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Abstract

Hybrid systems are heterogeneous systems characterised by the interaction of dis-
crete and continuous dynamics. We present a trajectory-based algebraic model for
describing hybrid systems; the trajectories used are closely related to streams. The
algebra is based on left quantales and left semirings and provides a new application
for these algebraic structures. We show that hybrid automata, which are probably
the standard tool for describing hybrid systems, can conveniently be embedded into
our algebra. Moreover we point out some important advantages of the algebraic
approach. In particular, we show how to handle Zeno e�ects, which are excluded
by most other authors. The development of the theory is illustrated by a running
example and a larger case study.
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1 Introduction

Hybrid systems are heterogeneous systems characterised by the interaction
of discrete and continuous dynamics and hence a particular kind of reactive
systems. Due to their widespread applications there was a rapid growth of
interest in such systems during the last decade. Hybrid systems are an ef-
fective tool for modelling, design and analysis of a large number of technical
systems such as tra�c controls [46,18,22], automated manufacturing [17] and
much more [45]; but they are also applicable in �elds like chemistry and bio-
logy [37]. The most elementary and classical kind of hybrid system usually
consists of a controlling subsystem, the controller for short, made up of digital
components, e.g., hardware, and a controlled subsystem. The controller has
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discrete behaviour and the controlled subsystem shows continuous behaviour.
In general, the behaviour of the controller depends on its current state and
the behaviour of the controlled system and cannot be considered in isolation.
Often, more complicated hybrid systems arise by composing smaller systems.

Nearly from the beginning of their formalisation, hybrid systems have been
modelled as hybrid automata [23]. These automata have, next to nodes (corre-
sponding to states) and transition edges, variables and di�erential equations.
These additional features reect the behaviour of the environment in each
node. In fact, hybrid automata can be seen as a generalisation of timed au-
tomata [5]. The study of hybrid systems in computer science is still largely
focused on hybrid automata (e.g. [3]). There are only few other approaches
(e.g. [11]; see also Section 7).

On the other hand, over the last few decades, variants of Kleene algebras
have turned out to be fundamental �rst-order structures in computer sci-
ence. They have found widespread applications ranging from program analysis
and semantics (e.g. [21] and its references) to combinatorial optimisation and
concurrency control [14]. They o�er a concise syntax for modelling actions,
programs or state transitions under non-deterministic choice, sequential com-
position and iteration. Since the equational theory of Kleene algebra is that
of regular expressions [16] they are strongly connected to �nite automata. Ad-
ditionally, there exist variants to cover in�nite behaviour as described, e.g.,
with B�uchi automata [12]. Moreover it has recently been shown that Kleene
algebras as well as their variants provide a reasonable base for automated
deduction [30,31].

In this paper we combine the concept of hybrid systems and the concept
of Kleene algebra and propose an Algebra of Hybrid Systems. This algebra,
which provides also a calculus of hybrid systems, allows the characterisation
and description of hybrid systems in an abstract way. In particular, the alge-
bra lifts results from real time analysis to equations about hybrid systems and
provides equational axioms for hybrid systems that enable equational reason-
ing. Moreover, the proposed algebra yields a more general understanding of
hybrid systems. Although the axioms and rules are derived from a model, the
outcome is mostly purely algebraic and can therefore be applied to all other
areas where such algebras occur.

Our concrete algebraic model for hybrid systems uses trajectories as elements,
with discrete trajectories being isomorphic to streams. Each trajectory corre-
sponds to a �nite or in�nite pre�x of one single run of a hybrid automaton.
Therefore it is straightforward to give a faithful mapping from the formalism of
hybrid automata into our setting. Furthermore, unlike most other approaches,
the algebra provides a simple and concise way of modelling Zeno e�ects.



The paper is structured as follows. In Section 2 we motivate our algebra by
a concrete hybrid system that models a temperature control. This example is
used as a running example through the whole paper to illustrate and motivate
the theory. In Section 3 we then develop our concrete algebraic model prepar-
ing the abstraction to the setting of idempotent left semirings. We also show
how Zeno e�ects can be integrated into the algebraic model. In Section 4 we
give a constructive schema to convert hybrid automata into algebraic expres-
sions. Furthermore we present an algebraic de�nition of several composition
operators for hybrid automata and their algebraic counterparts. In Section 5
we discuss safety and liveness properties of hybrid systems. In more detail,
we show how time restrictions and range assertions can be handled by cer-
tain algebraic versions of temporal operators related to ones de�ned by von
Karger [50] and Sintzo� [48]. These operators enjoy many useful and new
properties. To round o� the paper, in Section 6, we apply our algebra of hy-
brid systems to a more complicated example. Section 7 presents a comparison
with related work which is followed by conclusion and outlook in Section 8.

2 Introductory Example and Basic De�nitions

We motivate our formal de�nitions by an introductory example. Moreover, we
recapitulate the standard de�nitions of hybrid automata, transitions, trajec-
tories and runs.

Off

ẋ =−0.1x

x≥18

On

ẋ =5−0.1x

x≤22

x<19

x>21

x =20

Figure 1. Thermostat automaton

Example 2.1 (Temperature Control)
The hybrid automaton of Figure 1, adapted from [23], models a thermostat.
The variable x represents the temperature. Initially, it is equal to 20 degrees
and the heater is o� (control mode O� ). The temperature falls according to
the ow condition _x = �0:1x. If the jump condition x < 19 is reached, the
heater may start. The invariant condition x � 18 ensures that the heater will
start at the latest when the temperature is equal to 18 degrees. In control
mode On, the temperature rises according to the ow condition _x = 5�0:1x.
If the temperature reaches the second jump condition, the heater is switched
o� and the procedure starts again (with the reached temperature as the new
initial value).

In general, a hybrid automaton [4,20,23] consists of the following components.

Variables A �nite setX = fx1; : : : ; xng of real-valued variables. The number



n is called the dimension of H. We write _X for the set f _x1; : : : ; _xng of
dotted variables, which represent the timewise �rst derivatives of the xi
during continuous change. We write X 0 for the set fx01; : : : ; x

0
ng of primed

variables, which represent the values of the xi immediately after a discrete
change.

Control graph A �nite directed multigraph (M;E). The vertices in M are
called (control) modes . The edges in E are called (control) switches .

Invariant and ow conditions The vertex labelling functions inv and ow .
They assign to each control mode v 2 M an invariant inv(v), a predicate
with free variables from X, and a ow condition ow(v), a predicate with
free variables from X [ _X.

Initial condition The vertex labelling function init assigns to at least one
control mode v 2M an initial condition init(v), a predicate with free vari-
ables from X.

Jump conditions An edge labelling function jump. It assigns to each control
switch e 2 E a predicate jump(e) with free variables from X [X 0.

If a control mode does not contain a di�erential equation for the variable xi
then we assume that this variable is constant, i.e., that the mode implicitly
contains the equation _xi = 0. An edge that leads from mode v to mode w
is also called a transition tv;w. The automaton can perform that transition if
the end values X of mode v and the starting values X 0 of mode w satisfy the
predicate jump(tv;w). A transition is called a proper jump if it changes at least
one value x 2 X to a new value x0 2 X 0 with x 6= x0. Note that Example 2.1
admits no proper jumps. In Section 3.3 we will extend this example by a
proper jump.

With each hybrid automaton one can associate traces, runs and trajectories.
Since we will use these concepts to de�ne our algebra of hybrid systems, we
recapitulate them.

A transition trace [51] of a hybrid automaton is a (�nite or in�nite) sequence
of transitions tvk;vk+1 which the hybrid automaton can perform as time passes.
The (mode) trace of a hybrid system corresponding to a transition trace is the
sequence of modes through which the transition trace passes. Last we de�ne
a run or trajectory (cf. e.g. [48]) corresponding to a trace (and a transition
trace) as a function from time to n-tuples of values for all n variables. In the
next section we de�ne trajectories over a generalised time domain in more
detail.

Example 2.2 (thermostat continued) Formally, the hybrid automaton
for the temperature control of Figure 1 is de�ned by the set of variables
X = fxg, the control modes M = fO� ;Ong, the control switches E =
f(O� ;On); (On;O� )g. The invariant function inv(v) assigns x � 18 to mode
O� and x � 22 to On. The ow condition ow(v) is _x = �0:1x inside mode



O� and _x = 5� 0:1x inside On. An initial condition exists only for the mode
O� and sets the value x = 20. Finally the jump conditions are de�ned by
x < 19 for the edge (O� ;On) and x > 21 for (On;O� ).

One possible trajectory is illustrated in Figure 2.
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Figure 2. A single trajectory of the temperature control

3 Trajectory-Based Model

3.1 Basic Algebra of Hybrid Systems

As already mentioned, trajectories reect the variation of the values of the
variables over time. Let V be a set of values and D a set of durations (e.g.
IN; Q�0; IR�0; : : :). We assume a cancellative addition + on D and an element
0 2 D such that (D;+; 0) is a commutative monoid. Furthermore, we assume
that the relation d1 � d2 ,df 9 d : d1 + d = d2 is a linear order on D. Then 0
is the least element and + is isotone w.r.t. �. Moreover, 0 is indivisible, i.e.,
d1 + d2 = 0 , d1 = d2 = 0. D may include the special value 1. If so, 1 is
required to be an annihilator w.r.t. + and hence is the greatest element of D
(and cancellativity of + is restricted to elements in D � f1g). For d 2 D we
de�ne the interval intv d of admissible times as

intv d =df

8><
>:
[0; d] if d 6=1

[0; d[ otherwise

A trajectory � is a pair (d; g), where d 2 D and g : intv d! V . Then d is the
duration of the trajectory and the image of intv d under g is its range ran (d; g).

A special role is played by zero-length trajectories of the form x =df (0; g)
with x 2 V and g(0) =df x; they represent single values of the system.



We de�ne composition of trajectories (d1; g1) and (d2; g2) as

(d1; g1) � (d2; g2) =df

8>>><
>>>:

(d1 + d2; g) if d1 6=1 ^ g1(d1) = g2(0)

(d1; g1) if d1 =1

unde�ned otherwise

with g(t) = g1(t) for all t 2 [0; d1] and g(t+d1) = g2(x) for all t 2 intv d2. This
is well de�ned by cancellativity of + on durations other than 1.

Figure 3 illustrates the main idea for composing trajectories. Sometimes the
condition g1(d1) = g2(0) for composing trajectories is too restrictive. In Sec-
tion 3.3 we present a possibility to relax the condition and allow jumps at the
composition point for the function describing the timewise behaviour.

0 d1

·

0 d2

=

0 d1 + d2

Figure 3. Composition of two �nite trajectories

For a zero-length trajectory v we have v � (d; g) = (d; g) if v = g(0); otherwise
the composition is unde�ned. Likewise, (d; g) �v = (d; g) if v = g(d) or d = 1.

A process is a set of trajectories, consisting of possible behaviours of a hybrid
system. Note that we do not put any restrictions (such as pre�x-closure) on a
process. The set of all processes is denoted by PRO.

The greatest process, namely the set of all trajectories, is denoted by TRA.

For a discrete in�nite set of durations D, e.g. D = IN, trajectories are isomor-
phic to nonempty �nite or in�nite words over the value set V . Moreover if V
consists of values of computations, then the elements of PRO can be viewed
as sets of computation streams (e.g. [13]).

The purely �nite and purely in�nite parts of a process A are de�ned as

inf A =df f(d; g) j (d; g) 2 A; d =1g ; �nA =df A� inf A :

Composition is lifted to processes A;B as follows:

A �B =df inf A [ fa � b j a 2 �nA; b 2 B; a � b de�nedg (1)

The set I of all zero-length trajectories is the neutral element for this opera-
tion. A restricted form of composition, the chop A_B, yields only trajectories
that, after a �nite trajectory of A, actually enter the second process. It is
de�ned as A_B =df (�nA) �B, which implies A �B = (inf A) [ A_B.



Sets of zero-length trajectories, corresponding to sets of values, can be used
to restrict processes. Let R be such a set and A be an arbitrary process. Then
R � A consists of those trajectories of A whose initial value lies in R, while
A �R is the set of trajectories of A whose �nal value, if any, is in R.

Example 3.1 (thermostat continued) To use trajectories for our thermo-
stat example, we �rst set V = D = IR. Now we de�ne two processes, one for
each control mode:

AO� =df f(d; x) j d 2 D; _x = �0:1xg ;

AOn =df f(d; x) j d 2 D; _x = 5� 0:1xg :

AO� models all possible behaviours when the heater is o�, whereas AOn de-
scribes the thermostat when the heater is on. The (singleton) set of possible
initial values is given by R20 =df f20g. Hence, we can formalise the starting
sequence of the thermostat described above as

R20 � A
O� � AOn :

Note that so far we have not modelled jump and invariant conditions. For this
we use sets of zero-length trajectories describing sets of values and restrict the
ranges of trajectories accordingly. Generally, we represent an interval of values
as a set of zero-length trajectories by setting

R[l;u] =df fx jx 2 [l; u]g :

Then the sequence \O� {jump{On" equals AO� �R[18;19] �A
On. This eliminates

from the full composition AO� �AOn all trajectories in which the temperature
at the joining point is outside the interval [18; 19].

Since we want to describe the whole behaviour of the thermostat, we need
the possibility for iteration. Let � and ! be operators for �nite and in�nite
iteration (we will show their existence in Section 3.4). Then the whole system
is described by

R20 � T
� or R20 � T

!

where T =df AO� �R[18;19] � A
On �R[21;22].

In such a way, any hybrid automaton can be replaced by a corresponding
regular-like expression. This is shown in Section 4.1. Before that, we provide in
Section 3.3 a method for modelling proper jumps by introducing an additional
compatibility relation.



3.2 Algebraic Structure

But �rst let us have a closer look at the algebraic structure of the basic algebra
of hybrid systems.

A left semiring is a quintuple (S;+; 0; �; 1) such that (S;+; 0) is a commutative
monoid and (S; �; 1) is a monoid such that � is left-distributive over + and left-
strict , i.e., 0 � a = 0. The left semiring is idempotent if + is idempotent and
� is right-isotone, i.e., a + a = a and b � c ) a � b � a � c, where the natural
order � on S is given by a � b ,df a+ b = b. Left-isotony of � follows from
its left-distributivity. Moreover, 0 is the �-least element. A weak semiring is a
left semiring in which � is also right-distributive. A semiring is a weak semiring
in which composition is also right-strict; when we want to emphasise this, we
also speak of a full semiring.

The natural order induces an upper semilattice in which a+b is the supremum
of a and b and 0 is the least element. A left semiring is Boolean if this semilat-

tice is even a Boolean algebra with complement a and in�mum aub =df a+ b.
In this case we have the shunting rule

a u b � c , a � b+ c : (2)

An idempotent left/weak semiring S is called a left/weak quantale if S is a
complete lattice under the natural order and � is universally disjunctive in its
left argument. Following [16], one might also call a left quantale a left standard
Kleene algebra.

An important Boolean semiring (that is even a weak quantale with universally
right-disjunctive composition) is REL, the algebra of binary relations over a
set under relational composition.

Checking all the axioms for the case of processes, we get

Lemma 3.2

(1) The processes under union as addition and composition as multiplication
form a Boolean weak quantale PRO =df (P(TRA);[; ;; �; I).

(2) Additionally, � is positively disjunctive in its right argument, and chop
inherits the disjunctivity properties from � and is associative, too.



3.3 Adding Proper Jumps

The constraint g1(d1) = g2(0) for composability of trajectories (d1; g1) and
(d2; g2) is very restrictive in a number of situations.

Example 3.3 (thermostat continued) We extend Example 2.1 by an ad-
ditional switch sw that activates or deactivates the whole temperature control.
Therefore this example contains proper jumps (in the behaviour of the switch)
as well as \non-proper" jumps (in the change of temperature). The values
sw = 1 and sw = 0 represent the situations where the control is activated and
deactivated, respectively. The whole system is illustrated in Figure 4.
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Figure 4. Extended thermostat automaton

The system can always be deactivated by setting the switch to 0 (independent
of the current temperature). When reactivating the system there is a choice
between the modes O� and On. It is a genuine non-deterministic choice if the
temperature is between 19 and 21 degrees. Remember that all modes implicitly
contain the equation _sw = 0.

To relax the composition of trajectories we introduce a compatibility relation
� � V �V that describes the behaviour at the point of composition. It allows
certain proper jumps at the connection point between two trajectories (d1; g1)
and (d2; g2). This is meaningful, since jumps within trajectories are already
allowed by our de�nition. Note that we do not postulate any condition for �.
But in most cases � will be at least reexive to accommodate the case of equal
values g1(d1) and g2(0). If one wants to enforce jumps at every composition
point, � has to be irreexive (like in our example).

To model a more liberal form of composition that takes � into account, we
extend a �nite trajectory (d; g) at the right end, i.e., at time d, using the
compatibility relation. To this end we express that, up to �, we do not care
about the exact �nal value g(d). Therefore we inate the original trajectory
to a process that before time d agrees with the original trajectory, but shows



all values admitted by � at time d:

(d; g)� =df f(d; ĝ) j ĝ(x) = g(x); x 2 [0; d[; g(d) � ĝ(d)g :

Since for an in�nite trajectory (d; g) a right composition partner does not
matter anyway, we set (d; g)� =df f(d; g)g if d =1.

The composition of (d1; g1) and (d2; g2) considering the compatibility relation
� is then the composition

(d1; g1)� � f(d2; g2)g

over PRO. The extension operation is lifted pointwise to processes. We have
decided not to incorporate the compatibility relation into the de�nition of
trajectory composition, since it would be technically cumbersome to do so.

Symmetrically, we can also employ the compatibility relation at the left end
or even at both ends of a trajectory.

Example 3.4 (thermostat continued) In our example the set V of val-
ues is given by IR�f0; 1g, where the �rst component of a pair represents the
temperature and the second one the value of the switch. We de�ne the com-
patibility relation as

� =df f((x; 0); (x; 1)) jx 2 IRg [ f((x; 1); (x; 0)) jx 2 IRg :

The set of trajectories that start in the mode O� and then go to Inactive is
described by

AO�
� � AIn ;

where AO� and AIn describe the behaviours inside the modes O� and Inactive.
In particular, AO� =df f(d; g) j d 2 D; g(t) = (x(t); 1); _x = �0:1xg and AIn

can be constructed in a similar way.

3.4 Finite and In�nite Iteration

Now we turn to an algebraic characterisation of iteration. A left Kleene alge-
bra [42] is a structure (S; �) consisting of an idempotent semiring S and an
operation � for iterating an element an arbitrary but �nite number of times.
Such an operation has to satisfy the left unfold and induction axioms

1 + a � a� � a� ; b+ a � c � c) a� � b � c : (3)



To express in�nite iteration we axiomatise an ! operator over a left Kleene
algebra. A left ! algebra [15,42] is a pair (S; !) such that S is a left Kleene
algebra and ! satis�es the unfold and coinduction axioms

a! = a � a! ; c � a � c+ b) c � a! + a� � b : (4)

Two consequences of these axioms are that each omega algebra has the greatest
element > =df 1! and that a! = a! � > (see [42]).

Concerning the existence of these operations we can use the fact that PRO is a
left quantale, hence, in particular, a complete lattice, and the Knaster/Tarski
�xpoint theorem (e.g. [19]). We denote by �x : f(x) and �x : f(x) the least and
greatest �xpoints of an isotone function f from a complete lattice to itself.

Lemma 3.5

(1) Every left quantale can be extended to a left Kleene algebra by de�ning
a� =df �x : a � x+ 1.

(2) If the left quantale is weak and a completely distributive lattice then it
can be extended to a left ! algebra by setting a! =df �x : a � x. In this
case,

�x : a � x+ b = a! + a� � b :

For the proof see the Appendix.

Since, by Lemma 3.2, PRO forms a weak quantale, we have �nite iteration �

and in�nite iteration ! with all their laws available for processes.

3.5 Purely Finite and Purely In�nite Elements

In Section 3.1 we already introduced the purely �nite and purely in�nite parts
of a process. A general algebraic treatment of these notions can be performed
using their behaviour under composition. De�nition (1) entails, for process
A 2 PRO, that A � ; = inf A. Hence a process is purely in�nite, i.e., consists
of in�nite trajectories only, if A = inf A = A � ;. Dually, a process B is purely
�nite, i.e., consists of �nite trajectories only, if its purely in�nite part is trivial,
that is, if inf B = ;.

Hence, for an idempotent left semiring S, we de�ne the purely in�nite part of
a 2 S as inf a =df a � 0 and call a purely in�nite if a � 0 = a. This property
is equivalent to a being a left zero, i.e., to 8 b : a � b = a. Often there exists
a largest purely in�nite element N characterised by a � N , a � 0 = a. In
PRO, N = f(d; g) : d =1g is the set of all trajectories of in�nite length. The



de�nition of N implies, for all a,

N � a � N and a � N � N : (5)

Dually, we call an element a purely �nite if inf a = a � 0 = 0, i.e., if its purely
in�nite part is trivial. In many semirings there exists a largest purely �nite
element F characterised by a � F , a �0 = 0. In PRO, F = f(d; g) : d <1g
contains all trajectories of �nite length. The de�nition of F implies

F � F = F : (6)

In Boolean left quantales N and F always exist and satisfy

N = > � 0 ; F = N ;

where > =df 0 denotes the greatest element. Moreover, in this case every
element can be split into its purely �nite and purely in�nite parts: a = �n a+
inf a, where �n a = a u F and inf a = a u N. An idempotent left semiring
with this property is called separated ; for further details see [42]. The above
equations imply

(inf a) u b = inf (a u b) ; (�n a) u b = �n (a u b) : (7)

The purely �nite and purely in�nite parts of a composition satisfy

a � b = inf a+ �n a � b ; (8)

inf (a � b) = inf a+ �n a � inf b ; (9)

�n (a � b) = �n (�n a � b) � �n a � �n b : (10)

If S is weak, the latter inequation strengthens to an equality.

We now state further general laws concerning purely �nite and purely in�nite
parts.

Lemma 3.6 Let S be a Boolean left quantale and a; b; c; d 2 S.

(1) a � F , a = �n a , inf a = 0 and
a � N , a = inf a , �n a = 0.

(2) For a; b � F and c; d � N we have a+ c � b+ d , a � b ^ c � d.
(3) a! = (�n a)� � inf a+ (�n a)!,
(4) inf a! = (�n a)� � inf a+ inf ((�n a)!),
(5) �n a! = (�n a)! u F � (�n a)!.

The proof is given in the Appendix.



Part (1) gives equivalent characterisations of purely �nite and purely in�nite
elements which are calculationally useful in various circumstances. Part (2)
means that a sum of a purely �nite and a purely in�nite element can uniquely
be decomposed again. If a is a process, Part (3) says that in�nite iteration of
trajectories from a can take two forms: it may proceed a while with �nite tra-
jectories, but then add an in�nite trajectory which prohibits further iteration
| or it keeps iterating �nite trajectories forever.

Parts (4) and (5) follow from that using Part (2). Part (5) �ts well with
intuition, since in PRO it means that Zeno e�ects (in�nite iterations that take
�nite duration) can only occur when some trajectories in a process a are �nite.
Part (4) says that in�nite behaviour results from entering an in�nite part after
a �nite iteration of �nite parts of the iterated process or by iterating �nite
parts of that process that all have long enough durations that their in�nite
iteration takes in�nite duration. In the next section we will look at Zeno e�ects
in detail.

3.6 Zeno E�ects

Zeno of Elea's famous paradox of the Achilles and the tortoise is well known.
However, with few exceptions (e.g. [7,34]) authors do not treat Zeno e�ects
within hybrid systems in detail, even if they appear in their theoretical models.
In this section we present a possible way of handling Zeno e�ects in PRO and
characterise the Zeno and Zeno-free parts of hybrid systems.

Roughly spoken, a Zeno e�ect occurs if an in�nite iteration does not take
in�nite duration.

To speak about such phenomena we can use the purely �nite and purely
in�nite parts of processes de�ned in Section 3.5. Furthermore, it is useful to
determine A! for a process A 2 PRO.

For a purely in�nite process A it is easy to see that A! = A. For an arbitrary
process in�nite iteration can be determined by the general decomposition law
a! = (�n a)� � inf a + (�n a)! (see Lemma 3.6(3)). Therefore it su�ces to de-
termine A! for purely �nite processes A.

We de�ne the pre�x relation v between trajectories �1 = (d1; g1) and �2 =
(d2; g2) by

�1 v �2 ,df d1 � d2 ^ g2jintv d1 = g1 :

The �rst conjunct on the right hand side is equivalent to intv d1 � intv d2; the
stroke jX means function restriction to subset X. It is easy to see that v is
a partial order with �1 v �2 , 9 �3 : �1 � �3 = �2. Moreover, if �1 v �2 then
�3 � �1 v �3 � �2. In�nite trajectories are maximal w.r.t. this order.



To describe in�nite concatenations of trajectories from a purely �nite process
A, let ISEQ(A) be the set of in�nite sequences T = (�n)n2IN of trajectories �n 2
A such that all iterated compositions �n =df

Q
m<n �m(n 2 IN) are de�ned.

By the above remarks these satisfy �n v �n+1 and hence form an ascending
chain w.r.t. v , a set of longer and longer trajectories that agree in their initial
parts. In�nite iteration then results by passing to some sort of limit for such
a chain. We reect this idea by writing

Q
T v � , for arbitrary trajectory

� 2 TRA and sequence T 2 ISEQ(A), if for all n 2 IN we have �n v � with
�n de�ned as above. This means that � has the \in�nite composition" of the
�n as a pre�x.

Theorem 3.7 Let A be a purely �nite process and de�ne the function H :
PRO ! PRO by H(X) =df A �X.

(1) Let X be expanded by H, i.e., assume X � H(X). Then for every � 2 X
there is sequence T 2 ISEQ(A) with

Q
T v �.

(2) A! = f� 2 TRA j 9T 2 ISEQ(A) :
Q
T v �g.

The proof can be found in the Appendix.

The fact that A! contains arbitrary extensions of in�nite A-iterations also
explains why the property A! = A! � > (see Section 3.4) is not completely
unnatural: for arbitrary B 2 PRO the process B � > is the extension closure
of B. Hence A! = A! �> reects the fact that, operationally, after a Zeno gap
the behaviour doesn't matter, since the gap cannot be \crossed" anyway.

Now, generalising from PRO to a weak omega algebra S, we call an element
a 2 S divergent or Zeno-free, if a! � N. An element a is called Zeno if it is
not Zeno-free and it is called convergent if a! � F. The least element 0 is the
only element which is convergent, divergent and Zeno-free, since 0! = 0. It is
straightforward to see that in full semirings (where 0 is also a right annihilator)
every element is convergent.

However, A! is not completely adequate for reasoning about and exclusion
of Zeno e�ects. For many purposes its extension-closedness gets in the way,
since it yields a too loose description of in�nite iteration. For that reason we
introduce another iteration operator y which narrows down the set of possible
behaviours. However, in contrast to !, its de�nition works only for special
time domains.

Let again A be purely �nite and assume that the time domain D is complete,
i.e., contains suprema for all its subsets. For a sequence T 2 ISEQ(A) with
iterated compositions �n = (dn; gn) as above set dT =df supfdn jn 2 INg.

By a construction similar to the one used in Section 3.3 for the treatment of



proper jumps, we de�ne the process PT by

(dT; g) 2 PT ,df g : intv dT ! V;

g(t) = gn(t) if t � dn;

g(dT) 2 V arbitrary if dT > dn for all n 2 IN and dT 6=1.

For dT = 1 the iteration does not show a Zeno e�ect and PT is a singleton
process consisting just of one in�nite trajectory. For dT 6=1, two cases arise.
First, we may have dT = maxfdn jn 2 INg. This can only happen when the
sequence T becomes stationary with in�nitely many trajectories of length
zero and identical value v at the end (if there were di�ering ones not all
iterated compositions �n would be de�ned). This means a special kind of
Zeno behaviour, viz. \stepping on the spot" forever. Therefore in this case the
value g(dT) agrees with v and PT is again a singleton process. This entails the
property

Iy = I (11)

for the multiplicative identity I of PRO, whereas I! = > = TRA, so that
the operator y indeed omits trailing behaviour. The second case, where d� 6=
maxfdn jn 2 INg, i.e., dT > dn for all n 2 IN, means \proper" Zeno behaviour
where the trajectories in T become shorter and shorter while their iterated
compositions become longer and longer without ever reaching the \limit time"
dT. To form proper trajectories out of the iterated compositions we add ar-
bitrary values at dT but nothing at times properly later than dT. Now we
set

Ay =df

[
T2ISEQ(A)

PT:

With this construct, Zeno e�ects can be excluded by considering only the
properly in�nite trajectories in inf Ay = Ay u N. This could not be achieved
reasonably with A!, since that includes trajectories which are in�nite because
they add an arbitrary in�nite behaviour to a Zeno initial part. This is made
precise by Part (1) of the following result.

Theorem 3.8 Let H be as in Theorem 3.7.

(1) Ay is a �xpoint of H.
(2) Let X be expanded by H, i.e., assume X � H(X). Then for every � 2 X

has a pre�x in Ay.
(3) A! = Ay � >.

Again, the proof can be found in the Appendix.

An immediate consequence of Part (3) and Equation (10) is that Ay and A!

coincide i� A is Zeno-free.



Example 3.9 (thermostat continued) We can now describe all non-Zeno
behaviours as

R20 � T
y u N ;

where T equals again AO� �R[18;19] � A
On �R[21;22].

Example 3.10 To give another example, we de�ne a scaling function scn :
TRA ! TRA with scn(d; f) =df ( d

n
; g), where n 2 IN and g(x) = f(x � n).

Then, given a trajectory T1 = (d1; f1) with f1(0) = f1(d), we de�ne a process

P = fscn(T1) jn 2 INg :

It is easy to see, that P ! and P y contain an in�nite number of �nite trajec-
tories as well as an in�nite number of in�nite trajectories. Therefore, P is
neither convergent nor divergent, but Zeno. P y u F (the Zeno-part of P y is
closely related to the paradox of Achilles and the tortoise, because P contains
trajectories with arbitrarily short durations).

4 Embedding Hybrid Automata

4.1 The Basic Construction

We now show, in a generic way, how to model hybrid automata (see Section 2)
using these concepts. Consider a hybrid automaton of dimension n with control
graph (M;E). Then as value set we choose V =df M � IRn.

In a given mode v 2 M the behaviour of the automaton in the interval [0; d]
coincides with a trajectory (d; g) such that g(t) = (v; f(t)) for some function
f : [0; d] ! IRn that satis�es the invariant and ow conditions of v. This

corresponds to Henzinger's relation (v; f(0))
d
! (v; f(d)) [23].

The compatibility relation is given by

(v; x) � (w; y) , (v = w ^ x = y) _ ((v; w) 2 E ^ jump(v; w)(x; y)) ;

where the �rst part (v = w ^ x = y) deals with compositions that do not
leave a control mode and the second part models the event belonging to the
edge (v; w) (if the edge is present).

The generic construction of an algebraic expression from a given automaton
now proceeds by the following steps:



� For each control mode v of the automaton we de�ne a process

P v =df f(d; g) j d 2 D; 8 t 2 intv d : g(t) = (v; f(t));

f : intv d ! IRn;8 t 2 intv d : ow(v)(f(t); _f(t));

8x 2 ran f : inv(v)(x)g :

� For each P v determine P v
� with � as above.

� In [35] Kleene has shown how to construct a regular expression from a
given automaton. Similarly, this construction can be carried out with hybrid
automata using the above processes P v

�. While in the original construction
the star for �nite iteration is used, here one has to decide, whenever iteration
occurs, whether it should be �nite or in�nite iteration (� or !).

� Note, that hybrid automata can include Zeno e�ects. Therefore such e�ects
might also occur in the corresponding algebraic expressions. To avoid such
behaviour one can replace ! by y and apply a meet operation with the set
of all in�nite trajectories at the outermost level as in Example 3.9.

Often, it is not necessary to store the control mode in the value set, i.e., V can
be chosen as IRn instead ofM�IRn. Examples of this are given in Example 3.4
and Section 6.

4.2 Composition of Hybrid Automata

More complicated hybrid systems arise often by composing smaller systems.
The product of two �nite automata as well as the parallel composition are
well known. Similar to these constructions Henzinger de�nes a product and a
parallel composition for hybrid automata [23]. In this section we discuss their
algebraic counterparts.

Product. Following Section 4.1 and the de�nition of product of hybrid au-
tomata [23] we de�ne for two hybrid automata A1; A2 (with disjoint sets of
modes M1 and M2) the following edge labelling functions (for jumps and
events)

(v1; v2)
a
! (w1; w2) ,df 9 a1 2 A1; a2 2 A2 : v1

a1! w1; v2
a2! w2 :

To translate this behaviour to our algebraic model we just look at the product
semiring.

For two (left) semirings (A;+A; 0A; �A; 1A) and (B;+B; 0B; �B; 1B) the product
(semiring) is de�ned as

(A�B;+�; 0A � 0B; ��; 1A � 1B) ;



where +� and �� are componentwise operators. By standard results from uni-
versal algebra the product structure indeed forms a (left) semiring again. Fur-
thermore the construction is equivalent to the product construction for hybrid
automata.

Parallel Composition. Parallel composition of hybrid systems can also
be used for specifying larger systems. An algebraic expression or a hybrid
automaton is given for each part of the system. Communication between the
components may occur via shared variables and synchronisation labels. At
�rst glance, the parallel composition seems to be more complicated than the
product. But as we will see, it is easily handled in the algebraic model. It again
uses a Cartesian product, like the product semiring (only in a di�erent place).
We consider again Henzinger's de�nition that only looks at synchronisation
at transition points.

Two hybrid automataH1 andH2 with the same setD of durations are assumed
to interact via common events.

First we look at \unsynchronised" parallel runs of hybrid systems. For trajec-
tories �1 = (d1; g1) and �2 = (d2; g2) with d1; d2 2 D we �rst de�ne �1jj�2 for
some special cases:

�1jj�2 =

8>>>>><
>>>>>:

(d1; g1Og2) if d1 = d2

(d2; constd2(g1)Og2) if d1 = 0

(d1; g1Oconstd1(g2)) if d2 = 0 ;

where (fOg)(x) = (f(x); g(x)) and constd(f)(x) = f(0) is the constant
function on [0; d]. We see that in the case of two semirings of processes with
the same set of durations the parallel-composed trajectories form again tra-
jectories. Viz., if the �rst process contains only trajectories �1 with functions
g1 : intvD ! V and for all trajectories �2 of the second process we have
g2 : intvD ! V 0, then the parallelised process semiring contains trajectories
with functions of type intvD ! V �V 0. The cross product avoids the problem
of shared variables by duplicating them. Below we show how to synchronise
two systems at transition points.

Often the above de�nition is su�cient. But, sometimes one also has to consider
the cases 0 < d1 < d2 or 0 < d2 < d1. For those cases there are some choices
and decisions to be made. For example: should the trajectories start at a
common time point? Should they end after the same duration?

If d1 < d2, then, by de�nition of the order on D, there exists d3 2 D with
d1+d3 = d3+d1 = d2. Therefore the trajectory �1 = (d1; g1) can be lengthened



to duration d2 using constant trajectories as

�1 � (d3; g3) or (d3; g
0
3) � �1 ;

where g3(x) = g1(d1) and g03(x) = g1(0). Using the �rst of these products in
the parallel composition (�1 � (d3; g3))jj�2 means that the trajectories �1 and �2
start at a common time point, whereas ((d3; g

0
3) � �1)jj�2 enforces that �1 and

�2 end together. Again this operation can be lifted to processes.

Next, we want to synchronise H1 and H2 via reachable events, i.e., events that
have to occur after a �nite duration. If a is a common event of H1 and H2,
then H1 and H2 must synchronise on a-transitions after a �nite duration; if a
is an event of H1 but not of H2 then during the transition of H1 the state of
H2 has to be kept constant and vice versa.

Following Section 3.3, transitions (and thus events) can be modelled by a
compatibility relation � and zero-length trajectories. Let X be the set of
shared variables to be synchronised. Then post-multiplying with the process

f(0; g1Og2) j g1jX = g2jXg ;

where jX restricts the domains to X, enforces synchronisation.

Synchronisation of in�nite trajectories can only be done after a �nite initial
duration. In the case of hybrid automata the set of durations is IR. Hence
each in�nite trajectory � contains pre�xes of arbitrary length, i.e., for all
trajectories � and for all d 2 IR it holds that

9 �1; �2 : � = �1 � �2 ;

where the duration of �1 is d. Therefore, one can use the synchronisation
for �nite trajectories also for in�nite ones. Synchronisation after an in�nite
amount of time does not make sense.

An example for composing hybrid systems is given in Section 6.

5 Safety and Liveness

5.1 Modularity and Progress in Time

In Section 3.6 we restricted processes to their Zeno-free parts. Now, we want
to deal with the general case that a process is restricted by an additional
condition. Abstractly, let a stand for the process and c for the condition; then
we want to form the meet auc. If a is a composite process we want to distribute



the condition to its components if possible. If a is a sum this is easy. However,
if a is a product, we need special conditions for c to do this.

We call an element c submodular if 8 a; b 2 S : c u (a � b) � (c u a) � (c u b)
and modular if in that formula always = holds instead of just �. We obtain
useful characterisations of these properties. Note that by Equation (10) in a
weak semiring the element F is modular.

The following lemma summarises elementary properties for submodular ele-
ments. They will be used in the remainder to prove useful statements concern-
ing processes.

Lemma 5.1 Assume a Boolean weak quantale S.

(1) The following properties are equivalent.
(a) Element c 2 S is submodular.
(b) (c u F) � c+ c � > � c.
(c) F � c � > � c
In particular, 1 is submodular i� 1 � 1 � 1.

(2) Element c 2 S is modular i� it is submodular and transitive, i.e., satis�es
c � c � c. In particular, 1 is modular i� 1 � 1 � 1.

(3) If c is modular then for all a we have c u a+ = (c u a)+ and c u a� =
(c u a)+ + (c u 1), with b+ =df b � b�.

(4) If c is modular then d � c is submodular i� (c u F) � (c u d) � c � c u d.

The proof is given in the Appendix.

By the shunting rule (2) the property 1 � 1 � 1 is equivalent to 1 � 1 � 1.

The element 1 � 1 has been called step in von Karger's work [50]; it represents
the elements that cannot be decomposed into non-subidentities. Since we can
think of the identity element 1 as a process that does not proceed in time,
this property says that progress in time cannot be undone by composition.
Therefore we call a Boolean semiring with the property 1 � 1 � 1 progressive.

5.2 Time Requirements

Often, it is useful to restrict the duration; for example to guarantee that an
event happens after a certain time.

One way of asserting this is already given by the chop operator. Every trajec-
tory in A_B guarantees that, unless Zeno e�ects occur, a su�x in process B
is actually reached. To guarantee that B is reached after a certain time d one
has to restrict A in a di�erent way.



Example 5.2 (thermostat continued) Returning to Example 3.3 we now
want to guarantee that the heater is inactive for at most 30 time steps. There-
fore we have to restrict AIn by the process A =df f(d; g) j d � 30; (d; g) 2
TRAg, i.e., we have to calculate AIn u A. This process is the same as

f(d; g) j d � 30; (d; g) 2 AIng :

Note that A is not submodular.

This gives a straightforward way to model time assertions.

5.3 Range Assertions and Tests

Next to that, it may also be necessary to restrict the range of a process A.
Here, the range ranA is de�ned as ranA =df

S
t2A ran t.

Example 5.3 (thermostat continued) Extending Example 2.1 we want to
de�ne a process containing all trajectories that never leave the range [18; 22].

We do this by observing that every subset W of the value set V is isomorphic
to the process PW =df fx jx 2 Wg.

With > = TRA and F = �n (TRA) we de�ne

3PW =df F � PW � > ; �PW =df 3:PW :

Hence,3PW is the set of all trajectories that at some (�nite) point in their time
interval have a value inW , while �PW describes a safety aspect, viz. the set of
all trajectories whose range satis�es the \invariant" W , i.e., �PW = f� j � 2
TRA; ran � � Wg. Thus, the requested safety condition for the thermostat
can be modelled as �R[18;22]. Dually, 3PW can be used to describe certain
liveness aspects.

Looking again at the safety requirement of the thermostat we see that by the
condition AO� � AOn � �R[18;22] we indeed restrict the range of AO� � AOn as
claimed in the beginning of this section. Using the meet

AO� � AOn u �R[18;22] (th-rest)

is another way to enforce the restriction.

For an algebraic characterisation of processes like PW we use the idea of tests
as introduced into semirings by [39] and into Kleene algebras by Kozen [36].
One de�nes a test in an idempotent left semiring (quantale) to be an element
p � 1 that has a complement q relative to 1, i.e., p+q = 1 and p �q = 0 = q �p.



The set of all tests of S is denoted by test(S). It is not hard to show that
the complement :p of a test p is uniquely determined by the de�nition and
that in a weak semiring test(S) is closed under + and � and forms a Boolean
algebra with 0 and 1 as its least and greatest elements. (To establish this in
general left semirings one has to add the assumption p � (q + r) = p � q + p � r
of right-distributivity of tests among each other.) In particular, we have the
shunting rule for tests p; q; r:

p � q � r , p � :q + r : (12)

Moreover, all tests are purely �nite. If S itself is Boolean, then test(S) coincides
with the set of all elements below 1.

With the above de�nition of tests we deviate slightly from [36], where an
arbitrary Boolean algebra of subidentities is allowed as test(S). The reason
is that, as shown in Theorem 4.15 of [21], the axiomatisation of domain to
be presented below forces every complemented subidentity to be in test(S)
anyway.

We will consistently write a; b; : : : for arbitrary semiring elements and p; q; : : :
for tests.

An important property of left semirings is distribution of test multiplication
over meet [42]: if the meet a u b exists then so do the meets p � a u b and
p � a u p � b and satisfy

p � (a u b) = p � a u b = p � a u p � b : (13)

If S is right-distributive, also the symmetric properties hold.

Furthermore, if S is Boolean, we have the relationships

p � a = :p � a+ a ; in particular, p = :p+ 1 ; (14)

and the symmetric ones if S is right-distributive.

Lemma 5.4 Consider the Boolean weak quantale PRO.

(1) test(PRO) = P(fx jx 2 V g).
(2) For P 2 test(PRO) we have P y = P and consequently P ! = P � >.
(3) Since 0 is indivisible in PRO, the meet with a test distributes over com-

position, i.e., all tests in PRO are modular:

P 2 test(PRO) ) P \ A �B = (P \ A) � (P \B) :

We have already used the tests of PRO for modelling restrictions and jump
conditions in Section 3.1. Part (2) generalises to the law p! = p�> for arbitrary



tests p in an ! algebra. Finally, it turns out that, even for arbitrary semirings,
Part (3) is equivalent to the progressivity condition introduced at the end of
Section 5.1:

Lemma 5.5 All tests of a semiring S are modular i� S is progressive.

Proof. ()) follows by Lemma 5.1(1), since 1 is a test.
(() Given test p � 1, by Lemma 5.1(2) the elements c = 1 and d = p satisfy
the assumptions in Lemma 5.1(4). Moreover, all tests are transitive.

Using the concept of tests we now generalise the operators 3 and 2 to an
arbitrary Boolean left semiring S. Following Section 3.6 the greatest element
>, the greatest purely �nite element F and the greatest purely in�nite element
N exist.

Let now, for p 2 test(S),

3p =df F � p � >; �p =df 3:p:

Thus, �p corresponds to the \always p" operator of von Karger [50], whence
the notation. Since 3 and � do not yield tests as their results, they cannot be
nested. This does no harm, since nested safety requirements do not seem to be
useful anyway. All other algebraic operations, like addition and multiplication,
are available for box and diamond. Our goal is now to derive a number of useful
algebraic laws for these operators. First,

30 = 0 = �0 ; 31 = > = �1 : (15)

Another immediate consequence of the de�nitions is

Lemma 5.6 For Boolean left semiring S and p 2 test(S) the element �p is
submodular.

Proof. By the de�nition of box we have F��p�> = F�F�:p�>�> = F�:p�> = �p
and the claim follows from Lemma 5.1(1).

The box operator shows useful and natural behaviour in the case of progres-
siveness.

Lemma 5.7 Let p; q 2 test(S) in a progressive Boolean weak semiring S.

(1) p � �q , p � q.
(2) p � �p.

By Lemmas 5.4(3) and 3.2(1) PRO is progressive and Properties (1) and (2)
hold. In REL, however, subidentities can be decomposed into non-subidentities



(unless the underlying base set is a singleton); so these properties do not hold
there.

For the following proofs and properties we introduce shorthands for the purely
�nite and purely in�nite parts of boxes:

�F p =df �n (�p) = F u�p ; �N p =df inf (�p) = N u�p : (16)

Now we can show

Lemma 5.8 Assume a Boolean left semiring S and p 2 test(S). �p = p �
(�p). If S is weak then also �F p = p � �F p as well as �p = (�p) � p and
�F p = �F p � p.

Some of the following properties are satis�ed only in a special kind of left
semirings. Since elements of the form �p correspond to safety properties, we
call a left semiring (quantale) S safety-closed if (�p) � (�p) � �p.

Since in a safety-closed left Kleene algebra �p is transitive, it coincides with
its own transitive closure, i.e., (�p)+ = �p. Hence

a � �p , a+ � �p : (17)

Safety-closedness implies, next to other useful properties, that a composition
satis�es a liveness assertion if that is satis�ed in its �rst component or in the
second component after some �nite run of the �rst component.

Lemma 5.9 Assume a Boolean weak semiring S that is safety-closed.

(1) All boxes are modular.
(2) All boxes are multiplicatively idempotent, i.e., (�p) � (�p) = �p.
(3) �p u a+ = (�p u a)+ and �p u a� = (�p u a)+ + (�p u 1).
(4) 3p u a � b = (3p u a) � b+ a_(3p u b).

The dual of Part (4), namely that a composition satis�es a safety assertion
i� its two components satisfy it (�p u a � b = (�p u a) � (�p u b)) follows
immediately since boxes are modular (Part (1)).

Example 5.10 Returning to requirement (th-rest), we can transform the
safety requirement R20 � (A

O� �AOn)+ u�R[18;22] into R20 � ((A
O� u�R[18;22]) �

(AOn u�R[18;22]))
+ by (17) and Lemma 5.9(1). Hence, it su�ces to guarantee

the safety requirement for the two component processes AO� and AOn.

Using general theory, we can now also give an algebraic de�nition of the range
operator introduced for PRO in Section 3.1. As a preparation we state the



following.

Lemma 5.11 Assume a left quantale in which � is also positively right-dis-
tributive. Then 3 is universally disjunctive and � is universally conjunctive.
In particular, both operators are isotone.

Proof. The property for � follows by de Morgan's laws from the one for 3, so
we only show that. For nonempty set L � P we get

3(
G

L) = F � (
G

L) � > =
G

(F � L) � > =
G

(F � L � >)

by positive right-disjunctivity and left-disjunctivity of �. Moreover, we have

3(
G
;) = F � 0 � > = F � 0 = 0 =

G
3;

by left-strictness of � and F � 0 = 0.

Therefore we can de�ne a general operator ran : S ! test(S) by the Galois
connection

ran a � p ,df a � �p : (18)

By (18), ran is universally disjunctive. Moreover, we obtain

a � �(ran a) ; ran (�p) � p ; p � �p ) ran p � p : (19)

The range operator relates to the others as follows.

Lemma 5.12 If S is positively right-disjunctive then ran p = p.

Proof. By the third property of (19) it remains to show p � ran p. Using the
Galois connection (18) and Part (1), for arbitrary test q, we have

ran p � q , p � �q , p � q :

Now setting q = ran p yields the claim.

5.4 A Su�cient Criterion for Safety-Closedness

For the technical developments of this section we need additional operators.
In any left quantale, the left residual a=b exists and is characterised by the
Galois connection

x � a=b ,df x � b � a :

In PRO, this operation is characterised pointwise by � 2 V=U , 8� 2 U :
� �� 2 V (provided � �� is de�ned). Based on the left residual, in a left Boolean



quantale the right detachment abb can be de�ned as

abb =df a=b :

The pointwise characterisation in PRO reads � 2 V bU , 9 � 2 U : � �� 2 V .
Informally, this means that V bU consists of trajectories which result from
detaching a U -trajectory at the right from some V -trajectory. By de Morgan's
laws, the Galois connection for = transforms into the exchange law abb � x ,
x � b � a for b that generalises the Schr�oder rule of relational calculus.

Two straightforward consequences are

(�p)ba � �p and �F pba � �F p : (box detachment)

Intuitively, this means that in PRO any pre�x of a trajectory that satis�es
a safety assertion again satis�es the assertion. Moreover, b is isotone in both
arguments and satis�es ab1 = a.

A left Boolean quantale is said to be locally linear [50] if it satis�es

(a � b)bc = a � (bbc) + ab(cbb) :

The law describes the case analysis that appears when c is cut o� a �b from the
right. We distinguish two cases | c is a post�x of b or b is a post�x of c. We
illustrate this behaviour in Figure 5, where the elements a; b; c are singleton
processes of which only the time intervals are shown.
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Figure 5. Local linearity

Local linearity of PRO can be proved as in the case of the semiring of formal
languages, as done in [26]. Hence, by the following lemma, PRO is safety-
closed.

Lemma 5.13 f S is a Boolean weak and locally linear quantale then S is
safety-closed.

The proof is given in the Appendix.

Sometimes one has safety properties of the form that �rst a predicate p has
to be satis�ed and afterwards another predicate q has to hold. The following
laws are useful for checking whether a composition of processes satis�es such
a condition.

Lemma 5.14 Assume a Boolean weak and locally linear quantale S. Then for
all a; b 2 S and p; q 2 test(S) the following properties hold.



(1) a � b u �F p ��q = (a u �F p) � (b u�q) + (a u �F p) � (b u �F p ��q) +

(a u �F p ��q) � (b u�q) :

(2) a � b u �N p = (a u �N p) + (a u �F p) � (b u �N p) = (a u �p) � (b u �N p).

(3) a � b u �p ��q = (a u�p) � (b u�q) + (a u�p) � (b u �p ��q) +

(a u �p ��q) � (b u�q) :

(4) If additionally p � �p holds, the summand (a u �F p) � (b u �q) can be
omitted from the right hand sides of Parts (1) and (3).

The lengthy proof can be found in the Appendix of [29]. For single, �nite
trajectories Part (1) is illustrated in Figure 6. Here, the change between prop-
erties p and q can occur either exactly at the composition point of a and b,
inside a or inside b. That is why the formula on the right hand side of Part (1)
consists of three summands.

p

q

V

p

q

V

p

q

V

Figure 6. Composed trajectories satisfying �F p ��q

An application of Lemma 5.14(1) is to combine safety requirements of the
shape R[l;u]. Since �F p � �q = �p_�q, a safety requirement of this form
guarantees that the process �q is actually entered.

We conclude by yet another equivalent characterisation of time progress.

Lemma 5.15 Assume a Boolean weak quantale S. Then S is progressive i�

8 a 2 S : 8 p 2 test(S) : pba = a u p :

See again the Appendix for a proof.



5.5 Temporal Operators

Speci�cations are particular processes that express desired patterns. Following
Sintzo� [48], we de�ne quanti�er-like operators relating a speci�cation W to a
purported implementing process B. If one considers the values in V as states
then the set ft(0) : t 2 B \Wg gives all starting values of the trajectories in
B admitted by W as well. However, it is more convenient to represent this set
as a test in the left semiring of processes, viz. as

ft(0) j t 2 B \Wg : (20)

To model this, we introduce into our algebra an abstract domain operator that
assigns to a set of computations the test that describes precisely its initial
values. In combination with restriction, domain yields an abstract preimage
operation and codomain an abstract image operation.

A left domain semiring (quantale) is a pair (S; p), where S is a left semiring
(quantale) and the domain operation p : S ! test(S) satis�es

a � pa � a ; (d1) p(p � a) � p ; (d2) p(a � pb) � p(a � b) : (d3)

The axioms are the same as in [21]; their relevant consequences can still be
proved over left semirings (quantales) [42]. In particular, p is universally dis-
junctive and hence p0 = 0. Moreover, the conjunction of (d1) and (d2) is
equivalent to each of

pa � p , a � p � a ; (llp) pa � p , :p � a � 0 : (gla)

Property (llp) says that pa is the least left preserver of a; (gla) that :pa is the
greatest left annihilator of a.

Lemma 5.16 The tuple PRO =df (P(TRA);[; ;; �; I; p) forms a Boolean
positively right-disjunctive domain quantale with pA = fg(0) : (d; g) 2 Ag.

Contrarily to the case of arbitrary semirings [41] with complete sublattice of
tests, the domain operation is guaranteed to exist in left quantales [21].

A useful property is the following.

Lemma 5.17 If the underlying semiring satis�es p � �p then p(�p) = p.

Proof. Axiom (d2) and Lemma 5.8 imply p(�p) � p. The reverse inequation
follows from the assumption p � �p, isotony of domain and pp = p.

Using the domain operation, Equation (20) compacts into p(B\W ). Therefore,
a �rst algebraic de�nition of Sintzo�'s quanti�ers reads as follows (the primes



indicate that we will use a di�erent de�nition later on):

E0B :W =df
p(B \W ) ; (21)

A0B :W =df :E
0B :W = :p(B \W ) ; (22)

AE0B :W =df A0B :W \ E0B :W : (23)

This de�nition works in general Boolean left domain semirings. However, as
the resulting quanti�ers are operators of type PRO ! (PRO ! test(PRO)),
they cannot easily be composed. Therefore, Sintzo� gives a di�erent semantics
to combinations of these quanti�ers. We want to avoid this by introducing new
quanti�ers that omit the �nal projection into test(PRO). Doing this, we also
allow a look into the \future" of trajectories and not only at the starting
states. In other words, our new quanti�ers in PRO should model formulas like

t 2 EB :W ,df 9u 2 B : t � u 2 W;

t 2 AB :W ,df 8u 2 B : t � u 2 W:

Hence, the process EB :W consists of all trajectories that can be completed by
a B-trajectory to yield a trajectory in W . Thus, EB :W is the inverse image
of W under the operation �B, while AB :W is the largest process whose image
under �B is contained in W .

These quanti�ers are operators of type PRO ! PRO and their sequential
composition simply is function composition. If, as with E0 and A0, a projection
into test(PRO) is desired it can be added at the outermost level by �nally
applying one of the three quanti�ers above. For their algebraic characterisation
we basically want to use Equations (21) and (22), but express them with the
help of detachment. Therefore we establish a connection between that and the
domain operator.

Lemma 5.18 In a Boolean quantale, one has

p(b u w) = wbb u 1 = bbw u 1 :

In the detachment formulas of this lemma, forming the meet with 1 performs
the projection into the test algebra, and we obtain our revised operators by
omitting this meet. There is a choice in which of these two formulas to use. We
take the �rst one, since it results in a more direct translation of the universal
quanti�er A0. Assume a Boolean quantale S and a; b 2 S. Then

Eb : w =df wbb ; Ab : w =df Eb : w = w=b ;

AEb : w =df (Ab : w) u (Eb : w) :

These quanti�ers allow the following modal view: E is a kind of diamond,



whereas A is a box operator. Correspondingly, we have the following properties
that are typical of modal operators.

Lemma 5.19

(1) Ea:w is universally disjunctive and Aa:w is universally conjunctive in w.
(2) E(a � b) : c = Ea : (Eb : c) and A(a � b) : c = Aa : (Ab : c).
(3) If � is positively disjunctive in its right argument then Ea is positively

disjunctive and Aa is positively antidisjunctive in a.

Sintzo� has used these operators to determine strategies in discrete-decision
games [48]. He has also shown that game theory helps in understanding hybrid
and reactive systems, since it deals with interaction between dynamics. For
example, a hybrid system can be presented as a game where the controlling
and the controlled components are, respectively, the proponent and the oppo-
nent [32]. As the controller has to counteract all possible failures induced by
\moves" of the controlled system, it has to force the opponent into a \losing"
position where nothing can go wrong anymore. In PRO, moves correspond to
process transformers of the shapes EB and AB. They describe the possible
and guaranteed reachabilities from a game position using B-trajectories.

6 A Case Study

To round o� the paper, we give a longer case study. It concerns a railroad gate
control and was introduced in [23]. For that, we assume a circular track that
is between 2000 and 5000 metres long and a railway crossing with a gate. A
sketch of the architecture is given in Figure 7.

road

circular railway track

(between 2000 and 5000 m)

train slows down

train speeds up

“closing the gate”-sensor

Figure 7. Architecture of the railroad gate controller



A moving train on the track is modelled by the hybrid automaton of Figure 8.
The variable x represents the distance of the train from the gate. Initially, the
speed of the train is between 40 and 50 metres per second. At the distance of
1000 metres from the gate, the train issues an approach event and may slow
down to 30 metres per second. At the distance of 100 metres behind the gate,
the train issues an exit event.
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−50≤ẋ≤−30
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−50≤ẋ≤−30

x≥−100

x≤5000
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=
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x
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x
:∈

[1900
,4900]

ex
it

Figure 8. Train automaton

We now want to derive the corresponding algebraic expression for this au-
tomaton. For this we follow the schema of Section 4.1. To simplify matters
we skip the control modes, since all control modes have the same structure.
Furthermore, we do not de�ne processes for each mode. Instead we de�ne the
following general processes:

T [a;b] =df f(d; x) j d 2 IR�0; a � _x � bg ;

Pdist =df fdistg = f(0; x) jx = distg ;

P�dist =df fdistg = f(0; x) jx � distg :

Process T [a;b] restricts the speed of the train to a velocity between a and b;
the duration of the trajectories is not restricted at all. The zero-length process
Pdist is used to test whether the train is at a certain distance of dist from the
gate or not. For example P0 tests if the train passes the gate at the moment.

To model the jump condition given in Figure 8, we use the compatibility
relation �=df f(�100; x) jx 2 [1900; 4900]g. Depending on the length of the
track it sets the distance after the train has passed the gate.

Using these elements the following algebraic expression for the train automa-
ton results from our schema:

TR =df P�5000 �
�
(T [�50;�40] � P1000 � T

[�50;�30] � P0 � T
[�50;�30] � P�100)�

�!
:

The initial test P�5000 sets the starting point of the train: the distance between
the gate and the train has to be smaller than 5000m. As described in Sec-
tion 4.1 the compatibility relation is employed at the right end of the repeated



process. It is only needed at the point where we want to enforce a jump in the
function describing the distance between the train and the gate. The other
multiplications require the identity relation as compatibility relation, since we
want to avoid jumps. Hence we do not need an explicit compatibility relations
for the other products.

Note that in the algebraic expression we can replace ! by y, since the tests
Pdist together with the given velocities of the train enforces that there are no
Zeno-e�ects.

As the second component of the railroad gate control we have a gate automa-
ton (Figure 9).
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ẏ =−9
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ẏ =0
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raise

y =0

lowerraise

raise raise

lower lower

Figure 9. Gate automaton

The variable y of the gate automaton represents the position of the gate in
degrees. Initially, the gate is open (y = 90). When a lower event is received,
the gate starts closing at a rate of 9 degrees per second and when a raise
event happens, the gate starts opening at the same rate. The given schema to
convert hybrid automata to algebraic expressions yields

GA =df O �
�
(Ml �Mr)

� � (C +O)
�!

;

where

O =df f(d; const(90)) j d 2 IR�0g models control mode Opened ,

C =df f(d; const(0)) j d 2 IR�0g models control mode Closed ,

Ml =df f(d; y) j _y = �9; d 2 IR�0g models control mode Down,

Mr=df f(d; y) j _y = 9; d 2 IR�0g models control mode Up

and const is again the constant function. Ml �Mr is iterated because the gate
can start opening even if it is not totally closed (y = 0) and it can start
closing even if the gate is not absolutely opened (y = 90).



The simplest way to combine both expressions is

TR jjGA

where jj is the pointwise lifted parallel composition of Section 4.2. But this
algebraic expression contains all combinations of the train trajectories and the
gate trajectories, e.g., the gate can be opened when the train passes. Hence a
simple combination is not useful.

To combine these two automata and to guarantee safety, one can use a third
automaton | a controller automaton | as done in [23] (cf. Figure 10)
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Figure 10. Controller automaton

This controller has a reaction delay of up to u seconds. For example if the train
issues an approach event, the automaton switches to the mode DelayDown.
The elapsed time is measured by the variable z. At some point before z reaches
the reaction upper bound u the automaton starts the lower event and the gate
begins to close (the gate automaton is now in mode Down).

To simplify matters, we assume a reaction time of 0 seconds. (Di�erent delay
times are also possible, but the algebraic expressions become more compli-
cated, although the structure would be the same.) When an approach event
is received, the controller immediately issues a lower event and when an exit
event is received, the controller starts immediately an raise event. In sum we
have:

TG =
�
Ojj(P�5000 � T

[�50;�40] � P1000)
�
�

��
(Ml � C)jj(T

[�50;�30] � P0)
�
�
�
Cjj(T [�50;�30] � P�100)�

�
�

�
(Mr �O)jj(T

[�50;�40] � P1000)
��y

(24)

Let us have a look at the single components. The �rst part (Ojj(P�5000 �



T [�50;�40] � P1000)) models the initial behaviour; the gate has to be open, the
train starts somewhere before the gate (not farther than 5000 metres), and
moves until it reaches the point x = 1000. Each of the components in the
in�nite iteration loop has as right operand of the parallel composition one
control mode of the train automaton together with the attached event and
as left operand the corresponding behaviour of the gate. Since the gate com-
ponents end up in the modes C and O where the gate is opened or closed,
respectively, processes like Ml � C can be lengthened to any duration longer
than the shortest duration of Ml. Therefore we do not need a constant func-
tion for the parallel composition (as discussed in Section 4.2). Note that the
nested iteration of GA has been removed, because that behaviour cannot oc-
cur. Furthermore, this example might, in contrast to the algebraic expression
of the train automaton, contain Zeno e�ects; therefore ! and y might behave
di�erently.

Aspects of Safety. The algebra of processes not only compacts the descrip-
tion by a parallelised hybrid automaton (which was not given by Henzinger),
but also contains many aspects of safety. E.g., the expression Ml � C itself
guarantees that the gate is closed at the time when the train passes the gate.
This guarantee is not given in the original paper. Furthermore, it is easy to
see that if the initial distance between the gate and the train is smaller than
1000, we have for the �rst factor of (24)

(P<1000 � T
[�50;�40] � P1000) = 0 :

Thus we know that such an initial distance is not safe, since it is not possible
that the gate gets closed in time. This problem is not discussed in [23]. In
general, if an algebraic expression or a part of it at a strict position (after
a �nite run) is equal to zero, the corresponding system is not safe. Another
aspect of safety is the Zeno problem. In our example, Zeno e�ects can occur
in the hybrid automaton as well as in our algebraic expressions. But those
e�ects can be excluded by taking

TG u N ;

as discussed in Section 3.6. Sometimes it is desirable and necessary to intro-
duce range assertions. For instance, we may, besides the normal conditions of
operation, want to guarantee that no train is faster than 40 metres per seconds
(e.g. if there is construction work on the track). Then we have to modify Ex-
pression (24). Using the range assertions of Section 5.3 the algebraic expression
can be modi�ed to

TG u �T [0;�40] :

With this, we have a characterisation of the modi�ed system and can now
check safety, etc.



7 Related Work

As mentioned before, the research concerning hybrid systems is mostly focused
on hybrid automata [23]. Within that area there are di�erent approaches to
safety and liveness properties. But, most of the research covers only a cer-
tain class of hybrid automata, the linear hybrid automata. For example, [3]
discusses reachability and veri�cation problems for linear hybrid systems. In
contrast to these papers our approach does not restrict hybrid systems at all.

An algebraic framework dealing with hybrid systems is the process alge-
bra of [11]. It is obtained by extending a combination of two extensions of
ACP [10], namely the process algebra with continuous relative timing from [9]
and the process algebra with propositional signals from [8]. It has, in addition
to equational axioms, some rules to derive further equations with the help
of real analysis. However, it does not contain transformation rules for larger
systems in our style; moreover, it does not de�ne operators for the analysis of
the purely �nite and purely in�nite parts of behaviours.

An algebraic theory of general networks is presented in [49].

Besides the theories of hybrid automata and algebras there is further related
work. For example in [33] a variant of timed CSP [47] is introduced that
allows limited dealing with continuous behaviour. In [44] the �-calculus [40]
is modi�ed such that it can deal with continuous behaviour.

Further approaches to hybrid systems are Hybrid I/O automata [38], the work
on tools like CHARON [6,1] and HyTech [24] as well as the logics for hybrid
systems [20]. But these approaches have not yet been put into algebraic form.

8 Conclusion and Outlook

This paper provides a comprehensive algebraic theory of hybrid systems based
on left semirings and iteration algebras. Although one has to take some care,
since the basic laws are weaker than those for standard semirings, things work
out reasonably well and many results come for free. We have presented a
model of trajectories and processes which then has been abstracted to admit
a general semiring view. We have shown how to embed hybrid automata into
that setting. Based on an analysis of the purely �nite and purely in�nite parts
of behaviours we have demonstrated how Zeno e�ects can conveniently be
handled. We have given algebraic de�nitions of several composition operators
for hybrid systems. We have discussed safety and liveness properties as well
as time restrictions and range assertions and certain temporal operators. It



should be noted that nevertheless the whole development is based on few and
well-known algebraic concepts.

The aim of further work is to use this framework to give a fully algebraic treat-
ment of the duration calculus based on the approaches of [50,25]. Another aim
is to form a connection with game theory and game algebra to obtain improved
controllers for hybrid systems. Finally, it has to be checked in how far I/O au-
tomata can be treated in this style to make the theory even more useful. It
seems that the semantic models used in [20,38] can be made into left quantales,
too, so that our results would carry over to these frameworks. It will also be
interesting to apply the approach in further case studies. On the more theoret-
ical side, an algebraic treatment of time abstraction as well as further analysis
of safety via range assertions and of liveness issues is necessary. The structures
of Kleene and omega algebras should allow a convenient algebraic treatment
of reachability questions [21]. The algebraic semantics for CTL� given in [43]
prepares the connection to various logics for hybrid systems [20]. Finally, since
the theory of semirings is completely �rst-order and Horn, it lends itself to
mechanisation using o�-the-shelf theorem provers, as has recently been shown
in [30,31]. Therefore the �eld of hybrid systems should be tractable. In [27]
we have already automatically proved some liveness and safety properties for
two small hybrid systems.
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A Appendix: Deferred Proofs

Proof of 3.5. We give this proof to pinpoint the use of our assumptions; a
similar proof for the more restrictive setting of full quantales appears, e.g.,
in [2]. It uses the principles of least and greatest �xpoint fusion (see e.g. [19]):
Let f; g; h : L ! L be isotone functions on a complete lattice (L;�) with
least element 0 and greatest element > such that g � h = f � g.

� If g is continuous, i.e., preserves suprema of nonempty chains, and strict,
i.e., satis�es g(0) = 0, then g(�h) = �f .

� If g is cocontinuous, i.e., preserves in�ma of nonempty chains, and costrict,
i.e., satis�es g(>) = >, then g(�h) = �f .

In both parts of the proof we use f(x) =df a � x + b, whereas g and h will
change.

(1) The star axioms (specialized to the case b = 1) are equivalent to the
statement that a� is the least contracted element of the function h(x) =df



a � x+ 1; hence by the Knaster/Tarski �xpoint theorem it coincides with
the least �xpoint of that function. Therefore the star unfold axiom holds
by construction.
Now we use least �xpoint fusion with g(x) =df x � b to show that a� � b

is the least �xpoint and hence the least contracted element of f , which
is the contents of the star induction axiom.
By the de�nition of a left quantale, g is continuous and strict. Further-

more,
g(h(x)) = (a � x+ 1) � b = a � x � b+ b = f(g(x)) ;

and a� � b = �f , as required.
(2) The omega unfold axiom holds by construction.

We set c =df a� � b and e =df a! + c and show that e is the greatest
�xpoint and hence the greatest element expanded by f , which is precisely
the contents of the ! coinduction axiom.
This time we use g(x) =df x+c and h(x) =df a �x. Function g is obvi-

ously costrict. It is also cocontinuous, since we assume the underlying left
quantale to be completely distributive. For the commutativity condition
we calculate using, �rst, that c is a �xpoint of f by the proof of Part (1)
and, second, weakness of the underlying quantale,

g(h(x)) = a � x+ c = a � x+ f(c) = a � x+ a � c+ b

= a � (x+ c) + b = a � g(x) + b = f(g(x)) :

This establishes �f = a! + a� � b as required.

Proof of 3.6.

(1) This follows by elementary Boolean algebra.
(2) Since (() is just isotony, it su�ces to prove ()). We show the �rst

conjunct, the second being symmetric. Using Part (1) we calculate

a = (a u F) + (c u F) = (a+ c) u F � (b+ d) u F = (b u F) + (d u F) = b :

(3) This is Lemma 6.8(d) of [42].
(4) By Part (3), distributivity of inf and inf inf x = inf x,

inf a!

= inf ((�n a)� � inf a+ (�n a)!)
= inf ((�n a)� � inf a) + inf ((�n a)!)
= (�n a)� � inf a+ inf ((�n a)!) :

(5) By Part (3), distributivity of �n, �n (b � N) = 0 and �n b � b we have
�n a!

= �n ((�n a)� � inf a+ (�n a)!)
= �n ((�n a)� � inf a) + �n (�n a)!

� 0 + (�n a)!

= �n (�n a)!



� (�n a)! :

Proof of 3.7. Let OM(A) =df f� 2 TRA j 9T 2 ISEQ(A) :
Q
T v �g.

(1) The claim is equivalent to X � OM(A). Consider � 2 X. We construct a
sequence T = (�n)n2IN 2 ISEQ(A) inductively as follows. Set ��1 =df �.
Since X � A �X, there are �0 2 A and �0 2 X with ��1 = �0 � �0. Now
assume that �i and �i have been constructed. By the same argument as
above �i can be decomposed into �i+1 and �i+1. Now, by constructionQ
T v �. Hence � 2 OM(A) and we are done.

(2) As a prerequisite, we observe that �nite trajectories � are left cancellative
w.r.t. composition, i.e., satisfy

� � � = � � � ) � = � ;

provided � � � and � � � are de�ned.
Now we show that OM(A) is expanded by H. Consider an arbitrary

� 2 OM(A). By de�nition there is a T = (�n)n2IN 2 ISEQ(A) withQ
T v �. Then also �0 v � and hence, by �niteness of �0 and the

above cancellation property, there is a unique � with � = �0 � �. De�ne
� = (�n)n2IN 2 ISEQ(A) by �n = �n+1 for all n 2 IN. Then

Q
� v �, i.e.,

� 2 OM(A). Therefore � = �0 � � 2 A � Y . Hence OM(A) � A �OM(A).
Together with Part (1) this means that OM(A) is the greatest expanded

element of H and hence its greatest �xpoint. Now the claim follows by
Lemma 3.5(2).

Proof of 3.8.

(1) That Ay is expanded by H can be shown as for OM(A) in Part (2)
of Theorem 3.7. It remains to show that Ay is also contracted by H,
i.e., A � Ay � Ay. Assume � 2 A and � 2 Ay, say � 2 PT for some
T = (�n)n2IN 2 ISEQ(A). De�ne De�ne � = (�n)n2IN 2 ISEQ(A) by
�0 =df � and �n+1 = �n for all n > 0. Then � � � 2 P� � Ay.

(2) Consider � = (e; f) 2 X. By Part (1) of Theorem 3.7 there is a sequence
T(dn; gn)n2IN 2 ISEQ(A) with

Q
T v �. Let d =df supfdn jn 2 INg and

de�ne � =df (d; g) 2 Ay by g(t) = gn(t) if t � dn and g(d) =df f(d) if
d 6=1. Then by construction � v �.

(3) We observe that the set of elements expanded by H is closed under ex-
tension, i.e., if X � A �X and Y is arbitrary then also X �Y � A �X �Y .
Therefore Ay �> is expanded by H and hence Ay �> � A!. For the reverse
inclusion consider � 2 A!. By Part (2) there is a � 2 Ay with � v � .
But then � 2 Ay � >.



Proof of 5.1.

(1) ((a))(b)) The claim is equivalent to c u ((cuF) � c+ c �>) � 0 by shunt-
ing (2). Then by Boolean algebra, submodularity applied twice, Boolean
algebra again, left annihilation and c u F � F,

c u ((c u F) � c+ c � >)

= (c u (c u F) � c) + (c u c � >)

� (c u c u F) � (c u c) + (c u c) � (c u >)

= (c u F) � 0 + 0 � (c u >) = 0

((b))(c)) By Boolean algebra, distributivity, (b) and isotony,

F � c � > = (c u F+ c u F) � c � > = (c u F) � c � >+ (c u F) � c � >

� c � >+ c � > � c :

((c))(a)) Consider �rst a product a � b with purely �nite a, i.e., with
a � F. By Boolean algebra and distributivity,

a � b = (c u a) � (c u b) + (c u a) � (c u b) + (c u a) � b

By a � F and the assumption about c, we have F � c � c and c � > � c, so
that the last two summands are � c by isotony. Hence,

c u a � b = c u (c u a) � (c u b) � (c u a) � (c u b) :

For arbitrary a we calculate, using �n=inf decomposition, Boolean algebra
and the claim for �n a � F,

c u a � b
= c u (inf a+ �n a � b)
= (c u inf a) + (c u (�n a � b))
� (c u inf a) + (c u �n a) � (c u b)
= inf (c u a) + �n (c u a) � (c u b)
= (c u a) � (c u b) :

Finally, for c = 1 the left hand side of Formula (b) spells out to (1 u F) �
1 + 1 � > = 1 � 1 + 1 � 1 + 1 � 1 = 1 + 1 � 1, which shows the claim.

(2) ()) We only need to show transitivity of c, which holds by

c u c � c = (c u c) � (c u c) = c � c :

(() By isotony, (c u a) � (c u b) � a � b and (c u a) � (c u b) � c � c � c,
which shows (c u a) � (c u b) � c u a � b. The reverse inequation holds by
submodularity of c.
The assertion about 1 follows, since 1 is transitive.



(3) (�) Isotony and c � c � c show (c u a)+ � a+ and (c u a)+ � c+ = c.
(�) By shunting (2), star induction (3), distributivity and join splitting
we have

c u a+ � (c u a)+

, a+ � c+ (c u a)+

( a+ a � (c+ (c u a)+) � c+ (c u a)+

, c u (a+ a � (c+ (c u a)+)) � (c u a)+

, c u a � (c u a)+ ^ c u a � c � (c u a)+ ^ c u a � (c u a)+ � (c u a)+

The �rst conjunct holds by neutrality, isotony and 1 � (c u a)�. For the
second one we have, by modularity of c,

c u a � c = (c u a) � (c u c) = (c u a) � 0 � c u a � (c u a)+ :

The third conjunct is shown, using again modularity, by

c u a � (c u a)+ = (c u a) � (c u (c u a)+) � (c u a) � (c u a)+ � (c u a)+ :

The equation for � is immediate from a� = a++1, the equation for + and
distributivity of u.

(4) Assume d � c. Then by Boolean algebra d = c+ c u d. By this, shunting
(2), modularity (twice) and Boolean algebra, we have

F � d � > � d
, F � d � > � c+ c u d
, c u F � d � > � c u d
, (c u F) � (c u d) � (c u >) � c u d
, (c u F) � (c u d) � c � c u d :

Proof of 5.7.

(1) By Lemma 5.5 all tests of S are modular. Hence by de�nition of �q,
shunting (2), modularity (thrice), meet on tests and Boolean test algebra
(twice)

p � �q
, p u F � :q � > � 0
, (p u F) � (p u :q) � (p u >) � 0
, p � p � :q � p � 0
, p � :q � 0
, p � q :

(2) Set q = p in Part (1).

Proof of 5.8. We �rst show �p = p � (�p).
For that we start with �p = p � (�p)+:p � (�p) and show that :p � (�p) � 0.
By Equation (13), shunting (2) and the de�nition of box we have :p � �p =
�p u :p � > � 0 , p � > � F � :p � >. By Equation (14) this is equivalent to
:p � > � F � :p � >, which holds by 1 � F (Equation (6)).



Assume now that S is weak. Then �F p = p � �F p is immediate from (10)
and (6).
Next, we show �p = (�p) � p.
Splitting �p into its purely �nite and purely in�nite parts and using distribu-
tivity, we get the equivalent claim �F p+ �N p � �F p �p+ �N p �p = �F p �p+ �N p.
By Lemma 3.6 (2) this reduces to �F p � �F p � p. Similar arguments as above
yield �F p � :p � 0 and hence �F p = �F p � p+ �F p � :p = �F p � p.

Proof of 5.9.

(1) Immediate from Lemma 5.6, Lemma 5.1(2) and safety-closedness, i.e.,
transitivity of boxes.

(2) This is a consequence of Part (1), since

�p = �p u > = �p u > � > = (�p u >) � (�p u >) = �p ��p :

(3) Immediate from Part (1) and Lemma 5.1(3).
(4) We show the claim for purely �nite a. For purely in�nite a the proof

is straightforward since a � b = a. For general a the proof proceeds by
splitting a into its purely �nite and purely in�nite part. Set d =df 3p
and s =df d = �:p. By Boolean algebra and distributivity,

d u a � b = d u (d u a) � b+ d u (s u a) � (d u b) + d u (s u a) � (s u b) :

The �rst of these summands is below (d u a) � b, the second one is below
a � (d u b) and the third one is 0 by Part (1) and d u s = 0. Hence, the
sum is below (d u a) � b+ a � (d u b).
The converse inequation holds by d � b � d, a � F, F �d � d and isotony.

Proof of 5.18. We show only the �rst equation, p(b u w) = bbw u 1 can be
shown in a similar way. Using (gla), Equation (13), shunting (2), exchange
rule, Equation (14) and shunting again, we get

p(b u w) � p
, :p � (b u w) � 0
, :p � b u w � 0
, :p � b � w
, wbb � :p
, wbb � p+ 1
, wbb u 1 � p+ 1

Proof of 5.19. We only show the properties for A. The properties for E follow
immediately by the relationship Ea:w = Aa:w.

(1) By the principle of indirect inequality and for a set W � S, we have
u �

d
(Aa :W )



, u � a �
d
(W=a)

, 8w 2 W : u � w=a
, 8w 2 W : u � a � w
, u � a �

d
W

, u � (
d
W )=a

, u � Aa : (
d
W )

(2) By de�nition of A and of residuals we directly get
u � Aa : (Ab : c)

, u � (c=b)=a
, u � a � c=b
, u � a � b � c
, u � c=(a � b)
, u � A(a � b) : c

(3) Similar to Part (1).







B Deferred Properties and Proofs

Lemma B.1 Assume ...

(1) �p u q � p � q.
(2) p � �p ) p � q � �p u q.
(3) �p u3q = �F p � q ��p.
(4) �F p u3q = �F p � q � �F p.
(5) �p u �F q = �N p+ �F p � q ��p.
(6) �p u�q � �p ��q.
(7) �F p u�q � �F p ��q and �F p u�q � �q � �F p.

Proof.

(1) �p u q = (�p) � p u q = (�p u q) � p � q � p.
(2) p � q = p u q � �p u q.
(3) �pu3q = �pu(F�q �>) = (�puF)�(�puq)�(�pu>) = �F p�p�q ��p =

�F p � q ��p.
(4) Analogously.
(5) �p u �F q = �p u (N + 3q) = �N p + �F p � q � �p by distributivity and

previous result.
(6) �p u�q = �p u�q ��q = (�p u�q) � (�p u�q) � �p u�q.
(7) Analogously.

We �rst show some auxiliary properties of box, detachment and meet.

Lemma B.2 Assume that S is a Boolean and weak locally linear quantale.
Then, for all a 2 S, p; q 2 test(S) and �F p =df �n (�p), we have

(1) (�p ��q)ba � �p ��q +�p.
(2) (�F p ��q)ba � �F p ��q + �F p.
(3) If a is purely �nite, then ac(�p ��p) � �p ��q +�q.
(4) If a is purely �nite, then ac(�F p ��p) � �F p ��q +�q.
(5) a � b u �F p ��q � (a u �F p ��q) � b+ (a u �F p) � b.
(6) If a is purely �nite then a � b u �F p ��q � a � (b u �F p ��q) + a � (b u�q).

Proof.

(1) By local linearity and box detachment twice,

(�p ��q)ba = �p � (�qba) +�pb(ab�q) � �p ��q +�p :

(2) Analogously.
(3) Analogously, using a � F.
(4) Analogously.



(5) In a Boolean quantale, we have the Dedekind rule

u � v u w � (u u wbv) � v :

Using this, part (2) and distributivity we obtain

a � b u �F p ��q � (a u (�F p ��q)bb) � b � (a u �F p ��q) � b+ (a u �F p) � b :

(6) Analogously. However, in contrast to full quantales, in Boolean left quan-
tales the dual Dedekind rule

u � v u w � u � (v u ucw)

holds only for purely �nite u.

Now we are ready for the proof of

Lemma 5.14 Assume a weak and locally linear quantale S. The for all a; b 2 S
and p; q 2 test(S) the following properties hold.

(1) a � b u �F p � �q = (a u �F p) � (b u �q) + (a u �F p) � (b u �F p � �q) + (a u
�F p ��q) � (b u�q).

(2) a � b u �N p = (a u �N p) + (a u �F p) � (b u �N p) = (a u�p) � (b u �N p).
(3) a � bu�p ��q = (au�p) � (bu�q) + (au�p) � (bu�p ��q) + (au�p �

�q) � (b u�q).
(4) If additionally p � �p holds, the summand (a u �F p) � (b u �q) can be

omitted from the right hand sides of Parts (1) and (3).

Proof.

(1) We show the claim �rst for purely �nite a, i.e., for a � F. The inequation
(�) holds by isotony and safety-closedness. For (�) we calculate

a � b u �F p ��q
= f[ idempotence ]g

a � b u �F p ��q u �F p ��q
� f[ by Lemma B.2(5) ]g

((a u �F p) � b+ (a u �F p ��q) � b) u �F p ��q
= f[ idempotence and distributivity ]g

[((a u �F p) � b u �F p ��q) + ((a u �F p ��q) � b u �F p ��q)] u �F p ��p
� f[ by Lemma B.2(6) and distributivity ]g

[(a u �F p) � (b u �F p ��q) + (a u �F p) � (b u�q)+
(a u �F p ��q) � (b u �F p ��q) + (a u �F p ��q) � (b u�q)] u �F p ��p

� f[ distributivity and omitting meets ]g
(a u �F p) � (b u �F p ��q) + (a u �F p) � (b u�q)+
(a u �F p ��q) � (b u �F p ��q) + ((a u �F p ��q) � (b u�q) u �F p ��p)

It remains to show that the summands (au �F p) � (bu�q) and (au �F p �
�q) � (b u�q) u �F p ��p are below the sum of the other two summands.



For the second one we �rst deal with the left conjoint:
(a u �F p ��q) � (b u �F p ��q)

= f[ Boolean algebra ]g
(a u �F p ��q u �F p+ a u �F p ��q u �F p) �

(b u �F p ��q u�q + b u �F p ��q u�q)
= f[ distributivity ]g

(a u �F p ��q u �F p) � (b u �F p ��q u�q)+

(a u �F p ��q u �F p) � (b u �F p ��q u�q)+
(a u �F p ��q u �F p) � (b u �F p ��q u�q)+

(a u �F p ��q u �F p) � (b u �F p ��q u�q)
� f[ omitting meets and de�nition of box ]g

(a u �F p) � (b u �F p ��q) + (a u �F p ��q) � (b u�q)+
(a u �F p ��q u �F p) � (b u �F p ��q u3:q)

Hence, by distributivity and omitting meets,
(a u �F p ��q) � (b u�q) u �F p ��p

� (a u �F p) � (b u �F p ��q) + (a u �F p ��q) � (b u�q)+
(a u �F p ��q u �F p) � (b u �F p ��q u3:q) u �F p ��p

and we are done if we can reduce the last summand to 0. For this we
calculate

(a u �F p ��q u �F p) � (b u �F p ��q u3:q) u �F p ��p � 0
( f[ a � F, F u �F p = F u3:p and omitting meets ]g

(F u3:p) �3:q u �F p ��p � 0
, f[ de�nition of 3 and (6) ]g

F � :p �3:q u �F p ��q � 0
, f[ shunting (2) ]g

F � :p �3:q � �F p ��q
, f[ exchange rule ]g

Fc(�F p ��q) � :p �3:q
( f[ Lemma B.2(3) ]g

�F p ��q +�q � :p �3:q
, f[ supremum ]g

�F p ��q � :p �3:q ^ �q � :p �3:q
, f[ shunting (2) ]g

:p �3:q � �F p ��q ^ :p �3:q � 3:q
, f[ :p � 1 ]g

:p �3:q � �F p ��q
, f[ shunting (2) and �F p = p � �F p ]g

:p �3:q u p � �F p ��q � 0
, f[ by (13) ]g

p � :p �3:q u �F p ��q � 0
, f[ cancellation law ]g

0 �3:q u �F p ��q � 0
, f[ annihilator ]g

true



This �nishes the proof for purely �nite a. For purely in�nite a the claim
is trivial, since then a u �F p = 0 and a u �F p ��q is purely in�nite again
and hence a left zero. For arbitrary a the claim now follows by splitting
a into its purely �nite and purely in�nite parts and using distributivity.

(2) a � b u �N p
= f[ de�nition ]g

a � b u inf �p
= f[ by Equation (7) ]g

inf (a � b u�p)
= f[ by Lemma 5.9(1) ]g

inf (a u�p) � (b u�p)
= f[ by Equation (9) ]g

inf (a u�p) + �n (a u�p) � inf (b u�p)
= f[ by Equation (7) ]g

(a u inf �p) + (a u �n�p) � (b u inf �p)
= f[ de�nitions ]g

(a u �N p) + (a u �F p) � (b u �N p)
= f[ since a u �N p � N ]g

(a u �N p) � (b u �N p) + (a u �F p) � (b u �N p)
= f[ distributivity ]g

((a u �N p) + (a u �F p)) � (b u �N p)
= f[ distributivity ]g

(a u (�N p+ �F p)) � (b u �N p)
= f[ �n/inf decomposition ]g

(a u�p) � (b u �N p)
(3) First we have

a � b u�p ��q
= f[ �n/inf decomposition ]g

a � b u (�F p+ �N p) ��q
= f[ distributivity ]g

a � b u (�F p ��q + �N p ��q)
= f[ �N p ��q = �N p ]g

a � b u (�F p ��q + �N p)
= f[ distributivity ]g

(a � b u �F p ��q) + (a � b u �N p)
Then the claim follows from Parts (1) and (3) by straightforward calcu-
lation.

(4) We have
(a u �F p) � (b u�q)

= f[ by Lemma 5.8 ]g
(a u �F p � p) � (b u�q)

= f[ by (14) ]g
(a u �F p) � p � (b u�q)

= f[ by (14) ]g



(a u �F p) � (b u p ��q)
� f[ by p � �p ]g

(a u �F p) � (b u �F p ��q)
This shows the claim for the right hand side of Part (1) from which the
one for Part (3) follows.


