
Towards a Rigorous Analysis of AODVv2 (DYMO)
Sarah Edenhofer

Universität Augsburg, Germany

Email: edenhofer.sarah@googlemail.com

Peter Höfner
NICTA, Australia

University of New South Wales, Australia
Email: peter.hoefner@nicta.com.au

Abstract—Dynamic MANET On-demand (AODVv2) routing,
formerly known as DYMO, is a routing protocol especially
designed for wireless, multi hop networks. AODVv2 determines
routes in a network in an on-demand fashion.

In this paper we present a formal model of AODVv2, using
the process algebra AWN. The benefit of this is two-fold: (a) the
given specification is definitely free of ambiguities; (b) a formal
and rigorous analysis of the routing protocol is now feasible.
To underpin the latter point we also present a first analysis of
the AODVv2 routing protocol. On the one hand we show that
some of the problems discovered in the AODV routing protocol,
the predecessor of AODVv2, have been addressed and solved.
On the other hand we show that other limitations still exist; an
example is the establishment of non-optimal routes. Even worse,
we locate shortcomings in the AODVv2 routing protocol that do
not occur in AODV. This yields the conclusion that AODVv2 is
not necessarily better than AODV.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are ad-hoc networks
providing broadband communication without relying on a
wired backhaul. They are self-organising, self-configuring and
self-healing networks and have a wide spectrum of appli-
cations, ranging from emergency response over surveillance
applications to smart grids. WMNs have the benefit of low-
cost deployment, but have to cover crucial aspects of wireless
communication, such as packet loss and node mobility. Since
most current commercial wireless (mesh) networks use the
same standard IEEE 802.11 radios, the key factor affecting
the performance is the software, mainly the network protocols.
Limitations, shortcomings or problems in the routing protocol
immediately decrease the performance of the entire network.

“The Mobile Ad Hoc working group of the IETF developed,
among other protocols, Ad hoc On-Demand Distance Vector
(AODV) Routing [...]. This protocol captured the minds of
some in the embedded devices industry, but experienced issues
in wireless networks such as 802.15.4 and 802.11’s Ad Hoc
mode. As a result, it is in the process of being updated in the
Dynamic MANET On-demand (DYMO) Routing protocol.” [2]

Using approaches such as test-bed experiments, simulation
or formal analysis, it has been shown that AODV has limi-
tations [8], [20]. For example, Miskovic and Knightly have
demonstrated that AODV establishes non-optimal routes, even
if the given topology does not change [15]. Other shortcomings
stem from ambiguities or contradictions in the informal stan-
dard, written in natural language; this may lead to different
readings of the standard and hence to implementations that
behave differently, although all are compliant to the standard.

In [23] it is for example shown that AODV can yield rout-
ing loops if ambiguities occurring in the RFC are resolved
“incorrectly”.

Using words of Zave, there are “three conclusions about the
description of protocols, based on extensive experience: (1)
Informal methods are inadequate for widely used protocols.
(2) Lightweight formal methods are easy and useful. (3)
Informal natural language cannot be trusted, but natural-
language paraphrases of formal language can be trusted for
certain purposes.” [24]

To limit the amount of shortcomings and problems in
AODVv2 (formerly known as DYMO), we believe that formal
modelling, formal analysis and formal reasoning should be ap-
plied already during the development process, i.e., now. It has
been shown that process algebra, which can be complemented
by model-checking, is a powerful tool for the analysis of ad
hoc on-demand routing protocols for WMNs [9], [10]. In this
paper, we use the same techniques to formalise and analyse
AODVv2. In particular we present a process-algebraic model
of AODVv2 that covers all core functionality, but abstracts
from timing issues. Although timing is crucial for routing
protocols, already our untimed model reveals limitations. From
the algebraic model we generate a formal model that is
accepted by the model checker Uppaal. The combination of
these two models allow a quick, but thorough analysis of
the routing protocol. As a proof of concept we present and
discuss a number of shortcomings found in the AODVv2
routing protocol and propose some solutions. Since AODVv2
is currently an internet-draft open for discussions, we hope
that some of our findings and suggestions will be considered
for the next version of this routing protocol.

The remainder of the paper is organised as follows: In
Sect. II, we give a brief overview about the main function-
ality of Dynamic MANET On-demand (AODVv2) routing.
In Sect. III we present our formal model of AODVv2. The
model, which is discussed in Sect. III-B, is based on a process-
algebraic approach that we present in Sect. III-A. After that
we perform a first analysis of the AODVv2 routing protocol in
Sect. IV. In particular, we show that AODVv2 still establishes
non-optimal routes and that control messages can be lost.
Moreover, we argue that loop freedom cannot taken for granted
as the internet-draft suggests; a detailed and rigorous analysis
has to be carried out, which will be part of future work. Before
we summarise our work in Sect. VI, we discuss related work
in Sect. V.

II. DYNAMIC MANET ON-DEMAND ROUTING

AODVv2 [18] (aka. DYMO) is a reactive routing protocol
designed for WMNs, i.e., routes are searched, calculated and
discovered upon need, and every router only maintains the
routes that currently work and are needed. In this paper, we
model the latest version of AODVv2, the internet-draft 22,
dated March 12, 2012, including the feature of an intermediate
route reply (see below). The latter feature is crucial for
shortening route-discovery times and described in the internet-
draft 00, dated July 10, 2012 [19]. Due to its importance, we
have decided to include this feature in our model, although it
is not part of the main internet-draft any more—it was part of
AODVv2 until the internet-draft 21.

The basic routine of AODVv2 is similar to the one of
AODV: if a node S is required to send one or more data
packets to a target node T , but does not have a route stored
in its routing table, it buffers the data and initiates a route
discovery process by broadcasting a route request (RREQ)
message. The RREQ is typically forwarded by intermediate
nodes—nodes that are not the target. An intermediate node
that receives the RREQ message updates its routing table by
creating entries for a route to the originator of the message
(node S) and to all intermediate nodes that have forwarded
the RREQ message (path accumulation). After that, the node
typically re-broadcasts the request to its neighbours. This is
repeated until the RREQ reaches the target node T that replies
by unicasting a corresponding route reply (RREP) message
back to the source S along the previous established path. To
shorten route-discovery times, intermediate nodes are allowed
to and should reply on behalf of the target if they know a route
to T . An intermediate node that has this information updates
its routing table as usual; after that it unicasts a RREP message
back to the originator of the RREQ message (node S), but it
also unicasts a RREP message to the target node T . By this,
routes between S and T , and between T and S are established.

The RREP messages are forwarded by the intermediate
nodes along previously established routes. When forwarding
RREP messages, nodes create routing table entries for all
nodes that have already forwarded that route, to the originator
of the RREP message and, in case the originator is different
to the target of the original RREQ, also to the target node T .
After the RREP message has reached node S, a route from S
to T is established and data packets can start to flow.

In case of link breaks, AODVv2 uses route error (RERR)
messages to notify affected nodes, i.e., nodes that could
potentially use this link: if a link break is detected by a node,
it invalidates all routes stored in the node’s own routing table
that actually use the broken link. Then it broadcasts a RERR
message containing the unreachable destinations to all (direct)
neighbours using this route.

When updating routing table entries, nodes use sequence
numbers to determine the freshness of an entry. The larger
the sequence number, the fresher the information—a sequence
number with value 0 indicates that the number is not known.
To maintain the information about sequence numbers each

X(exp1, . . . , expn) process name with arguments
P +Q choice between processes P and Q
[ϕ]P conditional process;

execute P only if condition ϕ holds
[[var := exp]]P assignment followed by process P
broadcast(ms).P broadcast message ms followed by P
unicast(dest,ms).P I Q unicast ms to dest; if successful pro-

ceed with P ; otherwise with Q
deliver(data).P deliver data to application layer
receive(msg).P receive a message

TABLE I
MAIN CONSTRUCTS OF AWN ([10], [12])

node stores its own sequence number. It is a common belief
that sequence numbers are sufficient to guarantee loop freedom
if they are monotonically increased over time. Whenever a
node initiates a route request or a route reply, it increments its
own sequence number and transmits the incremented value as
part of the message. Whenever a RREQ or a RREP message
is forwarded, an intermediate node adds its sequence number
together with its IP-address to the content of the message.

Full details of the protocol are given in [18] and [19].

III. FORMAL MODELLING

Like most of the Standards, RFCs and internet-drafts main-
tained by the Internet Engineering Task Force (IETF), the
description of AODVv2 is given in English prose and follows
the philosophy of “rough consensus and working code”. It is
well-known that those descriptions are not adequate for widely
used protocols. Whoever uses the AODVv2 routing protocol
or any other protocol should be able to use the specification as
standard, unambiguous reference. Experience shows that this
is often not the case (e.g. [24]).

A. The specification language AWN

For our specification of AODVv2, we use AWN [10], a
process algebra specifically designed for WMNs. Key motiva-
tion for the use of AWN is the possibility of writing protocol
specifications in a simple, intuitive and unambiguious way that
makes the specification easy to read, to understand and to use.
Additionally, as all process algebras, AWN provides algebraic
laws that allow formal reasoning. The algebra offers three
necessary primitives for WMN routing: data structures, local
broadcast, and conditional unicast. The former allows us to
model routing tables, data packets and other structures needed
by the protocol. As usual, local broadcast describes message
sending to all connected neighbouring nodes in a network; and
the conditional unicast operator models the message sending
to exactly one node and chooses a continuation process
dependent on whether the message transmission was succesful.
These operations, as well as others, such as nondeterministic
choice and assignment, are summarised in Table I.

Recently, AWN was used to model and reason about
AODV [11]. Since AWN is a formal specification language,
it does not allow any ambiguities and hence a specification is
absolutely precise. Different readings of the original specifica-
tion (due to ambiguities) yield different AWN-models, which
then can be analysed and compared (e.g., [12]).

Process 1 RREQ Handling (Snippet)

RREQ(sip,hoplim,tip,tsn,oip,osn,odist,inodes , ip,sn,rt,store)
def
=

1. [ip = oip] /* node is originator of the message */
2. DYMO(ip,sn,rt,store)
3. + [ip 6= oip] /* node is not the originator */
4. (
5. [ip 6= oip ∧ rt = update(rt,oip,osn,sip,odist+ 1,req)] /* info is stale, loop possible, disfavoured or equivalent */
6. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */
7. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate nodes */
8. DYMO(ip,sn,rt,store)
9. + [ip 6= oip ∧ rt 6= update(rt,oip,osn,sip,odist+ 1,req)] /* route information is preferable (fresh enough) */

10. [[rt := update(rt,oip,osn,sip,odist+ 1,req)]]
11. [[inodes := distinc(inodes)]] /* increment distances to all intermediate nodes */
12. [[rt := updinter(rt,inodes,sip,req)]] /* update rt to intermediate node */
13. [ip = tip] /* node is target node */
14. [[sn := sn+ 1]] /* increment node’s own sequence number */
15. /* generate rrep message */
16. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,∅)) . DYMO(ip,sn,rt,store)
17. I /* if the transmission is unsuccessful, a RERR message is generated */
18. [[unodes := {(rip, sqn(rt,rip)) | rip ∈ kD(rt) ∧ nhop(rt,rip) = nhop(rt,oip)}]]
19. [[rt := invalidate(rt,unodes)]]
20. broadcast(rerr(ip,10,unodes)) . DYMO(ip,sn,rt,store)
21. + [ip 6= tip] /* node is not target node */
22. [tip ∈ kD(rt) ∧ sqn(rt,tip)> tsn] /* intermediate node generates route reply */
23. [[sn := sn+ 1]] /* intermediate node increments its own sequence number */
24. unicast(nhop(rt,oip),rrep(ip,10,oip,osn,ip,sn,0,{(tip,sqn(rt,tip),dist(rt,tip))})) . /* send RREP towards the originator of the request */
25. unicast(nhop(rt,tip),rrep(ip,10,tip,tsn,ip,sn,0,inodes ∪ {(oip, osn, odist+1)})) /* send RREP towards the target of the request */
26. I . . .
27.)

In this paper we present a formal model of AODVv2 using
the process algebra AWN. So far we have not used the full
power of AWN, such as formal reasoning; this will be part
of future work. However, writing the formal model already
revealed shortcomings (cf. Sect. IV) that are not easy to find
when reading the draft.

Additional explanations and a full description of AWN can
be found in [10], [11].

The process algebraic approach can easily be complemented
by model checking. The advantage of this dual approach is
that AWN can be used to prove essential properties, such as
loop freedom or route discovery. These proofs are valid for all
possible scenarios, i.e, they are independent of the network
topology of the ordering of route discovery processes etc.
However, during the modelling or design process, unexpected
behaviour, limitations or shortcomings should be discovered
quickly and, if possible, automatically. Here, model check-
ing techniques can be used. In our setting we use Uppaal
(e.g. [3]), a well established model checker that has been
used for protocol verification before. The two synchronisation
mechanisms provided by Uppaal, binary synchronisation and
broadcast channels, match with the AWN-primitives unicast
and broadcast. For our analysis of AODVv2 we use Uppaal
in two ways: (a) when we found a shortcoming in the protocol
during modelling, we used the simulation feature to quickly
verify this limitation; (b) we run our model with hundreds
of small topologies to detect limitations of the protocol. Of
course the properties we checked have to be given manually;
for our first analysis we took the properties used for AODV
in [8] and [9].

B. The formal AODVv2 model

Our formalisation of AODVv2 carefully follows the IETF’s
internet-drafts [18], [19]. Since the drafts are written in English

prose, they lack of clarity at several points and contains
ambiguities. There are even some unspecified scenarios. Hence
our formalisation is only one of many possible readings of
the drafts. However, it is our belief that the presented model
captures the intuition behind AODVv2.

So far our formalisation models the core functionalities
of AODVv2, including intermediate route reply, but abstracts
from timing aspects. Additionally, we model the injection, the
forwarding and the delivery of data packets. Although this is
not part of any routing protocol, it is crucial to trigger route
discovery processes and to formalise protocol properties.

Our AWN-model consists of around 150 lines split up into
six processes: (1) DYMO reads a message from the message
queue and, depending on the type of the message, calls other
processes. When there is no message handling going on, the
process can initiate the transmission of queued data packets
or generate a new route request; (2) PKT describes all actions
performed by a node when a data packet is received; (3) RREQ
models all events occurring when a route request is handled
(see below); (4) RREP describes the reaction of the protocol to
an incoming route reply; (5) RERR models the part of AODVv2
that handles error messages. In particular, it describes the
modification and forwarding of error messages; and finally, (6)
QMSG concerns message handling. Whenever a control message
is received, it is stored in a message queue.

In this paper, we only present a snippet of our model (see
Pro. 1); the full AWN-model including a description of the
data structure, all definitions of functions used, as well as the
corresponding Uppaal-model is available online at http://www.
hoefner-online.de/wripe12/.

Process 1 shows our specification of the handling of a
RREQ message received by a node ip. The node itself
maintains, next to its IP address, its own sequence number sn,

its routing table rt and a store for buffering data packets.
First, the node checks if it is the originator (oip) of the
RREQ message. If this is the case (Line 1), the message
is ignored and the main process DYMO is called (Line 2).
In case ip is not the originator, a test on the freshness of
the incoming route information is performed. A message is
considered fresh enough, if the routing table entry for the
originator oip is updated, i.e., the function update changes
the routing table.1 In case the routing table entry for oip is not
updated (Line 5), routes to intermediate nodes are updated or
created (Line 7), but the message itself is still dropped. In case
the received message contains fresh routing information for
the originator oip, this information as well as all information
about routes to intermediate nodes are inserted in the routing
table (Lines 10–12). Lines 14–20 deal with the case where
the node receiving the RREQ message is the intended target,
i.e., ip= tip (Line 13). In this case, first ip increments
its own sequence number. Then the node generates a RREP
message, which is unicast to the next hop on the route to oip

(Line 16). Parameters for the generation of the message are
the sender node ip, a hop limit2 (which is set to the value
10), the final destination of the message oip in combination
with its sequence number osn, as well as information about
the originator of the RREP message. The last parameter ∅
will be changed when the message is forwarded and will
contain information about all intermediate nodes. In case the
unicast fails, a route error message is generated and broadcast
(Lines 18–20). The remaining lines shown in the snippet
handle the case of intermediate route reply, i.e. ip is not the
target node, but has information that can be used to generate a
route reply. In that case two RREP messages are sent: the first
one to oip, the originator of the RREQ message (Line 24),
the second one to the target of the same message (Line 25).

IV. A FIRST ANALYSIS

Based on our formal model presented in the previous
section, we perform an analysis of AODVv2. In particular we
discuss which problems that already occured in AODV have
been solved in AODVv2 and which have not. All findings are
formally verified with Uppaal.

A. Message Losses

It is well known that AODV may lose route replies. This
is due to the fact that messages are only forwarded if the
routing table of an intermediate node is updated (changed).
That means, if the received control message does not contain
new content, it is ignored. An example, taken from the IETF
mailing list3, uses a linear topology of four nodes: S—A—
B—T . First, A establishes a route to T , using a standard
RREQ-RREP cycle. If intermediate node reply is deactivated
and S searches for a route to T , the RREQ message is
forwarded to T . Node T generates a RREP message. Node B
will not forward the reply since the message does not contain

1update returns the unchanged routing table if the information is stale.
2The remaining number of hops this message is allowed to traverse.
3http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

C
1

T
1

A
1

S
2

B
1

RREQ1

(a) S searches for a route to T .

C
1

T
2

A
2

S
2

B
1

RREP1

RRE
Q2

(b) T initiates route reply;
A searches for a route to T .

C
1

T
3

A
2

S
2

B
1

RREP2

(c) T sends route reply;
RREP2 overtakes RREP1.

C
1

T
3

A
2

S
2

B
1

RRE
P1

(d)B receives and drops RREP1.

Fig. 1. Lost Route Reply

new information about T . Similar scenarios can happen even
if intermediate nodes are allowed to generate route replies on
behalf of the target, see [12].

This shortcoming has been solved and addressed in
AODVv2: just before a node generates a message, it incre-
ments its own sequence number (Lines 14 and 23 of Pro. 1).
By this, the information about the originator of the message
is guaranteed to be “fresher” than any information stored in
any routing table. However, in AODVv2 nodes still forward
messages only if a route (to the originator of the message)
is updated (or created) (cf. Lines 5 and 9). Following this
strategy messages can be lost when messages “overtake” each
other. An example is given in Fig. 1. The numbers shown in
the nodes indicate the nodes’ sequence numbers. In Fig. 1(a),
node S initiates a route discovery process destined for T . The
message is forwarded to T via B and C. The link between
B and T either does not exist or the message travelling along
that link is lost. After that, in Fig. 1(b), T unicasts a reply
back to C. At the same time it receives another route request,
this time initiated by A. While the first reply is travelling via
C,4 RREP2 overtakes it and is received by node B first. B
updates its routing table and forwards the RREP message to
A. When the first reply finally arrives at B it is ignored, since
it carries older information about T .

Most likely S will find a route, when re-sending the request.
However, broadcasting requests always yields many messages
in the network; it would be more reasonable to forward all
RREP messages. Unfortunately, the situation is even worse.
In AODV only RREP message were lost; in AODVv2 RREQ
messages can be dropped as well. Since the freshness of RREQ
message are determined only by the use of sequence numbers,
a similar example can be constructed.5 Both examples were
found with the help of Uppaal.

B. Non-Optimal Routes

In [15] it is shown that current routing protocols such as
AODV often fail to select the best (shortest) routes. There,
it is shown that “poorly selected paths can have significantly
higher routing-metric costs, and their duration can extend to

4In reality there might be several nodes on the paths from T to C and from
C to B. We just keep the example small.

5In contrast to this, AODV keeps track of all RREQ messages previously
handled and avoids such scenarios.

S

B

T A
RREQ

R
R
E
Q

Fig. 2. Node A accidentally creates a non-optimal route to S.

minute time scales”. In AODV the only nodes that generally
discover optimal routes to the source and destination nodes are
those lying on the selected route between the source and the
target (or the intermediate node) generating the reply. Other
nodes may accidentally create non-optimal routes. The same
situation occurs in AODVv2; an example is sketched in Fig. 2.

Assume a “ring topology” with at least five nodes, where
node S searches for a route to T . The node S initiates a route
discovery process by broadcasting a RREQ message, which
is received by nodes B and T . Following the specification,
T generates a route reply, but does not forward the RREQ
message (cf. Pro. 1, Line 16). On the other hand, since B is
not the target node and does not have information about the
target, it continues to forward the received RREQ message.
Eventually, this message will be received by A. Although node
A is only two hops away from S, it will establish a non-
optimal route to S via B. In AODV the route to S is the only
non-optimal one. Since AODVv2 uses path accumulation, i.e.
every intermediate node adds information about itself, A may
establish many more non-optimal routes.

In case of AODV, it has been shown in [12] that this
shortcoming can be solved by allowing the target node to
forward the RREQ message. The same method solves the
problem in AODVv2. This would allow node A to establish its
optimal route to S. In addition, the forwarded RREQ message
from the destination node could be modified to include a flag
that indicates a RREP message has already been generated and
sent in response to the former message. This would prevent
other nodes from generating RREP messages.

C. Loop Freedom & Self-Entries

It is a common belief that sequence numbers are sufficient
to guarantee loop freedom if they are monotonically increased
over time. In the last but one internet draft of AODVv2
(DYMO) [17] it is written that “DYMO uses sequence num-
bers to ensure loop freedom [Perkins99]”. Here, [Perkins99]
refers back to AODV [16].6 However, it has been shown re-
cently that AODV is not a priori loop free and that some of the
open-source implementations can yield routing loops [23]. In
fact, loop freedom depends on non-evident assumptions to be
made when interpreting the English specification. Following
this result, loop freedom of AODVv2 cannot be taken for
granted.

Using our formal model in combination with tests per-
formed with the Uppaal model checker on several hundreds
topologies with up to 5 nodes we were not able to find a loop.

6In the current draft, this reference has been removed.

This strengthens the conjecture that (our model of) AODVv2
is loop-free. However, while looking at loop freedom, we
found out that nearly every node establishes self-entries, i.e.,
stores routing table entries to itself. The reason for this is
that nodes establish routes to all intermediate nodes. An
example is given in Fig. 3. Here, node B receives a RREQ

A B
RREQ

RREQ

Fig. 3. Node A establish a self-entry.

message that was sent by node A. In case that B forwards
the message, it adds information about itself to the content of
the message. The broadcast message is received by A, which
updates (creates) routing table entries to all nodes that have
handled this message before. This includes the node A itself.
In practice, when a node sends data to itself, it will not use
any routing protocol. Instead the packet will be delivered to the
corresponding application directly. However, the information
stored in the routing table is sent to neighbouring nodes by the
protocol. Broadcasting information about self-entries does not
make sense and, in case of AODV, might even yield routing
loops [23]. Due to this, self-entries should be forbidden in
AODVv2. A simple if-statement could achieve this.

V. RELATED WORK

The main tools for the evaluation of network routing proto-
cols are still provided by test-bed experiments and simulation.
In case of AODVv2, there are a bunch of performance evalua-
tions [1], [13], [14], [21], [22]. The first one for example shows
that the performance of AODVv2 is not as good as that of
AODV. As performance measurement the authors use, among
others, at the packet delivery ratio (PDR). However, none of
the papers list reasons for the problematic performance.

Looking at formal models, there is only one other approach
we are aware of, namely coloured Petri nets [5], [7]. Both
papers model AODVv2 (different versions). The models pre-
sented differ in the size and in the capability of modelling
different topologies. Finally [5], [7] perform test runs to
“prove” that the models behave as expected. Again, an analysis
is not provided. Moreover it is difficult to see that the model
captures the main functionality of AODVv2, since Petri nets
do not correspond nicely to the description given in the draft
nor to a programming language. This is in contrast to our
approach using AWN, which should be easy to understand.

Of course, formal methods such as process calculi and
model checking have been used in the past to analyse dif-
ferent protocols. For example, [25] uses the Alloy analyser
in combination with the Spin model checker to show that no
published version of the Chord ring-maintenance protocol is
correct. Other approaches use the model checkers Spin and
Uppaal, respectively, to analyse AODV, the predecessor of
AODVv2 [4], [6], [9]. For example, it was shown with the
help of Spin that an early draft of AODV could create routing
loops [4].

VI. CONCLUSION AND FUTURE WORK

In this paper we have used the process algebra AWN to
model the Dynamic MANET On-demand (AODVv2) routing
protocol. The formal model is based on the latest draft and
captures the main functionalities of the protocol, but abstracts
from timing aspects. Moreover, we have derived a model for
Uppaal. Both (isomorphic) models have been used to do a
first analysis of the routing protocol. Doing this, we have
revealed shortcomings of AODVv2 and have sketched possible
solutions. To the best of our knowledge, we are the first who
found limitations in AODVv2 (DYMO) in general and in the
current draft of AODVv2 in particular. The latter might not
be surprising since the latest draft we built on ([19]) was
published only two weeks ago, but shows nicely that a formal
analysis does not need much time.

Surely, all the presented problems could theoretically be
found by test-bed experiments, simulations or just by “staring”
at the draft. However, experience with test-beds and simula-
tions show that these approaches need some amount of time to
be set up and it takes usually a long time to find shortcomings.

So far we have done only a first analysis of the protocol.
A more rigorous analysis using formal proving techniques of
AWN and model checking is part of future work. In partic-
ular, we plan to provide a formal proof of loop freedom of
AODVv2. There are good reasons to believe that the protocol
under consideration is loop-free, but contrary to common
belief this cannot be taken for granted. Examples of other
protocols that were thought to be loop free and were not are
known (e.g. [4], [23]). In parallel we want to evaluate the
limitations found. In particular we want to use experiments to
find out how often they occur in real network scenarios. Hence,
mainly simulation techniques will be used. More further work
will be the careful analysis and the implementation of the
improvements suggested for AODVv2.

REFERENCES

[1] M. Amin, M. Abrar, Z. U. Khan, Andusalam, and S. Rizwan, “Com-
parison of OLSR & DYMO routing protocols on the basis of different
performance metrics in mobile ad-hoc networks,” American Journal of
Scientific Research, 2011.

[2] F. Baker and D. Meyer, “Internet protocols for the smart grid,” RFC
6272 (Informational), June 2011, request for Comments. [Online].
Available: ftp://ietf.org/rfc/rfc6272

[3] G. Behrmann, A. David, and K. Larsen, “A Tutorial on UPPAAL,”
in Formal Methods for the Design of Real-Time Systems, ser. LNCS,
M. Bernardo and F. Corradini, Eds. Springer, 2004, vol. 3185, pp.
200–236, http://dx.doi.org/10.1007/978-3-540-30080-9\ 7.

[4] K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification of
standards for distance vector routing protocols,” J. ACM, vol. 49, no. 4,
pp. 538–576, 2002.

[5] J. Billington and C. Yuan, “On modelling and analysing the dynamic
MANET on-demand (DYMO) routing protocol,” in Transactions on
Petri Nets and Other Models of Concurrency III (ToPNoC), ser. LNCS,
K. Jensen, J. Billington, and M. Koutny, Eds. Springer, 2009, pp. 98–126.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04856-2 5

[6] S. Chiyangwa and M. Kwiatkowska, “A timing analysis of AODV,”
in Formal Methods for Open Object-based Distributed Systems
(FMOODS’05), ser. LNCS, vol. 3535. Springer, 2005, pp. 306–321.

[7] K. Espensen, M. Kjeldsen, and L. Kristensen, “Modelling and
initial validation of the DYMO routing protocol for mobile ad-
hoc networks,” in Applications and Theory of Petri Nets (PETRI
NETS’08), ser. LNCS, K. M. van Hee and R. Valk, Eds.,
vol. 5062. Springer, 2008, pp. 152–170. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68746-7 13

[8] A. Fehnker, R. J. van Glabbeek, P. Höfner, A. McIver, M. Portmann,
and W. L. Tan, “Modelling and analysis of AODV in UPPAAL,” in
Workshop on Rigorous Protocol Engineering (W-RiPE’11), 2011.

[9] ——, “Automated analysis of AODV using UPPAAL,” in Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’12),
ser. LNCS, C. Flanagan and B. König, Eds., vol. 7214. Springer, 2012,
pp. 173–187.

[10] ——, “A process algebra for wireless mesh networks,” in European
Symposium on Programming (ESOP’12), ser. LNCS, H. Seidl, Ed., vol.
7211. Springer, 2012, pp. 295–315.

[11] ——, “A process algebra for wireless mesh networks used for modelling,
verifying and analysing AODV,” NICTA, Tech. Rep. 5513, 2012, http:
//www.nicta.com.au/pub?id=5513.

[12] P. Höfner, R. J. van Glabbeek, W. L. Tan, M. Portmann, A. McIver,
and A. Fehnker, “A rigorous analysis of AODV and its variants,” in
Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWIM’12). ACM Press, 2012.

[13] D. Johnson and A. Lysko, “Comparison of manet routing protocols
using a scaled indoor wireless grid,” Mob. Netw. Appl., vol. 13, no.
1-2, pp. 82–96, 2008. [Online]. Available: http://dx.doi.org/10.1007/
s11036-008-0048-2

[14] D.-W. Kum, J.-S. Park, Y.-Z. Cho, and B.-Y. Cheon, “Performance
evaluation of AODV and DYMO routing protocols in MANET,” in
Consumer Communications and Networking Conference (CCNC’10).
IEEE, 2010, pp. 1046–1047. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1834217.1834455

[15] S. Miskovic and E. W. Knightly, “Routing primitives for wireless
mesh networks: Design, analysis and experiments,” in Conference on
Information Communications (INFOCOM’10). IEEE, 2010, pp. 2793–
2801.

[16] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,”
in Mobile Computing Systems and Applications (WMCSA’99), 1999,
pp. 90–100. [Online]. Available: http://dx.doi.org/10.1109/MCSA.1999.
749281

[17] C. Perkins and I. Chakeres, “Dynamic MANET on-demand (DYMO)
routing,” IETF Internet Draft, January 2011, (Work in Progress).
[Online]. Available: http://tools.ietf.org/html/draft-ietf-manet-dymo-21

[18] ——, “Dynamic MANET on-demand (AODVv2) routing,” IETF
Internet Draft, March 2012, (Work in Progress). [Online]. Available:
http://tools.ietf.org/html/draft-ietf-manet-dymo-22

[19] ——, “Intermediate RREP for dynamic MANET on-demand (AODVv2)
routing,” IETF Internet Draft, July 2012, (Work in Progress). [Online].
Available: http://tools.ietf.org/html/draft-perkins-irrep-00

[20] M. Saksena, O. Wibling, and B. Jonsson, “Graph grammar modeling
and verification of ad hoc routing protocols,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’08), ser. LNCS,
C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.
18–32.

[21] M. Saleem, S. A. Khayam, and M. Farooq, “On performance
modeling of ad hoc routing protocols,” EURASIP J. Wirel. Commun.
Netw., vol. 2010, pp. 31:1–31:13, 2010. [Online]. Available: http:
//dx.doi.org/10.1155/2010/373759

[22] E. Spaho, L. Barolli, G. Mino, F. Xhafa, and V. Kolici, “Goodput
evaluation of AODV, OLSR and DYMO protocols for vehicular
networks using CAVENET,” in Network-Based Information Systems
(NBIS ’11). IEEE, 2011, pp. 118–125. [Online]. Available: http:
//dx.doi.org/10.1109/NBiS.2011.27

[23] R. J. van Glabbeek, P. Höfner, W. L. Tan, and M. Portmann, “Se-
quence numbers do not guarantee loop freedom—AODV can yield
routing loops,” (submitted), 2012, http://rvg.web.cse.unsw.edu.au/pub/
AODVloop.pdf.

[24] P. Zave, “Experiences with protocol description,” in Workshop on
Rigorous Protocol Engineering (W-RiPE’11), 2011.

[25] ——, “Using lightweight modeling to understand CHORD,” SIGCOMM
Comput. Commun. Rev., vol. 42, no. 2, pp. 49–57, 2012. [Online].
Available: http://doi.acm.org/10.1145/2185376.2185383

