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Abstract. We study and compare two notions of non-termination on
idempotent semirings: infinite iteration and divergence. We determine
them in various models and develop conditions for their coincidence. It
turns out that divergence yields a simple and natural way of modelling
infinite behaviour, whereas infinite iteration shows some anomalies.

1 Introduction

Idempotent semirings and Kleene algebras have recently been established as
foundational structures in computer science. Initially conceived as algebras of
regular expressions, they now find widespread applications ranging from program
analysis and semantics to combinatorial optimisation and concurrency control.

Kleene algebras provide operations for modelling actions of programs or tran-
sition systems under non-deterministic choice, sequential composition and finite
iteration. They have been extended by omega operations for infinite iteration [2,
16], by domain and modal operators [4, 12] and by operators for program diver-
gence [3]. The resulting formalisms bear strong similarities with propositional
dynamic logics, but have a much richer model class that comprises relations,
paths, languages, traces, automata and formal power series.

Among the most fundamental analysis tasks for programs and reactive sys-
tems are termination and non-termination. In a companion paper [3], different
algebraic notions of termination based on modal semirings have been introduced
and compared. The most important ones are the omega operator for infinite it-
eration [2] and the divergence operator which models that part of a state space
from which infinite behaviour may arise. Although, intuitively, absence of diver-
gence and that of infinite iteration should be the same concept, it was found
that they differ on some very natural models, including languages.

Here, we extend this investigation to the realm of non-termination. Our re-
sults further confirm the anomalies of omega. They also suggest that the diver-
gence semirings proposed in [3] are powerful tools that capture terminating and
non-terminating behaviour on various standard models of programs and reactive
systems; they provide the right level of abstraction for analysing them in simple
and concise ways. Our main contributions are as follows.

• We systematically compare infinite iteration and divergence in concrete mod-
els, namely finite examples, relations, traces, languages and paths. The con-
cepts coincide in relation semirings, but differ on all other models considered.



• We also study abstract taming conditions for omega that imply coincidence
with divergence. We find a rather heterogenous situation: Omega is tame on
relation semirings. It is also tame on language semirings, but violates the
taming condition. Therefore, the taming condition is only sufficient, but not
necessary. In particular, omega is not tame on trace and path semirings.

The approach uses general results about fixed points for characterising and com-
puting iterations in concrete models. Standard techniques from universal algebra
relate the infinite models by Galois connections and homomorphisms.

All proofs at the level of Kleene algebras have been done by the automated
theorem prover Prover9 [10]. They are documented at a website [7] and can easily
be reproduced using the template in Appendix A. Proofs that use properties of
particular models are given in Appendix B.

2 Idempotent Semirings and Omega Algebras

Our algebraic analysis of non-termination is based on idempotent semirings.
A semiring is a structure (S, +, ·, 0, 1) such that (S, +, 0) is a commutative

monoid, (S, ·, 1) is a monoid, multiplication distributes over addition and 0 is a
left and right zero of multiplication. A semiring S is idempotent (an i-semiring)
if (S, +) is a semilattice with x + y = sup(x, y). (See the Prover9 input files in
Appendix A for the axioms.)

Idempotent semirings are useful for modelling actions, programs or state
transitions under non-deterministic choice and sequential composition. We usu-
ally omit the multiplication symbol. The semilattice-order ≤ on S has 0 as its
least element; addition and multiplication are isotone with respect to it.

Tests of a program or sets of states of a transition system can also be modelled
in this setting. A test in an i-semiring S is an element of a Boolean subalgebra
test(S) ⊆ S (the test algebra of S) such that test(S) is bounded by 0 and 1 and
multiplication coincides with lattice meet. We will write a, b, c . . . for arbitrary
semiring elements and p, q, r, . . . for tests. We will freely use the standard laws
of Boolean algebras on tests.

Iteration can be modelled on i-semirings by adding two operations.
A Kleene algebra [9] is an i-semiring S extended by an operation ∗ : S → S

that satisfies the star unfold and star induction axioms

1 + aa∗ ≤ a∗, 1 + a∗a ≤ a∗, b + ac ≤ c ⇒ a∗b ≤ c, b + ca ≤ c ⇒ ba∗ ≤ c.

An omega algebra [2] is a Kleene algebra S extended by an operation ω : S → S
that satisfies the omega unfold and the omega co-induction axiom

aω ≤ aaω, c ≤ b + ac ⇒ c ≤ aω + a∗b.

a∗b and aω + a∗b are the least and the greatest fixed point of λx.b + ax. The
least fixed point of λx.1 + ax is a∗ and aω is the greatest fixed point of λx.ax.

The star and the omega operator are intended to model finite and infinite
iteration on i-semirings; Kleene algebras and omega algebras are intended as
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algebras of regular and ω-regular events. A particular strength is that they allow
first-order equational reasoning and therefore automated deduction [8]. Since i-
semirings are an equational class, they are, by Birkhoff’s HSP-theorem, closed
under subalgebras, direct products and homomorphic images. Furthermore, since
Kleene algebras and omega algebras are universal Horn classes, they are, by
further standard results from universal algebra, closed under subalgebras and
direct products, but not in general under homomorphic images. We will use
these facts for constructing new algebras from given ones. Finite equational
axiomatisations of algebras of regular events are ruled out since Kleene algebras
are (sound and) complete for the equational theory of regular expressions, but
there is no finite equational axiomatisation for this theory [9].

Consequently, all regular identities hold in Kleene algebras and we will freely
use them. Examples are 0∗ = 1 = 1∗, 1 ≤ a∗, aa∗ ≤ a∗, a∗a∗ = a∗, a ≤ a∗,
a∗a = aa∗ and 1 + aa∗ = a∗ = 1 + a∗a. Furthermore the star is isotone.

It has also been shown that ω-regular identities such as 0ω = 0, a ≤ 1ω,
aω = aω1ω, aω = aaω, aωb ≤ aω, a∗aω = aω and (a + b)ω = (a∗b)ω + (a∗b)∗aω

hold in omega algebras and that omega is isotone. Automated proofs of all these
identities can be found at our website [7]. However, omega algebras are not
complete for the equational theory of ω-regular expressions: Products of the form
ab exist in ω-regular languages only if a represents a set of finite words whereas
no such restriction is imposed on omega algebra terms. Moreover, every omega
algebra has a greatest element ⊤ = 1ω, and the following property holds [7].

(a + p)ω = aω + a∗p⊤. (1)

3 Iterating Star and Omega

We will consider several important models in which a∗ and aω do exist and
in which a∗ can be determined by fixed point iteration via the Knaster-Tarski
theorem, whereas aω could only exist under additional assumptions that do not
generally hold in our context. We will now set up the general framework.

One way to guarantee the existence of a∗ and aω is to assume a complete

i-semiring, i.e., an i-semiring with a complete semilattice reduct. Since every
complete semilattice is also a complete lattice, a∗ and aω exist and a∗ can be
approximated by sup(ai : i ∈ IN) ≤ a∗ along the lines of Knaster-Tarski, where
sup denotes the supremum operator. An iterative computation of a∗b presumes
the additional infinite distributivity law

sup(ai : i ∈ IN)b = sup(aib : i ∈ IN)

and similarly for ba∗. Such infinite laws always hold when the lattice reduct of
the i-semiring is complete, Boolean, and meet coincides with multiplication. In
particular, all finite i-semirings and all i-semirings defined on powersets with
multiplication defined via pointwise extension are complete and the infinite dis-
tributivity laws hold. In all these cases, a∗ can be iteratively determined as

a∗ = sup(ai : i ∈ IN)
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and a∗ is the reflexive transitive closure of a. Alternatively, the connection of a∗

and iteration via suprema could be enforced by continuity [9].

It would be tempting to conjecture a dual iteration for aω. This would, how-
ever, presuppose distributivity of multiplication over arbitrary infima, which is
not the case (cf. [13] for a counterexample). In general, we can only expect that

aω ≤ inf(ai⊤ : i ∈ IN).

An exception is the finite case, where every isotone function is also co-continuous.
In this particular case, therefore aω = inf(ai⊤ : i ∈ IN), i.e., aω can be iterated
from the greatest element of a finite omega-algebra.

We will now illustrate the computation of star and omega in a simple finite
relational example. This example will also allow us to motivate some concepts
and questions that are treated in later sections.

Example 3.1. Consider the binary relation a in the first graph of Figure 1.
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Fig. 1. The relations a, a
∗ and a

ω.

Iterating a∗ = sup(ai : i ∈ IN) yields the second graph of Figure 1. a∗

represents the finite a-paths by collecting their input and output points: (x, y) ∈
a∗ iff there is a finite a-path from x to y.

Analogously one might expect that aω represents infinite a-paths in the sense
that (x, y) ∈ aω iff x and y lie on an infinite a-path. However, iterating aω =
inf(ai⊤ : i ∈ IN) yields the right-most graph of Figure 1. It shows that (q, p) ∈ aω

although there is no a-path from q to p, neither finite nor infinite.

So what does aω represent? Let ∇a model those nodes from which a diverges,
i.e., from which an infinite a-path emanates. Then Example 3.1 shows that ele-
ments in ∇a are linked by aω to any other node; elements outside of ∇a are not
in the domain of aω. Interpreting aω generally as anything for states on which

a diverges would be consistent with the demonic semantics of total program
correctness; its interpretation of nothing for states on which a diverges models
partial correctness. This suggests to further investigate the properties

(∇a)⊤ = aω and ∇a = dom(aω).

These two identities do not only hold in Example 3.1; they will be of central
interest in this paper. To study them further, we will now introduce some im-
portant models of i-semirings and then formalise divergence in this setting.
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4 Omega on Finite Idempotent Semirings

We have explicitly computed the stars and omegas for some small finite models
using the model generator Mace4 [10]. We will further analyse these models in
Section 9 and use them as counterexamples in Section 10.

Example 4.1. The two-element Boolean algebra is an i-semiring and an omega
algebra with 0∗ = 1∗ = 1ω = 1 and 0ω = 0. It is the only two-element omega
algebra and denoted by A2.

Example 4.2. There are three three-element i-semirings. Their elements are from
{0, a, 1}. Only a is free in the defining tables. Stars and omegas are fixed by
0∗ = 1∗ = 1, 0ω = 0 and 1ω = ⊤ (the greatest element) except for a.

(a) In A1
3, addition is defined by 0 < 1 < a, moreover, aa = a∗ = aω = a.

(b) In A2
3, 0 < a < 1, aa = aω = 0 and a∗ = 1.

(c) In A3
3, 0 < a < 1, aa = aω = a and a∗ = 1.

5 Trace, Path and Language Semirings

We now present some of the most interesting models of i-semirings: traces, paths
and languages. These are well-known; we formally introduce them only since we
will study divergence and omega on these models in later sections.

As usual, a word over a set Σ is a mapping [0..n] → Σ. The empty word is
denoted by ε and concatenation of words σ0 and σ1 by σ0.σ1. We write first(σ)
for the first element of a word σ and last(σ) for its last element. We write |σ| for
the length of σ. The set of all words over Σ is denoted by Σ∗.

A (finite) trace over the sets P and A is either ε or a word σ such that first(σ),
last(σ) ∈ P and in which elements from P and A alternate. τ0, τ1, . . . will denote
traces. For s ∈ P the product of traces τ0 and τ1 is the trace

τ0 · τ1 =

{

σ0.s.σ1 if τ0 = σ0.s and τ1 = s.σ1,
undefined otherwise.

Intuitively, τ0 · τ1 glues two traces together when the last state of τ0 and the first
state of τ1 are equal. The set of all traces over P and A is denoted by (P, A)∗,
where P is the set of states and A the set of actions.

Lemma 5.1. The power-set algebra 2(P,A)∗ with addition defined by set union,

multiplication by S · T = {τ0 · τ1 : τ0 ∈ S, τ1 ∈ T and τ0 · τ1 defined}, and with ∅
and P as neutral elements is an i-semiring.

We call this i-semiring the full trace semiring over P and A. By definition,
S · T = ∅ if all products between traces in S and traces in T are undefined.

Every subalgebra of the full trace semiring is, by the HSP-theorem, again an
i-semiring (constants such as 0, 1 and ⊤ are fixed by subalgebra constructions).
We will henceforth consider only complete subalgebras of full trace semirings
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and call them trace semirings . Every non-complete subalgebra of the full trace
semiring can of course uniquely be closed to a complete subalgebra.

As we will see, forgetting parts of the structure is quite useful. First we want
to forget all actions of traces. Consider the projection φP : (P, A)∗ → P ∗ which
is defined, for all s ∈ P and α ∈ A by

φP (ε) = ε, φP (s.σ) = s.φP (σ), φP (α.σ) = φP (σ).

φP is a mapping between traces and words over P which we call paths . Moreover
it can be seen as the homomorphic extension of the function φ(ε) = φ(α) = ε
and φ(s) = s with respect to concatenation. A product on paths can be defined
as for traces. Again, π0 · π1 glues two paths π0 and π1 together when the last
state of π0 and the first state of π1 are equal.

The mapping φP can be extended to a set-valued mapping φP : 2(P,A)∗ → 2P∗

by taking the image, i.e., φP (T ) = {φP (τ) : τ ∈ T }. Now, φP sends sets of traces
to sets of paths.

The information about actions can be introduced to paths by fibration, which
can be defined in terms of the relational inverse φ−1

P : P ∗ → 2(P,A)∗ of φP .
Intuitively, it fills the spaces between states in a path with all possible actions
and therefore maps a single path to a set of traces. The mapping φ−1

P can as

well be lifted to the set-valued mapping φ♯
P (Q) = sup(φ−1

P (π) : π ∈ Q), where
Q ∈ 2P∗

is a set of paths.

Lemma 5.2. φP and φ♯
P are adjoints of a Galois connection, i.e., for a ∈

2(P,A)∗ and b ∈ 2P∗

we have

φP (a) ≤ b ⇔ a ≤ φ♯
P (b).

The proof of this fact is standard. Galois connections are interesting because they
give theorems for free. In particular, φP commutes with all existing suprema

and φ♯
P commutes with all existing infima. Also, φP is isotone and φ♯

P is an-

titone. Both mappings are related by the cancellation laws φP ◦ φ♯
P ≤ id2P∗

and id2(P,A)∗ ≤ φ♯
P ◦ φP . Finally, the mappings are pseudo-inverses, that is,

φP ◦ φ♯
P ◦ φP = φP and φ♯

P ◦ φP ◦ φ♯
P = φ♯

P .

Lemma 5.3. The mappings φP are homomorphisms.

By the HSP-theorem the set-valued homomorphism induces path semirings from
trace semirings.

Lemma 5.4. The power-set algebra 2P∗

is an i-semiring.

We call this i-semiring the full path semiring over P . It is the homomorphic image
of a full trace semiring. Again, by the HSP-theorem, all subalgebras of full path
semirings are i-semirings; complete subalgebras are called path semirings.

Lemma 5.5. Every identity that holds in all trace semirings holds in all path

semirings.
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Moreover, the class of trace semirings contains isomorphic copies of all path
semirings. This can be seen as follows.

Consider the congruence ∼P on a trace semiring over P and A that is induced
by the homomorphism φP . The associated equivalence class [T ]P contains all
those sets of traces that differ in actions, but not in paths. From each equivalence
class we can choose as canonical representative a set of traces all of which are
built from one single action. Each of these representatives is of course equivalent
to a set of paths and therefore an element of a path semiring. Conversely, every
element of a path semiring can be expanded to an element of some trace semiring
by filling in the same action between all states.

The following lemma can be proved using techniques from universal algebra.

Lemma 5.6. Let S be the full trace semiring over P and A. The quotient algebra

S/∼P is isomorphic to each full trace semiring over P and {a} with a ∈ A and

to the full path semiring over P :

S/∼P
∼= 2(P,{a})∗ ∼= 2P∗

.

In particular, the mappings φP and φ♯
P are isomorphisms between the full trace

semiring 2(P,{a})∗ and the full path semiring 2P∗

. In that case, φ−1
P = φ♯

P .
Lemma 5.6 is not only limited to full trace and path semirings. It immediately

extends to trace and path semirings, since the operations of forming subalgebras
and of taking homomorphic images always commute. In particular, each path
semiring is isomorphic to some trace semiring with a single action. This isomor-
phic embedding of path semirings into the class of trace semirings implies the
following proposition.

Proposition 5.7. Every first-order property that holds in all trace semirings

holds in all path semirings.

In particular, Horn clauses that hold in all trace semirings are also valid in the
setting of paths.

A similar mapping and Galois connection for languages can be defined by
forgetting states, but it does not extend to a homomorphism: forgetting states
before or after products yields different results. Nevertheless, the class of trace
semirings contains again elements over one single state. These are isomorphic
to (complete) language semirings, which are algebras of formal languages. Con-
versely, every language semiring can be induced by this isomorphism.

Proposition 5.8. Every first-order property that holds in all trace semirings

holds in all language semirings.

6 Relation Semirings

Now we forget entire paths between the first and the last state of a trace. We
therefore consider the mapping φR : (P, A)∗ → P × P defined by

φR(τ) =

{

(first(τ), last(τ)) if τ 6= ε,
undefined if τ = ε.
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It sends trace products to (standard) relational products on pairs. As before,

φR can be extended to a set-valued mapping φR : 2(P,A)∗ → 2P×P by taking

the image, i.e., φR(T ) = {φR(τ) : τ ∈ T }. Now, φR sends sets of traces to
relations. Information about the traces between starting and ending state can
be introduced to pairs of states by the fibration φ−1

R : P × P → 2(P,A)∗ of φR.
Intuitively, it replaces a pair of states by all possible traces between them. It can
again be lifted to the set-valued mapping φ♯

R(R) = sup(φ−1
R (r) : r ∈ R), for any

relation R ∈ 2P×P .

Lemma 6.1. φR and φ♯
R are adjoints of a Galois connection.

The standard properties hold again.

Lemma 6.2. The mappings φR are homomorphisms.

By the HSP-theorem, the set-valued homomorphism induces relation semirings
from trace semirings.

Lemma 6.3. The power-set algebra 2P×P is an i-semiring.

We call this i-semiring the full relation semiring over P . It is the homomorphic
image of a full trace semiring. Again, all subalgebras of full relation semirings
are i-semirings; complete subalgebras are called relation semirings.

Proposition 6.4. Every identity that holds in all trace semirings holds in all

relation semirings.

Similar to ∼P we can define ∼R induced by φR. But in that case, multiplication is
not well-defined in general and the quotient structures induced are not semirings.

Lemma 6.5. There is no trace semiring over P and A that is isomorphic to

the full relation semiring over a finite set Q with |Q| > 1.

A homomorphism that sends path semirings to relation semirings can be built
in the same way as φR and φ♯

R, but using paths instead of traces as an input.
The homomorphism χ : 2A∗

→ 2A∗×A∗

that sends language semirings to relation
semirings uses a standard construction (cf. [14]). It is defined, for all L ⊆ A∗ by
χ̃(L) = {(v, v.w) : v ∈ A∗ and w ∈ L}.

Lemma 6.6. Every identity that holds in all path or language semirings holds

in all relation semirings.

It is important to distinguish between relation semirings and relational structures
under addition and multiplication in general.

We will often need to consider trace semirings and relation semirings sepa-
rately, whereas language and path semirings are subsumed.
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7 Omega on Trace, Language and Path Semirings

Let us consider star and omega in (infinite) trace, path and language semirings.
We will relate the results obtained with divergence in Section 9. We will also
study omega and divergence on relation semirings in that section.

We first consider trace semirings. By definition, they are complete and satisfy
all necessary infinite distributivity laws. Stars can therefore be determined by
iteration, omegas cannot.

Sets of traces S over P and A can always be partitioned in its test part

St = S ∩ P and its test-free or action part Sa = S − P , i.e., S = St + Sa. This
allows us to calculate Sω

a separately and then to combine them by Equation (1)
to Sω = Sω

a + S∗
aSt⊤.

Since Sa is test-free, every trace τ ∈ Sa⊤ satisfies |τ | > 1. Therefore, by
induction, |τ | > n for all τ ∈ Sn

a⊤ and consequently Sω
a ≤ inf(Si

a⊤ : i ∈ IN) = ∅.
As a conclusion, in trace models omega can be explicitly defined by the star.

This might be surprising: Omega, which seemingly models infinite iteration,
reduces to finite iteration after which a miracle (anything) happens. By the
results of the previous sections, the argument also applies to language and path
semirings. In the case of languages, the argument is known as Arden’s rule [1]. In
particular, the test algebras of language algebras are always {∅, {ε}}. Therefore
Lω = ∅ iff ε 6∈ L for every language L ∈ 2A∗

.

Theorem 7.1. Assume an arbitrary element a of 2(P,A)∗, 2A∗

and 2P∗

, respec-

tively. Let at = a ∩ 1 denote the test and aa = a − at the action part of a.

(a) In trace semirings, aω = (aa)∗at⊤ for any a ∈ 2(P,A)∗.

(b) In language semirings, aω = A∗ if ε ∈ a and ∅ otherwise for any a ∈ 2A∗

.

(c) In path semirings, aω = a∗at⊤ for any a ∈ 2P∗

.

In relation semirings the situation is different: there is no notion of length that
would increase through iteration. We will therefore determine omegas in relation
semirings relative to a notion of divergence (cf. Section 9).

8 Divergence Semirings

An operation of divergence can be axiomatised algebraically on i-semirings with
additional modal operators. The resulting divergence semirings are similar to
Goldblatt’s foundational algebras [6].

An i-semiring S is called modal [12] if it can be endowed with a total operation
〈a〉 : test(S) → test(S), for each a ∈ S, that satisfies the axioms

〈a〉p ≤ q ⇔ ap ≤ qa and 〈ab〉p = 〈a〉〈b〉p.

Intuitively, 〈a〉p characterises the set of states with at least one a-successor in p.
A domain operation dom : S → test(S) is obtained from the diamond operator
as dom(a) = 〈a〉1. Alternatively, domain can be axiomatised on i-semirings,
even equationally, from which diamonds are defined as 〈a〉p = dom(ap) [3]. The
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axiomatisation of modal semirings extends to modal Kleene algebras and modal
omega algebras without any further modal axioms.

We will use the following properties of diamonds and domain [7]: 〈p〉q = pq,
dom(a) = 0 ⇔ a = 0, dom(⊤) = 1, dom(p) = p. Also, domain is isotone and
diamonds are isotone in both arguments.

A modal semiring S is a divergence semiring [3] if it has an operation ∇ :
S → test(S) that satisfies the ∇-unfold and ∇-co-induction axioms

∇a ≤ 〈a〉∇a and p ≤ 〈a〉p ⇒ p ≤ ∇a.

We call ∇a the divergence of a. This axiomatisation can be motivated on trace
semirings as follows: The test p−〈a〉p characterises the set of a-maximal elements
in p, that is, the set of elements in p from which no further a-action is possible.
∇a therefore has no a-maximal elements by the ∇-unfold axiom and by the ∇-
co-induction axiom it is the greatest set with that property. It is easy to see that
∇a = 0 iff a is Noetherian in the usual set-theoretic sense. Divergence therefore
comprises the standard notion of program termination. All those states that
admit only finite traces are characterised by the complement of ∇a.

The ∇-co-induction axiom is equivalent to p ≤ q + 〈a〉p ⇒ p ≤ ∇a + 〈a∗〉q,
which has the same structure as the omega co-induction axiom. In particular,
∇a is the greatest fixed point of the function λx.〈a〉x, which corresponds to aω

and ∇a + 〈a∗〉q is the greatest fixed point of the function λx.q + 〈a〉x, which
corresponds to aω + a∗b. Moreover, the least fixed point of λx.q + 〈a〉x is 〈a∗〉q,
which corresponds to a∗b. These fixed points are now defined on test algebras,
which are Boolean algebras. Iterative solutions exist again when the test algebra
is finite and all diamonds are defined. In general

∇a ≤ inf(〈ai〉1 : i ∈ IN) = inf(dom(ai) : i ∈ IN).

However, the algebra A2
3 shows that even finite i-semirings, which always have

a complete test algebra, need not be modal semirings (cf. Example 9.2 below).
We will need the properties 〈a〉∇a ≤ ∇a,∇p = p and ∇a ≤ dom(a) of

divergence and isotonicity of ∇ [7].

9 Divergence Across Models

We will now relate omega and divergence in all models presented so far. Con-
cretely, we will investigate the identities (∇a)⊤ = aω and ∇a = dom(aω) that
arose from our motivating example in Section 3. We will say that omega is tame

if every a satisfies the first identity; it will be called benign if every a satisfies the
second one. We will also be interested in the taming condition dom(a)⊤ = a⊤.
All abstract results of this and the next section has been again automatically
verified by Prover9 or Mace4.

First, we consider these properties on relation semirings which we could not
treat as special cases of trace semirings in Section 7. It is well known from relation
algebra that all relation semirings satisfy the taming condition. We will see in
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the following section through abstract calculations that omega and divergence
are related in relation semirings as expected and, as a special case, aω = 0 iff a
is Noetherian in relation semirings.

We now revisit the finite i-semirings of Examples 4.1 and 4.2.

Example 9.1. In A2, dom(0) = 0 and dom(1) = 1. By this, ∇0 = 0 and ∇1 = 1.

Example 9.2. In A1
3 and A3

3, the test algebra is always {0, 1}; dom(0) = 0 and
dom(1) = 1. Moreover, ∇0 = 0 and ∇1 = 1. Setting dom(a) = 1 = ∇a turns
both into divergence semirings. In contrast, domain cannot be defined on A2

3.

Consequently, omega is not tame in A2
3, since ∇a⊤ is undefined here, and in A3

3.
However, it is tame in A1

3 and A2. In all four finite i-semirings, omega is benign.
Let us now consider trace, language and path semirings. Domain, diamond

and divergence can indeed be defined on all these models. On a trace semiring,

dom(S) = {s : s ∈ P and ∃τ ∈ (P, A)∗ : s · τ ∈ S}.

So, as expected, ∇S = inf(dom(Si) : i ∈ IN); it characterises all states where
infinite paths may start. However, since the omega operator is related to finite
behaviour in all these models (cf. Theorem 7.1), the expected relationships to
divergence fail.

Lemma 9.3. The taming condition does not hold on some trace and path semi-

rings. Omega is neither tame nor benign.

The situation for language semirings, where states are forgotten, is different.

Lemma 9.4.

(a) The taming condition does not hold in some language semirings.

(b) Omega is tame in all language semirings.

(c) (∇a)⊤ = aω
; dom(a)⊤ = a⊤ in some language semirings.

In the next section we will provide an abstract argument that shows that omega
is benign on language semirings (without satisfying the taming condition).

As a conclusion, omega behaves as expected in relation semirings, but not
in trace, language and path semirings. This may be surprising: While relations
are standard for finite input/output behaviour, traces, languages and paths are
standard for infinite behaviour, including reactive and hybrid systems. As we
showed before, in these models omega can be expressed by the finite iteration
operator and therefore it does not model proper infinite iteration. In contrast to
that the divergence operator models infinite behaviour in a natural way.

10 Taming the Omega

Our previous results certainly deserve a model-independent analysis. We hence-
forth briefly call omega divergence semirings a divergence semiring that is also

11



an omega algebra. We will now consider tameness of omega for this class. It is
easy to show that the simple identities

a⊤ ≤ dom(a)⊤, aω ≤ (∇a)⊤, dom(aω) ≤ ∇a,

hold in all omega divergence semirings [7]. Therefore we only need to consider
the relationships between their converses.

Theorem 10.1. In the class of omega divergence semirings, the following im-

plications hold, but not their converses.

∀a. (dom(a)⊤ ≤ a⊤) ⇒ ∀a. (∇a)⊤ ≤ aω,

(∇a)⊤ ≤ aω ⇒ ∇a ≤ dom(aω).

Theorem 10.1 shows that the taming condition implies that omega is tame, which
again implies that omega is benign. The fact that omega is benign whenever it
satisfies the taming condition has already been proved in [3]. In particular, all
relational semirings are tame and benign, since they satisfy the taming condition.

Theorem 10.1 concludes our investigation of divergence and omega. It turns
out that these two notions of non-termination are unrelated in general. Proper-
ties that seem intuitive for relations can be refuted on three-element or natural
infinite models. The taming condition that seems to play a crucial role could
only be verified on (finite and infinite) relation semirings.

11 Conclusion

We compared two algebraic notions of non-termination: the omega operator and
divergence. It turned out that divergence correctly models infinite behaviour on
all models considered, whereas omega shows surprising anomalies. In particular,
omega is not benign (whence not tame) on traces and paths, which are among
the standard models for systems with infinite behaviour such as reactive and
hybrid systems. A particular advantage of our algebraic approach is that this
analysis could be carried out in a rather abstract, uniform and simple way.

The main conclusion of this paper, therefore, is that idempotent semirings
are a very useful tool for reasoning about termination and infinite behaviour
across different models. The notion of divergence is a simple but powerful con-
cept for representing that part of a state space at which infinite behaviour may
start. The impact of this concept on the analysis of discrete dynamical systems,
in particular by automated reasoning, remains to be explored. The omega oper-
ator, however, is appropriate only under some rather strong restrictions which
eliminate many models of interest. Our results clarify that omega algebras are
generally inappropriate for infinite behaviour: It seems unreasonable to sequen-
tially compose an infinite element a with another element b to ab. Two alter-
natives to omega algebras allow adding infinite elements: The weak variants of
omega algebras introduced by von Wright [16] and elaborated by Möller [11],
and in particular the divergence modules introduced in [15], based on work of

12



Ésik and Kuich [5], in which finite and infinite elements have different sorts and
divergence is a mapping from finite to infinite elements. All these variants are
developed within first-order equational logic and therefore support the analysis
of infinite and terminating behaviours of programs and transition systems by
automated deduction [15]. The results of this paper link this abstract analysis
with properties of particular models which may arise as part of it..

Acknowledgement. We are grateful to Bernhard Möller for proof-reading.
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Appendices

A A Proof Template for Prover9

op(500, infix, "+"). %addition

op(490, infix, ";"). %multiplication

op(480, postfix, "*"). %star

op(470, postfix, "^"). %omega

formulas(sos).

% Kleene algebra axioms

x+y = y+x & x+0 = x & x+(y+z) = (x+y)+z.

x;(y;z) = (x;y);z & x;1 = x & 1;x = x.

0;x = 0 & x;0 = 0.

x;(y+z) = x;y+x;z & (x+y);z = x;z+y;z.

x+x = x.

x <= y <-> x+y = y.

1+x;x* = x* & 1+x*;x = x*.

z+x;y <= y -> x*;z <= y & z+y;x <= y -> z;x* <= y.

% Boolean domain axioms (a la Desharnais & Struth)

a(x);x = 0 & a(x;y) = a(x;a(a(y))) & a(a(x))+a(x) = 1.

d(x) = a(a(x)). %domain defined from antidomain

% divergence

d(x;div(x)) = div(x).

d(y) <= d(x;d(y))+d(z) -> d(y) <= div(x)+d(x*;z).

% omega axioms

x;x^ = x^ & z <= x;z+y -> z <= x^+x*;y.

% additional laws

T = 1^.

x <= y -> d(x) <= d(y).

end_of_list.

formulas(goals). % for Thm 10.1; to be commented in one by one

%all x(d(x);T <= x;T) -> all x(div(x);T <= x^).

%div(x);T <= x^ -> div(x) <= d(x^).

%all x(d(x);T <= x;T) <- all x(div(x);T = x^).

%div(x);T <= x^ -> div(x) = d(x^).

end_of_list.
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B Proofs

Lemma 6.5. There is no trace semiring over P and A that is isomorphic to

the full relation semiring over a finite set Q with |Q| > 1.

Proof. If there is at least one action in the trace semiring, then the trace semi-
ring is infinite whereas the size of the relation semiring is 2|Q|2 . Otherwise, all
traces will be single states and multiplication will therefore commute on the
trace semiring, but not on the relation semiring. Therefore there cannot exist an
isomorphism. ⊓⊔

Lemma 9.3. The taming condition does not hold on some trace and path semir-

ings. Omega is neither tame nor benign.

Proof. Consider the case of trace semirings. Let P = {s} and A = {α} and
let S be the set consisting of the single trace sαs. Then dom(S) = {s} = ∇S
and dom(S)⊤ = {s}⊤ = ∇(S)⊤ is the set of all non-empty traces over p and
α. Moreover, S⊤ = {s.α.τ : τ ∈ (P, A)∗}. Finally, Theorem 7.1(a) implies that
Sω = S∗

aSt⊤ = ∅ since St = ∅ in the example. This refutes all identities for trace
semirings. The argument translates to path semirings by forgetting actions. ⊓⊔

Lemma 9.4.

(a) The taming condition does not hold in some language semirings.
(b) Omega is tame in all language semirings.
(c) Tameness does not imply the taming condition in some language semirings.

Proof. In language semirings the test algebra is {∅, {ε}}. So dom(L) = {ε} iff
L 6= 0 for every L ∈ 2A∗

.

(a) Consider the language semiring over the single letter a and the language
L = {a}. Then dom(L) = {ε} and therefore dom(L)⊤ = ⊤ 6= L⊤, since
ε ∈ ⊤, but ε 6∈ L⊤.

(b) ∇L = inf(dom(Li) : i ∈ IN} = {ε} iff L 6= ∅. Therefore (∇L)⊤ = ⊤ iff L 6= ∅
and (∇L)⊤ = ∅ iff L = ∅. It has already been shown in Lemma 7.1(b) that
Lω satisfies the same conditions.

(c) Immediate from (a) and (b). ⊓⊔

Theorem 10.1. In the class of omega divergence semirings, the following im-

plications hold, but not their converses.

∀a. (dom(a)⊤ ≤ a⊤) ⇒ ∀a. (∇a)⊤ ≤ aω,

(∇a)⊤ ≤ aω ⇒ ∇a ≤ dom(aω).

Proof. Both implications can be proved in a few seconds by Prover9 on any
personal computer with the input file from Appendix A.

The converse of the first implication fails in the class of language semirings
by Lemma 9.4(c).

The converse of the second implication fails in A3
3 since ∇a = 1 = dom(a) =

dom(aω) holds in this model, but (∇a)⊤ = 1 > a = aω by Example 4.2 and 9.2.
⊓⊔
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