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Abstract. To realise a software that needs to interact with other com-
puters, service-oriented architecture and especially Web Services are gain-
ing more and more attention. Existing components need to be composed
in order to reach a predefined goal. For Web Services this can be realised
using data defined in WSDL or using semantic Web Services such as
SAWSDL. We apply relation algebra to describe Web Services as well as
the composition of existing semantic Web Services.

1 Introduction

Most companies nowadays have business processes where frequent interaction
with other companies happens on a regular basis. Hence, the involved systems
must be able to interact somehow in order to realise predefined goals and finally
to produce goods or services. This is only possible if every system can read
the exchanged messages which means that the output of one involved system
must be compatible with the input of another. The service-oriented architecture
(SOA) and -paradigm can be applied to couple the systems in services which
then interchange messages and can be discovered using a shared directory.

Web Services are one way to realise a SOA. The Web Services need to be de-
scribed in a language such as the Web Service Description Language (WSDL) and
message exchange happens using the SOAP standard. But these standards have
shortcomings: since the exchanged messages are only described using human-
comprehensible terms, they can be understood by different developers in various
ways. Hence, standards of the semantic web can be applied to provide a unique
meaning for those terms in all systems using ontologies.

The W3C has defined an extension to WSDL which is called SAWSDL, Se-
mantic Annotations for WSDL and XML Schema, to support the use of concepts
in an ontology for the definition of Web Services. Additionally, several attempts
of semantic Web Services have been developed during the last years: OWL-S,
SWSF or WSMO (e.g. [3]) to name just a few. The ontologies defined in these
standards can then be combined using SAWSDL (see e.g. [7]).

An existing Web Service description can be used to achieve an automatic
composition. To achieve a goal, several Web Services need to be composed and
must interact with each other. In this paper we describe an algebra for the
description of (semantic) Web Services and show how this algebra can assist the
user in the composition of Web Services.
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2 (Semantic) Web Service Standards

Each Web Service needs to have a specified interface in order to interact with
others. WSDL [2] is a language designed to describe such an interface. A WSDL
document consists of four parts which describe different levels of abstraction:
types, interfaces, bindings and services. Types contain definitions for
the datatypes used in messages. Interfaces describe which operations are sup-
ported by a service. Bindings and services specify the protocols and endpoints
used to access the service. Input, output and fault messages specify operations
of interfaces. They rely on data types described in types. Basic data types
are defined by an XML Schema. They can be nested to more complex types.

SAWSDL [5], recommended by the W3C since 2007, is a set of extensions for
WSDL to provide a standard description format. It allows a semantic annota-
tion of a Web Service description using three different kinds of attributes: with
modelReference one can create an association between a part in the WSDL
document and a concept in an ontology. Type definitions, element declarations,
attribute declarations as well as interfaces can be annotated. Using the attribute
liftingSchemaMapping one can describe the mapping between the WSDL file
and semantic data whereas loweringSchemaMapping specifies the mapping be-
tween a semantic concept and the constructs in the WSDL file.

3 A Formalisation of Web Services

In [4], we defined Web Service composition using relation algebra (e.g [9]). In
this section we will recapitulate the basic definitions.

In the interfaces of WSDL several Web Methods are defined. These receive
input messages and reply with output messages which both can be of a simple
type such as string, integer, etc. or of a complex type. We will assume that the
types of the input and the output data are known before and therefore there
is a knowledge set IC, a set which includes the inputs and outputs as subsets.
The concrete binding information or fault messages within WSDL are currently
neglected for the sake of simplicity.

Definition 3.1. A Web Method is a tuple (I,0), where I C O C K.

The condition I C O guarantees that we do not lose any information, i.e., any
information which is known before the execution of a Web Method is also known
afterwards. (0, O) represents a Web Method where no input is needed, i.e., it can
be executed at any time.

In the following we will use a grammar-style notation to ease the reading and
to focus on the input and the “real” output. In particular, we write {I — O—1I}
instead of (I,0). When possible, we will even skip the set brackets.

A Web Method is the simplest form of a Web Service, but it is atomic.
Following WSDL, a Web Service may contain more than one Web Method,
hence we define the concept of a simple Web Service.

Definition 3.2. A simple Web Service is a collection of Web Methods.
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Operations like choice or sequential composition can also be applied to Web
Services. Choice is the set-theoretic union and composition is the multiplication.
As described in [4] this definition yields a strange behaviour. Therefore, we define
an (extended) Web Service and Web Services composition as follows:

Definition 3.3. The (extended) Web Service of a simple Web Service W is the
relation {(IUE,OUE) : (I,0) € W, E C K\O} and denoted by <W>>. Web
Service composition of V' and W is then defined by Vo W =4 <V>> ; <W>,
where ; denotes standard sequential composition of relations.

In this definition F is the context and the extension of the simple Web
Service W, which just takes any information that is not needed as input for
execution and adds this information unchanged to the output.

It is straightforward to show that extended Web Services are closed under
choice and Web Service composition. Therefore they form an idempotent semi-
ring'. Finite iteration of Web Services can be determined by the reflexive and
transitive closure, denoted by *. It is easy to show that < V*>=<V >*.
Henceforce, Web Services form also a Kleene algebra.

4 Web Service Restriction

In order to express the needed input data to perform a certain action or to
describe goals we introduce the concept of tests. This allows an automatic com-
position of Web Services as described in [4].

One defines a test in an idempotent semiring [6] to be an element p < 1 that
has a complement g relative to 1,i.e., p+¢g=1and p-q¢=0= g - p. In relation
algebra every subidentity can be seen as a test.

Tests can be used to model assertions for Web Services. But they are also the
basis for defining modal operators [1] which are used for modelling termination
and to determine whether some goals can be reached by composing Web Services
or not. Additionally, they can be used to compute an initial state that allows a
composition of Web Services to be executed.

Informally, in the context of Web Services the forward diamond |a)p char-
acterises the set of possible information with at least one successor in p when
executing the Web Service a, i.e., the preimage of the set p under a. |a]p char-
acterises the situation where there is no execution of a, that starts in p and
terminates in —¢, the complement of g. Whenever an execution of a terminates
in —g, the execution has to start in —p and therefore |a]p models the possible
infomation from which execution of a is guaranteed to terminate in an element
of p or the execution is not possible. The combination of both modal operators
(la)p and |a]p) guarantees that at least one result of the Web Service a exists
and all resulting information is in p. This can be expressed by |a)p - |a]p.

! A semiring is called idempotent if a + a = a for all elements.
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5 Algebraic Composition of Semantic Web Services

Since all inputs and outputs of a Web Service can be annotated with concepts
from an ontology, we have a closer look at these annotations now. Concepts in
an ontology (e.g. defined in OWL [8]) can be connected with other concepts
through user-defined ObjectProperties or DataProperties. With SubClass0f one
can define inheritance and using EquivalentClasses the equivalence of two
classes is specified. To formalise these concepts we discuss two possibilities:

First alternative

After each Web Service we include an additional one that extends the output
parameters of the former with the concepts that can be “reasoned” through the
ontology. Analogous to Definition 3.3 we define an ontology-based Web Service
composition as follows:

Definition 5.1. Ontological Web Service composition of V and W is defined as
VoW =4 VoOnt*oW, whereas Ont is a set of tuples (s, t) describing relations
of concepts in the ontology with s,¢ € K and hence a Web Service itself.

These relations have been stored e.g. in an OWL-file and need to be translated
into tuples. After each call of Ont* the available data has been extended with
the EquivalentClasses or SubClass0f of the output data.

The Kleene star supports also transitive relations in the ontology. Now the
second Web Service can be invoked and will find its input data, if it has been
computed by V or by Ont*.

Let us have a look at a small example: Assume Web Services B and Z.
The former extracts the birthdate of a person from a database, i.e., B =
(firstName lastName — birthdate). Z needs some date to calculate the cor-
responding zodiac sign, i.e., Z = (date — zodiacSign). In Ont the relations
(birthdate,date) and (firstName,name) have been stored. B & Z yields that
B and Z can be composed, since birthdate and date are related to each other
in the ontology. The composed Web Service is then (firstName lastName —
date zodiacSign).

Second alternative

For each Web Method we define additional ones by replacing the input data with
equivalent classes and sub-classes.

Definition 5.2. Let S, T be sets with S, T C K. A refinement relation is defined
as SCT 4 Vse S 3t eT: (s,t) € Ont*. The refined Web Service of W is
given by We = {I - O) | (I - 0)e W, ICI, I CK}.

Applying the same example as before, we can now change Z and determine
the Web Service Zr. In particular, Zc includes (birthdate — zodiacSign).
B can be composed with Zi, since the input of B and output of Z is identical.
Discussion

The first alternative uses a straight-forward relationship between the ontology
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and our characterisation of Web Services. That is why the construction is quite
natural. Nevertheless, it creates a lot of tuples that are not needed for the com-
position. Moreover, the output produced through the ontology might lead to
confusion since the same information can now occur in different data of the
output. For example birthdate will occur in birthdate and date.

The second alternative does not create unnecessary data; but the Web Ser-
vices must be changed. At first sight this seems more complicated. Nevertheless,
this modification has to be done only once. Moreover, if a Web Service accepts a
date as input, it is obvious that it also accepts birthdate as input. Therefore,
this approach is also natural.

We prefer the second approach since it reflects the intuition what data a Web
Service may accept. Moreover, this approach can be extended with preconditions
and effects lateron as needed in the area of semantic Web Services.

6 Conclusion and Outlook

In this paper we presented a method to describe Web Services based on a rela-
tion algebra. Additionally, we outlined two ideas how to describe semantic Web
Services and ontologies. As this is current research, there are several things that
still need to be done: An ontology does not only support EquivalentClasses or
SubClassOf, but also other relationships between classes that we want to take
care of. The tuples of the ontology might be extended to tripels to store these
information. Also lowering- or liftingSchemaMapping are currently ignored.
We cover only some parts of WSDL in our approach, but most of the others are
not necessary for the composition anyway, but only for the enactment lateron.
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