-
specific algebras for standard provers instead of domain-specific provers for stan-
dard algebras. More concretely, automated reasoning in Kleene algebra with the
paramodulation-based theorem prover Prover9 and the counterexample genera-
tor Mace4 is investigated. Kleene algebras are particularly suitable for the task:

– They have widespread applications ranging from program analysis and se-
mantics to combinatorial optimisation and concurrency control.

– They offer a concise syntax for modelling actions, programs or state transi-
tions under non-deterministic choice, sequential composition and iteration.

– They provide a uniform semantics for various program analysis tasks that
support cross-theory reasoning with various approaches.

– They come with a simple first-order equational calculus that yields particu-
larly short and abstract proofs.

The last item paves the way for first-order automated reasoning. In this paper
we give an overview of the potential of Kleene algebra for proof automation. In
particular, we present a number of program analysis and computer mathematics
tasks like proof automation of separation and reduction theorems in concurrency
control and program verification in Hoare logic. We chose Prover9 and Mace4 [13]
because it integrates automated deduction with counterexample search. Any
other paramodulation-based theorem prover should yield similar results.



To further underpin the applicability for non-experts, we consistently use
a rather näıve black-box approach to theorem proving and avoid sophisticated
encodings, refined proof orderings, hints or proof planning, and excessive running
times. Much stronger results could be obtained with reasonable additional effort.

2 Idempotent Semirings and Iteration Algebras

Idempotent semirings form the algebraic basis for the proof experiments. They
provide operators for non-deterministic choice and sequential composition in a
first-order equational calculus.

A semiring is a structure (S, +, ; , 0, 1) such that (S, +, 0) is a commutative
monoid, (S, ;, 1) is a monoid, multiplication distributes over addition and 0 is
an annihilator, i.e., a0 = 0a = 0.1 An i-semiring is a semiring where + is
idempotent. The natural order ≤ on S is given by a ≤ b⇔ a + b = b; it has 0 as
its least element; addition and multiplication are isotone with respect to it.

Tests model assertions and restrictions in i-semirings. Formally, a test in an
i-semiring is an element p ≤ 1 that has a complement q relative to 1, i.e., p+q = 1
and p · q = 0 = q · p. The set of all tests of S is denoted by test(S). It is not hard
to show that test(S) forms a Boolean algebra.

More interesting behaviours of programs and transition systems arise from
finite and infinite iteration.

A Kleene algebra is an i-semiring S extended by an operation ∗ : S → S that
satisfies the star unfold and the star induction axioms 1+xx∗ = x∗, 1+x∗x ≤ x∗,
y + xz ≤ z ⇒ x∗y ≤ z and y + zx ≤ z ⇒ yx∗ ≤ z.

An omega algebra is a Kleene algebra S extended by an operation ω : S → S
that satisfies the omega unfold and the omega coinduction axiom xω ≤ xxω and
z ≤ y + xz ⇒ z ≤ xω + x∗y.

I-semiring, semiring with tests, Kleene algebra and omega algebra are en-
coded in Prover9/Mace4 by implementing the axioms in a simple, straightfor-
ward way. The encodings can be found at [1].

3 The Standard Calculi

In this and the following sections we only aim at illustrating the main ideas,
achievements and difficulties of the approach. The technical details of all proofs
in this paper, including the Prover9 input and output files that provide complete
information about the the proof search and the time and memory used, can be
found at [1]. Up to now we have built up a database with more than 300 theorems.

The standard calculi of i-semiring, tests, Kleene and omega algebra can auto-
matically be verified with Prover9. An important example for reasoning in Hoare
logic is the equivalence of px¬q = 0, px ≤ xq, x¬q ≤ ¬px, and px = pxq. Over-
all we have proved over 200 theorems for the basic calculi, most of them from
scratch. We can also detect some non-theorems, e.g. xω∗ = xω, with the model
generation tool Mace4. Sumarising, we point out important facts and remarks
for automated deduction:
1 Multiplication ; is left implicit
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– While equations like x(yx)∗ = (xy)∗x could as well be decided by automata,
automated deduction can also verify implications such as x ≤ y ⇒ x∗ ≤ y∗.

– The induction axioms act as elimination rules that simplify expressions.
– These axioms formalise (co)induction without external measures (e.g. length

of a sequence) in first-order equational logic.
– Proving complex statements sometimes needs simple intermediate lemmas.

4 Automating Reduction and Separation

The expressions (x+y)∗ or (x+y)ω can be interpreted as the repeated concurrent
execution of two processes x and y. In this context, reduction laws such as
(x+y)∗ = x∗(yx∗)∗ connect concurrency with interleaving while separation laws
infer global system properties from those of the particular processes. We present
two examples that show how such derivations can be automated.

Our first example abstracts the relational encoding of the Church-Rosser
theorem for abstract reduction systems:

y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗ .

It says that repeated concurrent executions of x and y can be reduced to an x-se-
quence followed by a y-sequence if all x-sequences have priority over y-sequences.

The Church-Rosser theorem is usually proved by induction over the number
of y∗x∗-peaks that arise from (x + y)∗, i.e., with an external induction mea-
sure (cf. [16]); first-order proofs with the internal induction provided by Kleene
algebra can also be given [15]. Prover9 automatically shows the law in about 3 s.

The second example is a separation theorem [2]. It states that, in the pres-
ence of a suitable commutation condition, concurrent processes terminate iff
individual processes do. The theorem can be specified in omega algebra [15] if
termination of a process x is expressed as xω = 0 (absence of infinite iteration):

yx ≤ x(x + y)∗ ⇒ (xω + yω = 0⇔ (x + y)ω = 0) .

The claim is proved in about 270 s. This shows that it is possible to reason au-
tomatically about program termination, although finiteness cannot be expressed
within first-order logic. Moreover explicit (bi)simulation is not needed.

These two proof experiments show that in many cases, despite the associativ-
ity and commutativity laws involved, Prover9 can prove some impressive facts.

5 Modal Semirings

The scope of Kleene algebra can be considerably extended by adding modalities.
The resulting formalism is related to propositional dynamic and temporal logics.

An i-semiring S is called modal [14] if it can be endowed with a total (forward)
diamond operation |x〉 : test(S)→ test(S), for each x ∈ S, that satisfies

|x〉p ≤ q ⇔ xp ≤ qx and |xy〉p = |x〉|y〉p .

Intuitively, |x〉p characterises the set of states with at least one x-successor in p,
i.e., the preimage of set p under the action x. According to the aforementioned
property xp ≤ qx⇔ xp = qxp and the fact that xp models the right-restriction
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by a test p, |x〉p is the least set from which every element of p can be reached
via action x. Dually, backwards operators 〈x|p can be defined and related with
x-predecessor. Modal boxes can be defined, as usual, via de Morgan duality:
|x]p = ¬|x〉¬p and [x|p = ¬〈x|¬p. Modal semirings can be extended to modal
Kleene/omega algebra without any further modal axioms.

Modalities enjoy a rich calculus and symmetries that are expressed by Galois
connections and conjugations [14], for instance, |x〉p ≤ q ⇔ p ≤ [x|q. These and
further standard laws can be proved automatically from the axioms.

Our experiments confirm that the number of axioms introduced through the
different layers considerably inhibits proof search. They further show that the
following laws for modalities are very useful in practice.

|x〉(p + q) = |x〉p + |x〉q, |x + y〉p = |x〉p + |y〉p, |x〉0 = 0,

p + |x〉|x∗〉p = |x∗〉p |x〉p ≤ p⇒ |x∗〉p ≤ p. (1)

6 Automating Hoare Logic

It is well-known that the programming constructs of Dijkstra’s guarded com-
mand language can be encoded in Kleene algebra. Validity of the while-rule

{p∧q} x {q}
{q} while p do x {¬p∧q}

for instance, is expressed as pqx¬q = 0 ⇒ q(px)∗¬(p + q) = 0. Using such an
encoding of Hoare triples, validity of all rules of Hoare logic (except assignment)
can then verified in Kleene algebra [11]. Prover9 failed to prove the above impli-
cation from scratch. This negative result shows that choosing the right algebra
and the appropriate level of abstraction is important for a successful automation.

Hence, we use modal Kleene algebra to show that the rules of Hoare logic
(except the assignment rule) are theorems that can be automated. Further, we
show how partial correctness proofs of concrete programs can be automated up
to domain specific calculations. Encodings of validity of the Hoare rules in modal
Kleene algebra can be found in [14]; e.g., validity of the while-rule is encoded as

〈x|pq ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq .

The implication follows immediately and automatically from (1). Validity of the
remaining rules (except assignment) follows immediately and automatically, too.

The considerations about Hoare logic has abstracted from the assignment
rule {p[e/x]} x := e {p} which can be encoded as p[e/x] ≤ |{x := e}]p. Using the
rule, we now verify an algorithm for division of integers in modal Kleene algebra.
We use abstraction for the Kleene algebra part and the assignment rule at the
leaves of the proof tree as an interface to the specific calculations with integers.

funct Div (n, m) ≡ k := 0; l := n;
while m ≤ l do k := k + 1; l := l −m;

We overload arithmetic notation by consistently writing arithmetic expres-
sions in brackets. Setting x1=̂{k := 0}, x2=̂{l := n}, y1=̂{k := k + 1}, y2=̂{l :=
l−m}, r=̂{m ≤ l} and using the precondition and the postconditions p=̂{0 ≤ n},
q1=̂{n = km + l}, q2=̂{0 ≤ l}, q3=̂{l < m} = ¬r yields the theorem

〈x1x2(ry1y2)∗¬r|p ≤ q1q2¬ r,
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which can be automatically proved from p ≤ |x1x2](q1q2) and q1q2r ≤ |y1y2](q1q2).
The assumptions have precisely the form of the assignment rule; they cannot be
analysed by Prover9. In [8] a proof by hand is given, but full automation could
be achieved by integrating a solver for a suitable fragment of arithmetic.

This shows that partial correctness proofs can be fully automated in modal
Kleene algebra in the presence of domain-specific solvers. This particular case
would require a solver for simple arithmetic; other proofs might e.g. require
solvers for data structures like lists, arrays or stacks.

7 More Automation

Here we have presented automation within standard calculi, concurrency con-
trol and Hoare logic. We have successfully applied the combination of Prover9
and variants of Kleene algebra for automation of more program analysis and
computer mathematics tasks. More details can be found in [8–10].
Dynamic Logics. Modal Kleene algebra is strongly related to variants of dy-
namic algebra developed by Kozen, Parikh and Pratt (cf. [6]). It has been shown
(automatically and by hand) that Segerberg’s induction law is a theorem of
modal Kleene algebra, which means that propositional dynamic logic is sub-
sumed by Kleene algebra. Therefore automated deduction with propositional
dynamic logic is now available via modal Kleene algebra. This treatment of
modal logic is completely axiomatic whereas previous approaches usually trans-
late the Kripke semantics for modal logics more indirectly into first-order logic.
An extension to first-order dynamic logics seems feasible.
Linear Temporal Logics. It is well known that the operators of linear tem-
poral logics can be expressed in propositional dynamic logics. The operators of
next-step and until can be defined by Xp = |x〉p and pUq = |(px)∗〉q; the oper-
ators for finally and globally are Fp = |x∗〉p and Gp = |x∗]p, where x stands for
an arbitrary action. Adding some axioms ([12]) to those of modal Kleene algebra
yield automated proofs in linear temporal logics in this setting with Prover9.
Modal Correspondence Theory. We have automated a modal correspon-
dence proof of Löb’s formula, which in modal logic expresses well-foundedness
of a transitive relation. A discussion of these notions and a proof by hand can
be found in [5]. We replayed the proof step-wise. Beyond this example, further
modal correspondence results can easily be automated.
Boolean and Relation Algebra. We have also shown that relation algebra is
surprisingly appropriate for automated deduction. We have proved a basic calcu-
lus with more than 100 theorems, some of them of considerable complexity. They
provide a basic library of well-known facts about Boolean algebra, Boolean alge-
bra with operators and relation algebra, on which more complex investigations
and applications in program verification can build.
Demonic Refinement Calculus. We have encoded a predicate for inequation
in Prover9 to allow inequational reasoning. Using this alternative approach, we
automatically verify some key refinement laws for concurrent systems, which are
far more sophisticated than the above examples. For example we have proved a
classical data refinement law [4, 17] and Back’s atomicity refinement theorem [3].
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8 Conclusion

Compared to our expectations, the number and difficulty of the theorems we
could prove automatically came as a surprise. We chose the experiments ac-
cording to their relevance for formal methods as well as according to complex-
ity. They show that domain-specific algebras can successfully be combined with
general purpose theorem provers. The experiments suggest that modal Kleene
algebras provide the appropriate level of abstraction to formalise and reason
about programs and systems in a simple, concise and efficient way. Furthermore
they suggest that off-the-shelf theorem proving technology can be very success-
ful if combined with the appropriate algebra. The approach therefore seems very
promising as a light-weight formal method with heavy-weight automation.

Further applications for the approach might be more sophisticated applica-
tions of relation algebra as well as the combination with hybrid systems [7].
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