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Abstract. At an abstract level hybrid systems are related to variants
of Kleene algebra. Since it has recently been showed that Kleene alge-
bras and their variants, like omega algebras, provide a reasonable base
for automated reasoning, the aim of the present paper is to show that
automated algebraic reasoning for hybrid system is feasible. We mainly
focus on applications. In particular, we present case studies and proof ex-
periments to show how concrete properties of hybrid systems, like safety
and liveness, can be algebraically characterised and how off-the-shelf au-
tomated theorem provers can be used to verify them.

1 Introduction

Hybrid systems are heterogeneous systems characterised by the interaction of
discrete and continuous dynamics. Because of their widespread applications there
was a rapid growth of interest in such systems during the last decade. They are
an effective tool for modelling, design and analysis of a large number of technical
systems such as traffic control [9, 13] and automated manufacturing [8].

The most elementary and classical hybrid system usually consists of a con-
troller and a controlled subsystem. Usually the controller represents discrete
behaviour and the environment is described by the continuous behaviour. In
general, the behaviour of the controller depends on the state and the behaviour
of the controlled system and cannot be considered in isolation. More complicated
hybrid systems usually arise by composing smaller systems.

Nearly from the beginning of their formal introduction in computer science
it was proposed to model hybrid systems as hybrid automata [11, 14]. Hybrid
automata are based on timed automata [4] and have, next to nodes and edges, dif-
ferential equations and variables. These additional features reflect the behaviour
of the environment in each node. The study of hybrid systems in computer
science is still largely focused on hybrid automata. There are only few other ap-
proaches to hybrid systems, e.g., [5]. In [17] an approach that combines variants
of Kleene algebra with the concept of hybrid systems is given.

Over the last decades Kleene algebras have proved to be fundamental first-
order structures in computer science with widespread applications ranging from
program analysis and semantics to combinatorial optimisation and concurrency
control. They offer operators for modelling actions, programs or state transitions



under non-deterministic choice, sequential composition and finite iteration. They
allow the formalisation and specification of safety and liveness properties for
hybrid systems at an abstract level.

Recently, it has been showed that Kleene algebra and their variants provide
a reasonable base for automated deduction [20, 21]. Therefore the techniques de-
veloped there should be reuseable for automated reasoning about hybrid systems
in an algebraic setting. The aim of the paper is to show that the algebraic ap-
proach indeed yields proofs for safety and liveness, and to discover if automated
algebraic reasoning for hybrid system is feasible.

This paper mainly focuses on applications. In particular, we present case
studies to show how properties can be algebraically specified and how off-the-
shelf automated theorem provers can be used to verify them. The first case
study is a technical system where a selected route is automatically compared
with the specification. If the specification is not satisfied another route has to be
chosen. This case study is developed step by step to briefly define and illustrate
the underlying theory. The second case study is more complex and describes an
assembly line scheduler.

2 Case Study I — Checking a Specification

To illustrate the basic definitions and concepts used in the remainder, we take
the following example.

Example 2.1. We assume a security service that has to control three locations
(bank, disco and university). The corresponding hybrid automaton (Figure 1)
models all possible routes the security service can use when starting at university.
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Fig. 1. A simple system for route planning
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We briefly explain the meaning of the automaton. Details about hybrid au-
tomata in general can be found in [3, 14]. Employees of the security service can
be in three different states: either they travel to university (described by state
Uni) or they are on their way to the Bank or they are going to control the Disco.
The functions to uni and t0 describe the continuous behaviour of the hybrid sys-
tem when moving to university (continuous behaviour in node Uni): to uni(t)
determines the path to university starting from the actual time and the current
position given by the two coordinates xc and yc. Usually this function is speci-
fied by an initial value problem combined with (ordinary) differential equations.
To measure time between two locations a clock (the function t0) is introduced.
Special locations for university, bank and disco are denoted by (xu, yu), (xb, yb)
and (xd, yd), respectively. As long as the university is not reached (denoted by
the invariant condition loc 6= (xu, yu)), the security service continues to move
towards the university. If the university is reached (loc = (xu, yu)), the employ-
ees have the (non-deterministic) choice to go either to the bank or to the disco.
This state-changing situation represents the discrete part of the hybrid system.
Typically, this decision is made by a controller. The other states and functions
are built in a similar way. The time conditions like t0 ≤ 5, given at the edges,
guarantee that the way between uni and disco takes at most 5 minutes; the way
between disco and bank needs less than 10 minutes and the one between bank
and uni less than 15 minutes. After changing the state the clock is reset to 0.
Now we assume that the security service has to check every place at least every
half an hour. Due to the small size it is easy to see that e.g. the circle starting
at university and then via bank to disco and back to university satisfies the
required safety condition, if it is repeated again and again.

Move

m(x,y)

ṫ1 = ṫ2 = ṫ3 = 1

ti≤30

loc=(xu,yu)

t1=t2=t3=0

loc=(xu,yu)

t1:=0

loc=(xd,yd)

t3:=0

loc=(xb,yb)

t2:=0

Fig. 2. An alternative route planning automaton

To encode the time constraint that every location has to be visited every 30
minutes, one can use the hybrid automaton of Figure 2. The main idea is to
have one state in which the service is moving. The action of moving is denoted
by m(t), e.g., ṁ(t) = v if the movement is done with a constant velocity v, and

3



the current position as initial condition m(0) = (xc, yc).
1 Unfortunately, in this

automaton the time constraints between the 3 locations cannot be encoded. To
model the specification within hybrid automata one has to combine both au-
tomata presented. This yields an automaton with 4 clocks. To check the given
safety property using one of these hybrid automata is not an easy and straight-
forward exercise. ⊓⊔

But how can it be (automatically) checked that a given run of a hybrid
automaton satisfies a given specification, in general? The example above shows
that it is not easy to determine an answer. In the remainder we show that in an
algebraic setting the above safety property yields a surprisingly simple inequality
that can easily be proved.

3 An Algebra for Hybrid Systems

We aim at the use of first-order automated reasoning for hybrid systems. For
that an algebraic (first-oder) view of hybrid systems is needed. We follow the
lines of [17]. The algebra for hybrid systems uses trajectories that reflect the
variation of the values of the variables over time.

Let V be a set of values and D a set of durations (e.g. IN, Q, IR, . . .). We
assume that (D, +, 0) is a commutative monoid and the relation x ≤ y ⇔df

∃ z . x + z = y is a linear order on D. If + is cancellative, 0 is the least element
and + is isotone w.r.t. ≤. Moreover, 0 is indivisible. D may include the special
value ∞. If so, ∞ is required to be an annihilator w.r.t. + and hence the greatest
element of D (and cancellativity of + is restricted to elements in D−{∞}). For
d ∈ D we define the interval intv d of admissible times as

intv d =df

{

[0, d] if d 6= ∞
[0, d[ otherwise .

A trajectory t is a pair (d, g), where d ∈ D and g : intv d → V . Then d is the
duration of the trajectory, the image of intv d under g is its range ran (d, g).
This view models oblivious systems in which the evolution of a trajectory is
independent of the history before the starting time.

The idea of composing two trajectories T1 = (d1, g1) and T2 = (d2, g2) is to
extend T1 at the right end, i.e., at time d1, with T2 to a trajectory (d1 +d2, g), if
reasonable. Figure 3 illustrates the concept. Since g needs to be a function, one
needs to decide how to handle the time-point d1. The definition of sequential
composition is given by

(d1, g1) · (d2, g2) =df







(d1 + d2, g) if d1 6= ∞ ∧ g1(d1) = g2(0)
(d1, g1) if d1 = ∞
undefined otherwise

with g(x) = g1(x) for all x ∈ [0, d1] and g(x + d1) = g2(x) for all x ∈ intv d2.

1 This example is not realistic, but will illustrate the crucial ideas.
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Fig. 3. Composition of two finite trajectories

For a zero-length trajectory (0, g1) we have (0, g1) · (d2, g2) = (d2, g2) if
g1(0) = g2(0). Similarly, (d2, g2) · (0, g1) = (d2, g2) if g1(0) = g2(d2) or d2 = ∞.
For a value v ∈ V , let v =df (0, g) with g(0) = v be the corresponding zero-
length trajectory.

A process is a set of trajectories, consisting of possible behaviours of a hybrid
system. The set of all processes is denoted by PRO. The finite and infinite parts
of a process A are defined as

inf A =df {(d, g) ∈ A | d = ∞} fin A =df A − inf A

Composition is lifted to processes as follows:

A · B =df inf A ∪ {a · b | a ∈ finA, b ∈ B} .

The constraint g1(d1) = g2(0) for composability of trajectories T1 = (d1, g1)
and T2 = (d2, g2) is very restrictive in a number of situations. Hence a com-

patibility relation, which describes the behaviour at the point of composition is
introduced in [18]. That relation allows ‘jumps’ at the connection point between
T1 and T2. In the remainder we do not need this concept; we mention it only for
completeness.

Example 3.1. We want to give an algebraic expression for the automaton of
Figure 1. For that we define V = IR2, where an element determines the current
position (x, y). A possible way is to define a process for each node for a hybrid
automaton. For example

u =df {(d, g) | g(t) = to uni(t)} .

The clock t0 can be dropped since we have the duration d available and therefore
the clock is redundant. Similar to u one can define processes for the nodes Disco

and Bank. But, since the functions to uni, to bank and to disco are not specified
we abstract to a general “move action”. In particular, we define

an =df {(d, g) | d ≤ n, g = m(t)} .

It describes all routes that the security service can use and take at most n

minutes. To check if the security service is at a certain point, we use zero-length
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trajectories:

atu =df (xu, yu) = {(0, g) | g(0) = (xu, yu)} ,

atb =df (xb, yb) = {(0, g) | g(0) = (xb, yb)} ,

atd =df (xd, yd) = {(0, g) | g(0) = (xd, yd)} .

These sets describe the situation when the security service is exactly at the
locations university (atu), bank (atb) and disco (atd). In the remainder we use
such elements to model tests and assertions. Now, we are able to describe the
hybrid automaton of Figure 1 in an algebraic setting. The main construct is of
the form atu · a5 · atd which describes all possible ways from university to the
disco taking at most 5 minutes. The whole automaton can be described by

atu ·
(

atu · a5 · atd ∪ atd · a5 · atu ∪
atd · a10 · atb ∪ atb · a10 · atd ∪
atb · a15 · atu ∪ atu · a15 · atb

)ω
,

(1)

where ω models infinite iteration and therefore an infinite loop. The exact defi-
nition of this iteration operator is given in the next section. ⊓⊔

4 Algebraic Background

Let us have a closer look at the algebraic structure of the trajectory-based model.
A left semiring is a quintuple (S, +, 0, ·, 1) where (S, +, 0) is a commutative

monoid and (S, ·, 1) is a monoid such that · is left-distributive over + and left-

strict , i.e., 0 · a = 0. The left semiring is idempotent if + is idempotent and · is
right-isotone, i.e., b ≤ c ⇒ a · b ≤ a · c, where the natural order ≤ on S is given
by a ≤ b ⇔df a + b = b. Left-isotony of · follows from its left-distributivity.
Moreover, 0 is the ≤-least element. A semiring is a left semiring in which · is also
right-distributive and right-strict. The latter axiom (right-strictness) is dropped
to model infinite behaviour. Differences between left semirings and standard
semirings are listed e.g. in [25].

An idempotent left semiring S is called a left quantale if S is a complete
lattice under the natural order and · is universally disjunctive in its left argument.
Following [7], one might also call a left quantale a left standard Kleene algebra.
A left quantale is Boolean if its underlying lattice is a Boolean algebra. In these
cases the meet operator ⊓ is available, too.

By simple calculations we get the two splitting laws

a + b ≤ c ⇔ a ≤ c ∧ b ≤ c and a ≤ b ⊓ c ⇔ a ≤ b ∧ a ≤ c . (2)

An important left semiring (that is even a semiring and a left quantale) is
REL, the algebra of binary relations over a set under relational composition.

Checking all the axioms for the case of processes, we get
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Lemma 4.1.

1. The processes form a Boolean left quantale PRO =df (P(TRA),∪, ∅, ·, I)
with I =df {(0, g) | (0, g) ∈ TRA}.

2. Additionally, · is positively disjunctive in its right argument.

A left Kleene algebra is a structure (S, ∗) consisting of an idempotent semi-
ring S and an operation ∗ that satisfies the left unfold and induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗ · b ≤ c .

Informally, the ∗-operator characterises finite iteration. To express infinite
iteration we axiomatise an ω-operator over a left Kleene algebra. A left omega

algebra [25] is a pair (S, ω) such that S is a left Kleene algebra and ω satisfies
the unfold and coinduction axioms

aω = a · aω , c ≤ a · c + b ⇒ c ≤ aω + a∗ · b .

As a consequence of fixpoint fusion (e.g. [10]) we have the following lemma.

Lemma 4.2. 1. Every left quantale can be extended to a left Kleene algebra by

defining a∗ =df µx . a · x + 1.
2. If the left quantale is a completely distributive lattice then it can be extended

to a left omega algebra by setting aω =df νx . a · x. In this case,

νx . a · x + b = aω + a∗ · b .

The following lemma lists a couple of properties for left omega algebras which
are needed afterwards. Some of them can be found in [25].

Lemma 4.3. Assume a left omega algebra S and a, b ∈ S.

1. a · (b · a)ω ≤ (a · b)ω.

2. aω · b ≤ aω.

3. (a · b)ω ≤ (a + b)ω.

4. ∀i ∈ IN, i > 0 : (ai)ω ≤ (a+)ω = aω, where a+ =df a∗ · a.

All proofs (except the first inequality of Lemma 4.3.4) have been done by the
automated theorem prover Prover9 (cf. Section 5) and can be found at a web-
site [19]. The property (ai)ω ≤ (a+)ω cannot be encoded with Prover 9 because
it is universally quantified. But it is a simple consequence of ai ≤ a+ and isotony.

In Example 3.1, we have already used sets of zero-length trajectories to model
assertions. The algebraic counterparts of such elements are tests in (left) semi-
rings (e.g. [12, 23]). One defines a test in an idempotent left semiring (quantale)
to be an element p ≤ 1 that has a complement q relative to 1, i.e., p + q = 1
and p · q = 0 = q · p. The set of all tests of S is denoted by test(S). It is not
hard to show that test(S) is closed under + and · and has 0 and 1 as its least
and greatest elements. Moreover, the complement ¬p of a test p is uniquely
determined by the definition and test(S) forms a Boolean algebra. In particular,
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tests are idempotent w.r.t. multiplication and we have the shunting rule for a
test p:

p · (p · a)ω = (p · a)ω and (p · a)ω = (p · a · p)ω . (3)

Again, the proofs can be done fully automatically using Prover9 (see Section 5).
Due to Lemma 4.1 and 4.2, we also have finite iteration ∗ and infinite itera-
tion ω with all their laws available in PRO. Moreover we can now formulate the
specification of Example 2.1.

Example 4.4. Remember that we want to check that, for a given trajectory of
the hybrid automaton, the security service checks every location at least every
30 minutes. Let us consider the following (infinite) route for the security service.

τ =df (atu · a5 · atd · a10 · atb · a15)
ω .

It is straightforward to show that τ is a trace of the hybrid automaton’s encoding
of Figure 1 (cf. Equation (1)). To formulate the safety criterion for visiting each
place at least once in 30 minutes, we have to check τ ≤ (a30 · atu)ω ⊓ (a30 ·
atd)

ω ⊓ (a30 · atb)
ω. By (2) it is equivalent that

τ ≤ (a30 · atu)ω , τ ≤ (a30 · atd)
ω and τ ≤ (a30 · atb)

ω . (4)

We only show that the second equation can easily checked by hand; the other
inequalities can be showed similarly. In the next section we present a possibility
to automate such calculations. By isotony and definition of an we get

atu · a5 · atd · a10 · atb · a15 ≤ a5 · atd · a10 · a15 ≤ a5 · atd · a25 .

Therefore it is sufficient to show that (a5 · atd · a25)
ω ≤ (a30 · atd)

ω. By unfold,
Lemma 4.3.1, isotony, and unfold:

(a5 · atd · a25)
ω

= (a5 · atd · a25) · (a5 · atd · a25)
ω

≤ a5 · atd · (a25 · a5 · atd)
ω

≤ a30 · atd · (a30 · atd)
ω

= (a30 · atd)
ω .

This calculation shows that the chosen trace satisfies the safety criterion. In the
algebraic setting it is a simple and short calculation, whereas in the setting of
hybrid automata it was not possible in a straightforward way. ⊓⊔

5 Automated Deduction

Having the algebraic characterisation of hybrid systems we can now use off-the-
shelf theorem provers to verify or falsify properties. We use McCune’s Prover9
tool [24] for proving theorems, but any first-order theorem prover should lead to
similar results. Kleene algebras have already been integrated into higher-order
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theorem provers [1, 22, 29] and their applicability as a formal method has suc-
cessfully been demonstrated in that setting. Nevertheless higher-order theorem
provers need a huge amount of user interaction, whereas first-order provers need
no interaction at all.

Prover9 is a saturation-based theorem prover for first-order equational logic.
It implements an ordered resolution and paramodulation calculus and, by its
treatment of equality by rewriting rules and Knuth-Bendix completion, it is par-
ticularly suitable for reasoning within variants of semirings. Prover9 is comple-
mented by the counterexample generator Mace4, which is very useful in practice.

Prover9 and Mace4 accept input in a syntax for first-order equational logic.
The input file consists essentially of a list of hypotheses (the set of support),
e.g., the axioms of left omega algebra, and a goal to be proved. Prover9 negates
the goal, transforms the hypotheses and the goal into clausal normal form and
tries to produce a refutation. Mace4, in contrast, enumerates finite models of
the hypothesis and checks whether they are consistent with the goal.

The inference process of saturation-based theorem proving is discussed in
detail in the Handbook on Automated Reasoning [28]. Roughly, it consists of
two interleaved modes.

– The deduction mode closes a given clause set under the inference rules of res-
olution, factoring and paramodulation. The paramodulation rule implements
equational reasoning by replacing equals by equals.

– The simplification mode discards clauses from the working set if they are
redundant with respect other clauses.

In this process, simplification rules are applied eagerly and deduction rules lazily
to keep the working set small. The process stops when the closure has been
computed or when the empty clause $F — which denotes inconsistency — has
been produced. Obviously the termination cannot be guaranteed. In the second
case, Prover9 reconstructs and displays a proof.

Saturation-based theorem proving implements a semi-decision procedure for
first-order equational logic. Whenever the goal is entailed by the hypotheses, the
empty clause can be produced in finitely many steps. Otherwise, if the goal is
not entailed, a counterexample exists, though not necessarily a finite one.

Since we are interested in robust results that can quickly be obtained by non-
experts, we use the prover more or less as a black box and rely on the default
strategies provided by Prover9. This makes our experiments more relevant to
formal software development contexts.

First we have to encode left omega algebra for Prover9. This is done in a
straightforward way; the code can be found in Appendix B. The goal to be
proved is also encoded in the same way, i.e., to prove Lemma 4.3.1 one has to
add the lines

formulas(goals).
x;(y;x)^ + (x;y)^ = (x;y)^.

end_of_list.
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whereas ; denotes multiplication, + denotes addition and ^ denotes the omega
operator. The proof takes around 100s and is fully automatically.2 To speed up
the proofs one can use hypotheses learning techniques [21, 30]. This reduces the
set of axioms and yields a proof in less than a second for the above equation. Such
techniques seem very promising since the simple first-order equational calculus
of idempotent left semirings (left Kleene algebras/left omega algebra) yields
particularly short proofs. Let us now return to our running example.

Example 5.1. We will now check the Equations (4) fully automatically. Since
standard theorem provers are not able to handle simple arithmetics, we have to
encode the relationship between different elements like a5 · a15 ≤ a30 by hand.
But, obviously it is not difficult to produce such formulas with an automated
preprocessor. The three equations are encoded by

formulas(goals).

all all u all d all b(
u;u=u & u+1=1 & d;d=d & d+1=1 & b;b=b & b+1=1 %preconditions

->

(u;a5;d;a10;b;a15)^ + (a30;u)^ = (a30;u)^ &
(u;a5;d;a10;b;a15)^ + (a30;d)^ = (a30;d)^ & %the 3 equations

(u;a5;d;a10;b;a15)^ + (a30;b)^ = (a30;b)^).
end_of_list.

In the code u corresponds to atu, d to atd, a5 to a5, etc. Since atu, atd
and atb are zero-length processes and therefore tests, we have to specify tests
for Prover9. This can be done in a general setting (see [19]) or by specifying
properties of tests. The preconditions reflect the two main properties for tests,
namely that tests are idempotent and subidentities. Prover9 shows each of the
equations in about 5 s. Their conjunction takes several minutes. The full input
and output files as well as further information including the number of proofsteps
and exact running times, can be found at [19]. The files also show how the needed
arithmetic is encoded. ⊓⊔

So far we have showed that algebraic reasoning for hybrid systems is feasible.
In particular, we have presented a safety property for a concrete hybrid system.
Furthermore we have encoded the property with the off-the-shelf theorem prover
Prover9 and have proved it fully automatically. Therefore our algebra provides an
interesting new way of verifying hybrid systems. Other approaches are discussed
in Section 7. It is straightforward to extend the above example. For instance,
one can add more locations or one can refine the safety property (e.g., “The
security service has to drive to a petrol station every 10 hours and refuel there
for 5 minutes”.) All these extensions do not change the algebra and/or the way
of verifying the specification.

Verifying larger systems might need more time to prove properties fully au-
tomatically. But, checking properties are usually done in advance and not in real
time. Moreover Prover9 can prove even complex properties in reasonable time;
see e.g. Back’s atomicity refinement law in [21]. Therefore we expect that one
can use our approach for larger systems, too.

2 We use a Pentium 4, 3 GHz with Hyper-Threading, 2 GB RAM.
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6 Case Study II — An Assembly Line Scheduler

To further underpin our approach we sketch a more complex example: an assem-
bly line scheduler that must assign elements from an incoming stream to one of
two assembly lines [15].

line1

ṙ = ċ2 = 1

ċ1 = ẋ2 = 0

ẋ1∈[1,2]

line2

ṙ = ċ1 = 1

ċ2 = ẋ1 = 0

ẋ2∈[2,3],

idle

ṙ = ċ1 = ċ2 = 1

ẋ1 = ẋ2 = 0

shutdown

ṙ = 1

ċ1 = ċ2 = 0

ẋ1 = ẋ2 = 0

r=4

c2 := 0, x1 := 0

r=4

c1 := 0, x2 := 0

x1=3

c1 := 0

r=4, c1≥2

r := 0, c1 := 0, x1 := 0

x2=6

c2 := 0

r=4, c2≥3

r := 0, c2 := 0, x2 := 0

Fig. 4. Two assembly lines

New parts occur every four minutes in the stream. The lines themselves
process the parts at different speeds: jobs travel between one and two meters
per minute on the first line, while on the second the speed is between two and
three metres per minute. The first line is three metres, the second six metres
long. Once the lines finish a job, they insert cleaning phases of two and three
minutes, respectively, during which no job can be taken up. The whole system
accepts a job if both lines are free, and at most one is cleaning up. If the system
cannot accept a job it shuts down.

The system is modeled by a hybrid automaton (Figure 4). There are four
states: in idle no jobs are being processed; in line1 and line2 the lines for pro-
cessing jobs are modelled; in shutdown the system shuts down. The variables x1

and x2 measure the distance a job has travelled along the first and second line,
respectively. The variable c1 and c2 indicate the amount of time for cleaning up.
Finally the variable r measures the elapsed time since the last arrival of a job.

As a liveness property one wants to avoid the system to go down. In [16] it is
mentioned that any feasible schedule must choose the first line infinitely often.
We will characterise this liveness property in our algebraic setting. Similar to
Section 3 we define sets of trajectories l1, l2, i and s for the nodes line1, line2,
idle and shutdown respectively (see Appendix A for the definitions). Since s is
an error state we further assume that the corresponding process only consists of
trajectories of infinite length. (If it is reached once, it will never be left.)

s =df {(d, g) | d = ∞, ṙ = 1, ċ1 = ċ2 = ẋ1 = ẋ2 = 0} ,

with g =df r × c1 × c2 × x1 × x2. We want to use the following statement:

“If the system is not in state shutdown, it must be in one of the other states.”
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Using the set of all trajectories TRA we cannot characterise such an be-
haviour. Therefore we have to pick a subalgebra of TRA.

Lemma 6.1. Let A ⊆ TRA a set of trajectories. Then the structure

PRO(A) =df (P(A∗ ∪ Aω),∪, ∅, ·, I)

forms a Boolean left omega algebra.

To model liveness properties concerning the assembly line scheduler, we cal-
culate in PRO(l1 ∪ l2 ∪ i ∪ s). The property that the system never reaches the
state shutdown is now equivalent to the statement of never leaving the other
states. The liveness property can be encoded as

(F · l1)
ω ≤ (l1 + l2 + i)ω ,

where F denotes the set of all trajectories with finite duration. (F exists and can
be defined in a general setting (e.g. [18, 25]); here we only focus on applications
and omit the theory.)

By coinduction and the hypothesis that F ≤ (l1 + l2 + i)∗ the claim follows
immediately and can also be proved automatically. The hypothesis is by the
additional assumption on s and can also be proved with Prover9 within 1 second.
Details, like a proof by hand, can be found in Appendix A.

Therefore we have proved a liveness criterion for the assembly line scheduler.

7 Related Work

Although there is some related work concerning the verification of hybrid sys-
tems, we are not aware of any verification techniques based on first-order equa-
tional reasoning. But this is the key to using paramodulation-based first-order
theorem provers.

Many verification techniques are based on hybrid automata [2]. But all these
do not yield an algebraic approach; therefore no equation-based reasoning is
possible. Furthermore, higher order theorem provers exist and are used to verify
properties of hybrid systems. One of them is KeYmaera that extends the theorem
prover KeY with Mathematica. It is a special purpose prover designed just for
the verification of hybrid systems. Its advantage compared to our approach is
that it also integrates arithmetic operators (see Section 8); but it needs a lot of
interaction, since KeY is a higher-oder prover. HyTech is a modell-checker for
hybrid systems. In [16] a preprocessor for HyTech is implemented which handles
a limited version of LTL. A detailed comparison between that approach and our
algebraic characterisation is still missing. A discussion on further related work
is omitted for lack of space.

8 Conclusion and Outlook

In the paper we have showed that a trajectory-based algebra can be used to
specify and verify safety and liveness properties. Algebraisation yields simple
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and short calculations. Moreover, these proofs can be automated with first-oder
theorem provers.

The presented work is only a first step of still on-going work. On the one hand
the examples are still small. For that reason we want to do more case studies
with larger systems. As a base we plan to use the examples of [6, 26].

Although we have showed that the algebraic approach combined with first-
order theorem proving is feasible, one still has to integrate arithmetics in our
approach. So far we have derived preconditions by hand; namely the arithmetic
constraints in the first example and the condition F ≤ (l1 + l2+ i)∗ in the second.
It would be interesting to see how this can be generalised and automated. At
the moment we have two alternatives in mind: (1) There is some theory how to
combine first-order theorem proving with arithmetics. In particular, for arith-
metics based on integers there exists SPASS+T [27]. (2) In [16] HyTech is used
to locally analyse hybrid systems. The outcome could be used to characterise
and generate preconditions for our approach.

Acknowledgements. I am grateful to Georg Struth and Bernhard Möller for
valuable remarks and discussions. Further I thank Martin Magnusson for discus-
sions concerning the security service example.
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A Omitted Details for the Assembly Line Scheduler

In the example of the assembly line scheduler all functions are real-valued, i.e.,
r, c1, c2, x1, x2 : IR → IR; the set of durations is IR, too. The processes l1, l2, i

and s are defined as follows:

l1 =df {(d, g) | ṙ = ċ2 = 1, ċ1 = ẋ2 = 0, ẋ1 = [1, 2]} ,

l2 =df {(d, g) | ṙ = ċ1 = 1, ċ2 = ẋ1 = 0, ẋ2 = [1, 2]} ,

i =df {(d, g) | ṙ = ċ1 = ċ2 = 1, ẋ1 = ẋ2 = 0} ,

s =df {(d, g) | d = ∞, ṙ = 1, ċ1 = ċ2 = ẋ1 = ẋ2 = 0} ,

where g is defined as g = r× c1× c2×x1×x2 and just collects all information of
the behaviour. By coinduction,it is sufficient to show that (F · l1)ω ≤ (l1 + l2 +
i)∗ · (F · l1)

ω. This follows from unfold, neutrality of 1, finiteness of 1 (1 ≤ F),
unfold again and the assumption:

(F · l1)
ω = F · l1 · (F · l1)

ω ≤ F ·F · l1 · (F · l1)
ω = F · (F · l1)

ω ≤ (l1 + l2 + i)∗ · (F · l1)
ω.

B Prover9 Source Code

Left omega algebras can be encoded in Prober9 as follows:

op(500, infix_left, "+"). %choice
op(490, infix_left, ";"). %composition
op(480, postfix, "*"). %finite iteration

op(450, postfix, "^"). %infinite iteration (omega)

formulas(sos).
% standard axioms of idempotent left semirings %%%%%%%%%%%%%

x+y = y+x. %commutative additive monoid
x+0 = x.
x+(y+z) = (x+y)+z. %multiplicative monoid

x;1 = x & 1;x = x.
x;(y;z) = (x;y);z.

0;x = 0. %annihilation laws
x+x = x. %idempotence
(x+y);z = x;z+y;z. %distributivity

% standard axioms for finite iteration (star) %%%%%%%%%%%%%%

1+x;x* = x*.
(x;y+z)+y=y -> x*;z+y=y.

% standard axioms for infinite iteration (omega) %%%%%%%%%%%
x;x^= x^.

y+(x;y+z)=x;y+z -> y+(x^+x*;z)=x^+x*;z.

end_of_list.

formulas(goals).

%lemma to be proved
end_of_list.

There exist also other implementations, e.g. an inequational encoding. They
can be found at our website, too.
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