Towards Algebraic Separation Logic

Han-Hing Dang, Peter Hofner, and Bernhard Moller

Institut fiir Informatik, Universitat Augsburg, D-86135 Augsburg, Germany
{h.dang,hoefner ,moeller}@informatik.uni-augsburg.de

Abstract. We present an algebraic approach to separation logic. In par-
ticular, we give algebraic characterisations for all constructs of separa-
tion logic like assertions and commands. The algebraic view does not
only yield new insights on separation logic but also shortens proofs and
enables the use of automated theorem provers for verifying properties at
a more abstract level.

1 Introduction

Two prominent formal methods for reasoning about the correctness of programs
are Hoare logic [9] and the wp-calculus of Dijkstra [7]. These approaches, al-
though foundational, lack expressiveness for shared mutable data structures,
i.e., structures where updatable fields can be referenced from more than one
point (e.g. [19]). To overcome this deficiency Reynolds, O’Hearn and others have
developed separation logic for reasoning about such data structures [17]. Their
approach extends Hoare logic by assertions to express separation within memory,
both in the store and the heap. Furthermore the command language is enriched
by some constructs that allow altering these separate ranges. The introduced
mechanisms have been extended to concurrent programs that work on shared
mutable data structures [16].

This paper presents an algebraic approach to separation logic. As a result
many proofs become simpler while still being fully precise. Moreover, this places
the topic into a more general context and therefore allows re-use of a large body
of existing theory.

In Section 2 we recapitulate syntax and semantics of expressions in separation
logic and give a formal definition of an update-operator for relations. Section 3
gives the semantics of assertions. After providing the algebraic background in
Section 4, we shift from the validity semantics of separation logic to one based on
the set of states satisfying an assertion. Abstracting from the set view yields an
algebraic interpretation of assertions in the setting of semirings and quantales. In
Section 6 we discuss special classes of assertions: pure assertions do not depend
on the heap at all; intuitionistic assertions do not specify the heap exactly. We
conclude with a short outlook.

2 Basic Definitions

Separation logic, as an extension of Hoare logic, does not only allow reasoning
about explicitly named program variables, but also about anonymous variables

in dynamically allocated storage. Therefore a program state in separation logic
consists of a store and a heap. In the remainder we consistently write s for stores
and h for heaps.

To simplify the formal treatment, one defines values and addresses as integers,
stores and heaps as partial functions from variables or addresses to values and
states as pairs of stores and heaps:

Values = %
{nil} U Addresses C Values ,
Stores = V ~» Values
Heaps = Addresses ~ Values

States = Stores x Heaps ,

where V' is the set of all variables, U denotes the disjoint union on sets and
M ~+» N denotes the set of partial functions between M and N. With this
definition, we slightly deviate from [19] where stores are defined as functions
from variables to values of Z and heaps as functions from addresses into values
of Z, while addresses are also values of Z.

The constant nil is a value for pointers that denotes an improper reference
like null in programming languages like JAVA; by the above definitions, nil is not
an address and hence heaps do not assign values to nil.

As usual we denote the domain of a relation (partial function) R by dom(R):

dom(R) =4f {z:3y.(z,y) € R} .

In particular, the domain of a store denotes all currently used program variables
and dom(h) is the set of all currently allocated addresses on a heap h.

As in [14] and for later definitions we also need an update operator. It is used
to model changes in stores and heaps. We will first give a definition and then
explain its meaning.

Let R and S be partial functions. Then we define

R[S =y RUA{(z,y) | (z,y) €S Az ¢dom(R)} . (1)

The relation R updates the relation S with all possible pairs of R in such a
way that R|S is again a partial function. The domain of the right hand side
of U above is disjoint from that of R. In particular, R|S can be seen as an
extension of R to dom(R)Udom(S). In later definitions we abbreviate an update
{(z,v)}|S on a single variable or address by omitting the set-braces and simply
writing (z,v) | S instead.

Ezxpressions are used to denote values or Boolean conditions on stores and are
independent of the heap, i.e., they only need the store component of a given state
for their evaluation. Informally, exp-expressions are simple arithmetical expres-
sions over variables and values, while bexp-expressions are Boolean expressions

over simple comparisons and true, false. Their syntax is given by

var =z |y |z | ...
exp =0 |1]2]|..|var | exptexp | ..

bexp ::= true | false | exp = exp | exp < exp | ...

The semantics e of an expression e w.r.t. a store s is straightforward (as-
suming that all variables occurring in e are contained in dom(s)). For example,

S=c¢ VYeeZ, true’=true and false® = false .

3 Assertions

Assertions play an important role in separation logic. They are used as predicates
to describe the contents of heaps and stores and as pre- or postconditions in
programs, like in Hoare logic:

assert ::= bexp | - assert | assert V assert | ¥V war. assert |

emp | exp — exp | assert x assert | assert — assert .

In the remainder we consistently write p, ¢ and r for assertions. Assertions are
split into two parts: the “classical” ones from predicate logic and four new ones
that express properties of the heap. The former are supplemented by the logical
connectives A, — and 3 that are defined, as usual, by p A ¢ =45 = (—p V —¢),
p—q =qf 7pV qand Jv.p =g Vv.-p.

The semantics of assertions is given by the relation s, h = p of satisfaction.
Informally, s, h = p holds if the state (s, h) satisfies the assertion p; an assertion
p is called valid iff p holds in every state and, finally, p is satisfiable if there exists
a state (s, h) which satisfies p. The semantics is defined inductively as follows

(e.g. [19]).

s,h = b Sar b% = true

s,h = —p Saf s,h Ep

s,shi=pVg ©ag s,hl=p or s,h=gq

s,h EVu.p g VYo elZ:(v,x)|s,h Ep

s,h = emp Sar h=10

s, h ': €1 > €2 <df h:{(e‘f,eg)}

s,h E p*xq <af Jh1, hy € Heaps : dom(hy) N dom(hy) = 0 and

h=h; Uhgand s,h; E pand s, hy E ¢
s,h = p—q g4 Yh' € Heaps: (dom(h') N dom(h) =0 and s,h" |= p)
implies s,h’ U h | q.

Here, b is a bexp-expression, p, q are assertions and e, ey are exrp-expressions.
The first four clauses do not make any assumptions about the heap and only
carry it along without making any changes to it; they are well known from
predicate logic or Hoare logic [9].

The remaining lines describe the new parts in separation logic: For an ar-
bitrary state (s,h), emp ensures that the heap h is empty and contains no
addressable cells. An assertion e; +— es characterises states with the singleton
heap that has exactly one cell at the address ef with the value e5. To reason
about more complex heaps, the separating conjunction * is used. It allows ex-
pressing properties of heaps that result from merging smaller disjoint heaps, i.e.,
heaps with disjoint domains.

The separating implication p —« q guarantees, that if the current heap h is
extended with a heap h’ satisfying p, the merged heap h U &' satisfies ¢ (cf.
Figure 1). If the heaps are not disjoint, the situation is interpreted as an error
case and the assertion is not satisfied.

3
P—*q D q\

h n hUh

Fig. 1. Separating implication *

4 Quantales and Residuals

To present our algebraic semantics of separation logic in the next section we now
prepare the algebraic background.

A quantale [20] is a structure (5, <,0,-,1) where (5, <) is a complete lattice
and - is completely disjunctive, i.e., - distributes over arbitrary suprema. More-
over 0 is the least element and 1 is the identity of the - operation. The infimum
and supremum of two elements a,b € S are denoted by a M b and a + b, resp.
The greatest element of S is denoted by T. The definition implies that - is strict,
ie.,, that 0-a =0 =a-0 for all a € S. The notion of a quantale is equivalent
to that of a standard Kleene algebra [3] and a special case of the notion of an
idempotent semiring.

A quantale is called Boolean if its underlying lattice is distributive and com-
plemented, whence a Boolean algebra. Equivalently, a quantale S is Boolean if
it satisfies the Huntington axiom a =@ +b+a+ b for all a,b € S [12,11]. The

infimum is then defined by the de Morgan duality al1b =4 @+ b. An important
Boolean quantale is REL, the algebra of binary relations over a set under set
inclusion, relation composition and set complement.

A quantale is called commutative if - commutes, i.e., a -b=b-a for all a,b.

! The right picture might suggest that the heaps are adjacent after the join. But the
intention is only to bring out abstractly that the united heap satisfies g.

In any quantale, the right residual a\b [1] exists and is characterised by the
Galois connection
z<a\b &4 a-x<b.

Symmetrically, the left residual b/a can be defined. However, if the underlying
quantale is commutative then both residuals coincide, i.e., a\b = b/a. In REL,

one has R\S = R”; S and R/S = R ; S”, where ” denotes relational converse and
; is relational composition.
In a Boolean quantale, the right detachment a|b can be defined based on the

left residual as L
aLb =df a/b .

In REL, R|S = R;S”. By de Morgan’s laws, the Galois connection for / trans-
forms into the exchange law

alb<z & 7T-b<a (exc)

for | that generalises the Schroder rule of relational calculus. An important
consequence is the Dedekind rule [13]

af(b-c) <(alcnb)-c. (Ded)

5 An Algebraic Model of Assertions

We now give an algebraic interpretation for the semantics of separation logic.
The main idea is to switch from the satisfaction-based semantics for single states
to an equivalent set-based one where every assertion is associated with the set
of all states satisfying it. This simplifies proofs considerably.

For an arbitrary assertion p we therefore define its set-based semantics as

[[p]] =df {(S,h):&h ': p} .

The sets [p] of states will be the elements of our algebra. By this we then have
immediately the connection s,h = p < (s,h) € [p]. This validity assertion
can be lifted to set of states by setting, for A C States, A = p & A C [p].
The embedding of the standard Boolean connectives is given by

[=p] = {(s;h): s, = p} = [p]
[pVva] =Trluldl,
[Vo.p] = {(s,h): Yz eZ. (v,z)|s,h = p}.

Using these definitions, it is straightforward to show that

[pAgl=WInld. [p—al=MDUld,. and
[Fv.p] = [Vv.-p] ={(s,h): Tz € Z. (v,z)|s,h = p},

where | is the update operation defined in (1).

The emptiness assertion emp and the assertion operator — are given by

[emp] =ar {(s,) : h =0}
ler — e2] =ar {(s,h) ch= {(ef,eg)}})

Next, we model the separating conjunction * algebraically by

[p * q] =ar [p]Y[gq], where
PUQ =aq {(s,hUN):(s,h) € PA(s,h') € QAdom(h)Ndom(R') =0} .

In this way inconsistent states as well as “erroneous” merges of non-disjoint
heaps are excluded.
These definitions yield an algebraic embedding of separation logic.

Theorem 5.1 The structure AS =4 (P(States), C,0, U, [emp]) is a commu-
tative and Boolean quantale with P+ Q = P U Q.

The proof is by straightforward calculations; it can be found in [4]. It is easy to
show that [true] is the greatest element in the above quantale, i.e., Jtrue] = T,
since every state satisfies the assertion true. This implies immediately that [true]
is the neutral element for M. However, in contrast to addition U, multiplication
J is in general not idempotent.

Example 5.2 In AS,
[@—=1)x@—1D]=[z-1]u[z—1] =10.
This can be shown by straightforward calculations using the above definitions.

[1) (@ = 1]
[(@— D]ul(z — 1]
= {(s,hUR): (s,h),(s,/) € [z — 1] A dom(h) N dom(R’) = B}
0
I

[z +— 1] is the set of all states that have the single-cell heap {(s(z),1)}. The
states (s, h) and (s, h’) have to share this particular heap. Hence the domains of
the merged heaps would not be disjoint. Therefore the last step yields the empty
result. O

As a check of the adequacy of our definitions we list a couple of properties.

Lemma 5.3 In separation logic, for assertions p,q,r, we have

p=Tr q= s
(pANq)*xr = (pxr) A (gx7) and pxq = rxs

The second property denotes isotony of separating conjunction. Both properties
together are, by standard quantale theory, equivalent to isotony of separating
conjunction.

More laws and examples can be found in [4].
For the separating implication the set-based semantics extracted from the
definition in Section 3 is

[p = q] =ar {(s,h):VRh' € Heaps : (dom(h) Ndom(R') =0 A (s,h') € [p])
= (s,hUMN) e[q]} .

This implies that separating implication corresponds to a residual.

Lemma 5.4 In AS, [p—q] = [p]\[¢] = [¢]/[p]

Proof. We first show the claim for a single state. By definition above, set theory
and definition of W, we have

(s,h) € [p—dq]
< VR ((s,h') € [p] A dom(h)Ndom(h') =0 = (s,hU
< {(s,hUN): (s,h') € [p] A dom(h) Ndom(h') =0} C
< {(s,h)}u[p] € [d] -

and therefore, for arbitrary set R of states,

R C [p—q]
& V(s,h) € R:(s,h) € [p—q]
& V(s,h) € R:{(s,h)}U[p] C [q]
& RU[p] C [dq] -

Hence, by definition of the residual, [p—+q] = [p]\[g]. The second equation
follows immediately since multiplication U in AS commutes (cf. Section 2). O

') € [q])
lq

)
I

Now all laws of [19] about —« follow from the standard theory of residuals
(e.g. [2]). Many of these laws are proved algebraically in [4]. For example, the two
main properties of separating implication, namely the currying and decurrying
rules, are nothing but the transcriptions of the defining Galois connection for
right residuals.

Corollary 5.5 In separation logic the following inference rules hold:

prq =T p = (g—*r)

P = (qr) (currying) (decurrying)

pxq =T

This means that ¢ —«r is the weakest assertion guaranteeing that a state in
[q =] merged with a state in [¢] yields a state in [r].

As far as we know, in his works Reynolds only states that these laws follow
directly from the definition. We are not aware of any proof of the equalities given
in Lemma 5.4, although many authors state this claim and refer to Reynolds.

As a further example we prove the algebraic counterpart of the inference rule

qx(qg—p) = p.
Lemma 5.6 Let S be a quantale. For a,b € S the inequality q-(q\ p) < p holds.

Proof. By definition of residuals we immediately get
q-(g\p) <p e q\p<q\p & true. -

6 Special Classes of Assertions

Reynolds distinguishes different classes of assertions [19]. We will give algebraic
characterisations for three main classes, namely pure, intuitionistic and precise
assertions. Pure assertions are independent of the heap of a state and there-
fore only express conditions on store variables. Intuitionistic assertions do not
describe the domain of a heap exactly. Hence, when using these assertions one
does not know whether the heap contains additional anonymous cells. In con-
trast, precise assertions point out a unique subheap which is relevant to its
predicate.

6.1 Pure Assertions

An assertion p is called pure iff it is independent of the heaps of the states
involved, i.e.,

pis pure &4 (Vh,h' € Heaps:s,h = p & s,h' = p) .
Theorem 6.1 In AS an element [p] is pure iff it satisfies, for all [q] and [r],
[p]Uftrue] € [p] and [p] 0 ([qlWlr]) € (Ip]InleD) W {p]INTr]) -

Before we give the proof, we derive a number of auxiliary laws. The above
theorem motivates the following definition.

Definition 6.2 In an arbitrary Boolean quantale S an element p is called pure
iff it satisfies, for all a,b € S,

p-T<p, (2)
pri(a-b) <(pMa)-(prb). (3)

The first equation models upwards closure of pure elements. It can be strength-
ened to an equation since its converse holds for arbitrary Boolean quantales. The
second equation enables pure elements to distribute over meet and is equivalent
to downward closure.

Lemma 6.3 Property (3) is equivalent to p| T < p, where p| T forms the down-
ward closure of p.

Proof. (<): Using Equation (Ded), isotony and the assumption, we get
pMa-b<(plbMNa)-b<(p|TMNa)-b<(pMa)-b
and the symmetric formula pMa-b <a-(pMb). From this the claim follows by
pM(a-b) =pfph(a-b)<pn((pNa)-b) < (pMa)-(pnb).

(=): By Axiom (3) we obtain pM(p-T) < (pMp)-(pMT) =0 and hence,
by shunting and the exchange law (exc), p| T < p. O

Corollary 6.4 pispureiff p- T <pand p-T <p.

Corollary 6.5 Pure elements form a Boolean lattice, i.e., they are closed under
+,Mand .

Moreover we get a fixed point characterisation if the underlying quantale
commutes.

Lemma 6.6 In a Boolean quantale, an element p is pure iff p = (pM1)-T holds.

Proof. We first show that p = (pM1)- T follows from Inequations (2) and (3). By
neutrality of T for M, neutrality of 1 for -, meet-distributivity (3) and isotony,
we get

p=pnT =pn(1-T)<(pnl)-(pnT)<(pnl)-T.

The converse inequation follows by isotony and Inequation (2):
(p11)-T<p-T<p.

Next we show that p = (pM 1) - T implies the two inequations p- T < p and
Pp- T < P which, by Corollary 6.4, implies the claim. The first inequation is shown
by the assumption, the general law T - T = T and the assumption again:

p-T=(ENL-T-T=((MN1)-T=np.

For the second inequation, we note that in a Boolean quantale the law s- T =
(3M1)- T holds for all subidentities s (s < 1) (e.g. [6]). From this we get

p-T=(@pnNl) - T-T=@@END-T-T=@EMN1)-T=pEnNl)-T=7p. .

Corollary 6.7 The set of pure elements forms a complete lattice.

Proof. Lemma 6.6 characterises the pure elements as the fixed points of the
isotone function f(x) = (zM1)- T on the quantale. By Tarski’s fixed point
theorem these form a complete lattice. a

Proof of Theorem 6.1. By Lemma 6.6 and definition of the elements of AS it is
sufficient to show that the following formulas are equivalent in separation logic

Vs € Stores, Vh,h' € Heaps : (s,h =p < s,h = p), (4)
Vs € Stores, Vh € Heaps : (s,h = p < s,h |E (p A emp) = true) . (5)

Since both assertions are universally quantified over states we omit that quantifi-
cation in the remainder and only keep the quantifiers on heaps. Before proving
this equivalence we simplify s,h = (p A emp) * true. Using the definitions of
Section 3, we get for all h € Heaps

s,h = (p A emp) x true

=4 th,hg € Heaps : dom(hl) ﬂdom(hg) =0 and h = hiU hg
and s,h; = p and s, h; | emp and s, he = true

< Jhy, hy € Heaps : dom(hy) Ndom(hy) =0 and h = hy U hy
and s,hy E pand hy =0

& Jhy € Heaps : h = hy and 5,0 = p

< s0EDp.

The last line shows that a pure assertion is independent of the heap and hence, in
particular, has to be satisfied for the empty heap. Next we show the implication
(4) = (5). Instantiating Equation (4) and using the above result immediately
imply the claim:

Vh,h' € Heaps : (s,h = p < s,h = p)
= Vh € Heaps : (s,h = p & 5,0 E p)
< Vh € Heaps : (s,h = p < s,h = (p A emp) x true) .

For the converse direction, we take two instances of (5). Then, using again the
above result, we get

Vh € Heaps : (s,h = p < s,h = (p A emp) x true)
and Vh' € Heaps : (s,h/ = p < s,/ = (p A emp) % true)
= Vh,h' € Heaps : (s,h = p < s,h E (p A emp) x* true
and s,h’ = p < s,h = (p A emp) * true)
< Vh,h' € Heaps : (s,h Ep < 5,0 Epands,h =p < 5,0 E p)
= Vh,h' € Heaps : (s,h E p < s, = p).
O
The complexity of this proof in predicate-logic illustrates the advantage that is
gained by passing to an algebraic treatment. Logic-based formulas (in particular
in separation logic) can become long and complicated. Calculating at the abstract
level of quantales often shorten the proofs. Moreover the abstraction paves the
way to using first-order off-the-shelf theorem provers for verifying properties;
whereas a first-order theorem prover for separation logic has yet to be developed
and implemented (cf. Section 7).
To conclude the paragraph concerning pure elements we list a couple of prop-
erties which can be proved very easily by our algebraic approach.

Lemma 6.8 Consider a Boolean quantale S, pure elements p,q € S and arbi-
trary elements a,b € S Then

(a) p-a=pha-T;
(b) (pNa)-b=pNa-b;
(¢) p-q=pngq; in particular p-p=p and p-p=0.

Their corresponding counterparts in separation logic and the proofs can again
be found in [4].

The following lemma shows a.o. that in the complete lattice of pure elements
meet and join coincide with composition and sum, respectively.

As far as we know these closure properties are new and were not shown in
separation logic so far.

6.2 Intuitionistic Assertions
Let us now turn to intuitionistic assertions. Following [19], an assertion p is
intuitionistic iff

Vs € Stores, Vh,h' € Heaps : (h C h' and s,h |= p) implies s,k = p. (6)

This means for a heap that satisfies an intuitionistic assertion p that it can be
extended by arbitrary cells and still satisfies p.

Similar calculations as in the proof of Theorem 6.1 yield the equivalence of
Equation (6) and

Vs € Stores, Vh € Heaps : (s,h = p x true = s,h = p) . (7)

Lifting this to an abstract level motivates the following definition.

Definition 6.9 In an arbitrary Boolean quantale S an element 1 is called intu-
itionistic iff it satisfies
iT<i. (8)

Elements of the form i - T are also called vectors or ideals.
Corollary 6.10 Every pure element of a Boolean quantale is intuitionistic.

As before we just give a couple of properties. The proofs are again straightfor-
ward at the algebraic level.

Lemma 6.11 Consider a Boolean quantale S, intuitionistic elements i,5 € S
and arbitrary elements a,b € S Then

GN1)-T <i;
i-a<if(a-T);
(iMa)-b<iM(a-b);

Using the quantale AS, it is easy to see that none of these inequations can
be strengthened to an equation. In particular, unlike as for pure assertions,
multiplication and meet need not coincide.

Example 6.12 Consider i =g j =g [— 1 x true] = [z — 1]U[true].
By this definition it is obvious that ¢ and j are intuitionistic. The definitions of
Section 3 then immediately imply

iNj=[xz — 1]U[true]

iUj=[z — 1]U[true]Uz — 1]U[true] = 0.

The last step follows from Example 5.2. O

Other classes of assertions for separation logic are given in [19] and most of
their algebraic counterparts in [4].

6.3 Precise Assertions

An assertion p is called precise if and only if for all states (s, h), there is at most
one subheap h’ of h for which (s,h’) | p. According to [18], this definition
is equivalent to distributivity of * over A. Hence, using isotony of * we can
algebraically characterise precise assertions as follows.

Definition 6.13 In an arbitrary Boolean quantale S an element r is called
precise iff for all p, q

(rxp)f(r*q) <rx*(prq). (9)
Next we give some closure properties for this assertion class.
Lemma 6.14 If p and q are precise then also p * q is precise.
Proof. For arbitrary r1 and 2 we calculate
prqgxry M pxgxres <pkx(gxry Mgxry) < (p*q) * (r1 MNra)
assuming p and q are precise. a

Lemma 6.15 If p is precise and q < p then q is precise, i.e., precise assertions
are downward closed.

A proof can be found in [6].

Corollary 6.16 For an arbitrary assertion q and precise p, also plq is precise.

7 Conclusion and Outlook

We have presented a treatment towards an algebra of separation logic. For as-
sertions we have introduced a model based on sets of states. By this, separating
implication coincides with a residual and most of the inference rules of [19] are
simple consequences of standard residual laws. For pure, intuitionistic and pre-
cise assertions we have given algebraic axiomatisations.

The next step will be to embed the command language of separation logic
into a relational algebraic structure. A first attempt is given in [5] where we have
defined a relational semantics for the heap-dependent commands and lifted the
set-based semantics of assertions to relations. There, we are able to characterise
the frame rule

{p}c{q}

{fpxricfgxr}>
where p, ¢ and r are arbitrary assertions and c is a command. The rule assumes
that no free variable of r is modified by c¢. However, a complete algebraic proof
of the frame rule is still missing, since we do not yet know how to characterise
the conditions controlling the modification of free variables.

To underpin our approach we have algebraically verified one of the standard
examples — an in-place list reversal algorithm. The details can be found in [4].
The term in-place means that there is no copying of whole structures, i.e., the
reversal is done by simple pointer modifications.

So far we have not analysed situations where data structures share parts
of their cells (cf. Figure 2). First steps towards an algebraic handling of such

@l=is

i
i

y—

HERNE
L L= [[+]

Fig. 2. Two lists with shared cells.

situations are given in [15, 8]. In future work, we will adapt these approaches for
our algebra of separation logic.

Our algebraic approach to separation logic also paves the way to verifying-
properties with off-the-shelf theorem provers. Boolean semirings and quantales
have proved to be reasonably well suitable for automated theorem provers [10].
Hence one of the next plans for future work is to analyse the power of such
systems for reasoning with separation logic. A long-term perspective is to incor-
porate reasoning about concurrent programs with shared linked data structures
along the lines of [16].

Acknowledgements: We are most grateful to the anonymous referees for their
many valuable remarks.

References

1. G. Birkhoff. Lattice Theory, volume XXV of Colloguium Publications. American
Mathematical Society, 3rd edition, 1967.

2. T. Blyth and M. Janowitz. Residuation Theory. Pergamon Press, 1972.

3. J. H. Conway. Regular Algebra and Finite Machines. Chapman & Hall, 1971.

4. H.-H. Dang. Algebraic aspects of separation logic. Technical Report 2009-01,
Institut fiir Informatik,, 2009.

5. H.-H. Dang, P. Hofner, and B. Moller. Towards algebraic separation logic. Tech-
nical Report 2009-12, Institut fiir Informatik, Universitdt Augsburg, 2009.

6. J. Desharnais and B. Moller. Characterizing Determinacy in Kleene Algebras.

Information Sciences, 139:253-273, 2001.

E. Dijkstra. A discipline of programming. Prentice Hall, 1976.

8. T. Ehm. Pointer Kleene algebra. In R. Berghammer, B. Moller, and G. Struth,
editors, Relational and Kleene-Algebraic Methods in Computer Science, volume
3051 of LNCS, pages 99-111. Springer, 2004.

=~

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

P. Hofner and G. Struth. Automated reasoning in Kleene algebra. In F. Pfennig,
editor, Automated Deduction, volume 4603 of LNAI, pages 279-294. Springer, 2007.
E. V. Huntington. Boolean algebra. A correction. Transaction of AMS, 35:557-558,
1933.

E. V. Huntington. New sets of independent postulates for the algebra of logic.
Transaction of AMS, 35:274-304, 1933.

B. Jénsson and A. Tarski. Boolean algebras with operators, Part I. American
Journal of Mathematics, 73, 1951.

B. Moller. Towards pointer algebra. Science of Computer Prog., 21(1):57-90, 1993.
B. Moller. Calculating with acyclic and cyclic lists. Information Sciences, 119(3-
4):135-154, 1999.

P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer
Science, 375:271-307, 2007.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In L. Fribourg, editor, CSL ’01: 15th International Workshop
on Computer Science Logic, volume 2142 of LNCS, pages 1-19. Springer, 2001.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Separation and information hiding.
ACM Trans. Program. Lang. Syst., 31(3):1-50, 20009.

J. C. Reynolds. An introduction to separation logic. Proceedings Marktoberdorf
Summer School 2008 (forthcoming).

K. Rosenthal. Quantales and their applications. Pitman Research Notes in Math-
ematics Series, 234, 1990.

