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Abstract. Wireless Mesh Networks (WMNs) are self-organising ad-hoc
networks that support broadband communication. Due to changes in
the topology, route discovery and maintenance play a crucial role in
the reliability and the performance of such networks. Formal analysis of
WMNs using exhaustive model checking techniques is often not feasible:
network size (up to hundreds of nodes) and topology changes yield state-
space explosion. Statistical Model Checking, however, can overcome this
problem and allows a quantitative analysis.

In this paper we illustrate this by a careful analysis of the Ad hoc On-
demand Distance Vector (AODV) protocol. We show that some optional
features of AODV are not useful, and that AODV shows unexpected
behaviour—yielding a high probability of route discovery failure.

1 Introduction

Route finding and route maintenance are critical for the performance of networks.
Efficient routing algorithms become even more important when mobility of net-
work nodes lead to highly dynamic and unpredictable environments. The Ad hoc
On-Demand Distance Vector (AODV) routing protocol [16] is such an algorithm.
It is widely used and particularly designed for Wireless Mesh Networks (WMNs),
self-organising ad-hoc networks that support broadband communication.

Formal analysis of routing protocols is one way to systematically analyse
protocols for flaws and to present counterexamples to diagnose them. It has
been used in locating problems in automatic route-finding protocols, e.g. [1,4].
These analyses are performed on tiny static networks (up to 5 nodes). However,
formal validation of protocols for WMNs remains a challenging task: network size
(usually dozens, sometimes even hundreds of nodes) and topology changes yield
an explosion in the state space, which makes exhaustive model checking (MC)
techniques infeasible. Another limitation of MC is that a quantitative analysis
is often not possible: finding a shortcoming in a protocol is great but does not
show how often the shortcoming actually occurs.
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Statistical model checking (SMC) [20,19] is a complementary approach that
can overcome these problems. It combines ideas of model checking and simula-
tion with the aim of supporting quantitative analysis as well as addressing the
size barrier. SMC trades certainty for approximation, using Monte Carlo style
sampling, and hypothesis testing to interpret the results.

In this paper we demonstrate that SMC can be used for formal reasoning of
routing protocols in WMNs. We perform a careful analysis of different versions
of the AODV protocol. In particular, we analyse how dynamic topologies can
affect the protocol behaviour. In other words, we analyse the performance of
the protocol while the network topology evolves. We show that some optional
features provided by AODV should be avoided since they affect the performance
of the protocol. Moreover, we show that in some scenarios the behaviour of
AODV is not as intended yielding a high probability of route discovery failure.
When possible we suggest improvements of the protocol.

The paper is organised as follows: in Sect. 2 we give an overview of AODV,
present optional features such as the resending of route requests, and sketch
the encoding of AODV in SMC-Uppaal, the statistical extension of Uppaal. In
Sect. 3 we describe the mobility model, which is used for our analysis of AODV.
Sect. 4 discusses the experiments performed, the main contribution of this paper:
(i) We show that a single mobile node can have a massive impact on the success
of route discovery. Moreover we show that some options of AODV should not
be used in combination, unless the protocol specification is adapted (changed).
(ii) A second category of experiments reveals a surprising observation: adding
“noise” (for example an additional data packet) to a network can increase the
success of route discovery. (iii) The third category discusses the consequences of
different speeds of mobile nodes. The paper closes with a discussion of related
work in Sect. 5 and a short outlook in Sect. 6.

2 AODV, its Variants and their Uppaal Models

2.1 The Basic Model

The AODV routing protocol [18] is a widely used routing protocol, particularly
tailored for WMNs. It is currently standardised by the IETF MANET working
group and forms the basis of new WMN routing protocols, including HWMP in
the upcoming IEEE 802.11s wireless mesh network standard [12].

AODV is a reactive protocol, meaning that a route discovery process is only
initiated when a node S in the network has to send data to a destination D for
which it does not have a valid entry in its own routing table. The route discov-
ery process starts with node S broadcasting a route request (RREQ) message,
which is received by all nodes within S’s transmission range. If a node, which
is different to the destination, receives a RREQ message and does not have a
valid entry for the destination in its routing table, the request is forwarded by
re-broadcasting the RREQ message. During this forwarding process, the inter-
mediate node updates its routing table and adds a “reverse route” entry with
destination S into its routing table, indicating via which next hop the node S can
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be reached, and the distance in number of hops. To avoid unnecessary message
sending each RREQ has a unique identifier which allows nodes to ignore RREQ
messages that they have handled before.

As soon as the RREQ is received by the destination itself or by a node that
knows a valid route to the destination, a route reply (RREP) is generated. In
contrast to RREQ messages, a RREP message is unicast, i.e., it is only sent to
a single node, not to all nodes within transmission range. The RREP message
travels from its generator (either D or an intermediate node knowing a route
to D) back along the established route towards S, the originator of the RREQ
message. All intermediate nodes on the selected route will process the RREP
message and, in most cases, forward it towards S. However, there are scenarios
where RREP message are discarded (see below). By passing a RREP message
towards S, a node adds a “forward route” entry to its routing table.

The route discovery process is completed when the RREP reaches node S; an
end-to-end route from S to D has been established, and data packets can start to
flow. If any link breaks down (e.g. by a node moving out of transmission range),
the node that detects the break broadcasts a route error (RERR) message.1 All
notified nodes invalidate their routing table entries that use the broken link and
forward the RERR message if necessary.

Full details can be found in RFC 3561 [16], the de facto standard of AODV.

2.2 Variants of AODV

The specification of AODV [16] offers optional features, which yield different
variants of the routing protocol. One aim of this paper is to compare versions of
AODV with different features turned on.

Destination Only (D) Flag. Each RREQ message contains a field called
destination only flag. If the value of this Boolean flag is true, it indicates that
only the destination node is allowed to respond to this RREQ. That means that
the RREQ travels through the entire network until it reaches the destination.
Only then a reply is sent back. By this a bi-directional link between the source
and the destination is (usually) established.

Resending a Route Request. The basic version of AODV, as presented in the
previous section, suffers the problem that some routes, although they do exist,
are not discovered. Reasons for route discovery failure can be message transmis-
sion failures (the receiver of a unicast message has moved out of transmission
range) or the dropping of RREP messages, that should be forwarded. With re-
spect to the latter, the problem is that a node only forwards a RREP message if
it is not the originator node, and it has created or updated a routing table entry
to the destination node described in the RREP message. [16]

1 Following the RFC, a node uses precursor lists to store those nodes that are interested
in some particular routes—when sending an RERR message only those neighbours
are informed. However, precursor lists do not contain all neighbours that are inter-
ested in a particular route (e.g. [8]); that is why we model an improved version of
AODV where RERR messages are broadcast.
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Fig. 1. Route Discovery Failure

An example for route discovery failure, taken from [10], is sketched in Fig. 1.2

On the 4-node topology depicted in Part (a) nodes S and T , resp., initiate a route
discovery process to search for a route to D. The messages travel through the
network and reach the destination D (Part (b)). We assume that RREQS�D, the
request stemming from S, reaches nodeD first. In Part (c),D handles RREQS�D,
creates an entry for S in its routing table3 and unicasts a RREP message to A.
Node A updates its routing table (creates an entry for D) and forwards the
message to the source S. In Part (d), D handles RREQT�D, creates an entry
for T in its routing table and unicasts a RREP message to A. Since RREPT�D
does not contain new information for A (a route to D is already known), node
A does not update its routing table and, according to the specification, will not
forward the RREP message to the source T . This leads to an unsuccessful route
discovery process for node T .

The solution proposed by the RFC is to initiate a new route discovery process,
if no route has been established 2 seconds after the first request was sent; the
number of retries is flexible, but the specification recommends one retry only. In
the example node T would initiate another route request; node A, which receives
the RREQ message, will immediately unicast a RREP message back to T .

Local Repair. In case of a link break, the node upstream of that break can
choose to repair the link locally if the destination was no farther away than a
predefined number of hops (the number is specified by the user and often depends
on the network size). When a node receives a RREP message or a data packet
destined for a node for which it does not have a valid route, the node buffers
the message and initiates a new route discovery process. As soon as a route has
been re-established, the buffered message is sent.

2.3 Modelling AODV and its Variants in Uppaal

Table 1 lists all variants of AODV that are modelled, analysed and compared in
this paper. The analysis is performed by SMC-Uppaal, the statistical extension

2 A similar example has been published at the IETF mailing list in 2004; http://www.
ietf.org/mail-archive/web/manet/current/msg05702.html.

3 Routing tables are not presented in the figure.

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
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name optional features remark

basic none follows description of Sect. 2.1

resend resending RREQ “standard” configuration of AODV

dflag D-flag the flag is set for all route discovery processes

dflag res D-flag and resending this configuration has a flaw (see below)

dflag res’ D-flag and resending not following the RFC literally, but flaw fixed

repair local repair use local repair

Table 1. Different Variants of AODV

of Uppaal [3]. The modelling language for SMC-Uppaal is the same as for “stan-
dard” Uppaal, namely networks of guarded, timed and probabilistic automata.

Our 6 models of (all variants of) AODV are based on a single untimed Up-
paal model that was used to analyse some basic qualitative properties [7].4 Since
we are interested in a quantitative analysis of the protocol, the model had to
be equipped with time and probability. The latter is needed to model dynamic
topologies and mobile nodes. Hence, the (untimed) model was significantly re-
designed and extended to include timing constraints on sending messages be-
tween nodes. Both the untimed and the timed model were systematically derived
from an unambiguous process-algebraic model that models the intention of the
RFC and does not contain contradictions. Communication between nodes had
to be modelled so that the unicast behaviour of AODV was correctly rendered
using SMC-Uppaal’s (only) broadcast mechanism.

Each node of a network is modelled by two timed automata: the first models
a message queue that buffers received messages, the other models the AODV
routine. This main routine consists of ∼ 20 locations, 1 clock measuring the
sending time, and a complicated data structure with approx. 10 variables. The
latter includes an array rt of length N modelling the routing table, where N is
the number of nodes in the network. The overall structure of the main automaton
is depicted in Fig. 2(a), it consists of 7 regions. If the automaton is in the region
Idle, which consists of one location only, then AODV does not perform any
action in the moment and the automaton is ready to receive messages. This
happens in Rec if there is at least one message buffered. The regions Rreq,
Rrep, Rerr and Pkt perform actions depending on the type of the received
message. Rreq for example handles route request messages. Init initiates the
transmission of data injected by the user as soon as the route is established.

Message handling often contains actions for updating the internal data (such
as routing tables) and sending of a message. Fig. 2(b) gives an impression of such
an update by showing a snippet of the automaton modelling the forwarding of
a RREQ message.

Message sending is the only action that takes time: according to the spec-
ification of AODV [16], the most time consuming activity is the communica-
tion between nodes, which takes on average 40 milliseconds; all other times are
marginal and assumed to be 0.

4 Our models can be found at http://www.hoefner-online.de/formats2013/.

http://www.hoefner-online.de/formats2013/


6 Peter Höfner, Maryam Kamali

IDLE

Rreq
Rrep

Pkt

Rerr

Rec

Init

(a) Structure

dip:IP

dip:IP

clk>=time_sending−time_spread
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isconnected(ip,rt[dip].nhop)

clk>=time_sending−time_spread

!nexterrempty(msglocal.sip)

nexterrempty(msglocal.sip)

clk>=time_sending−time_spread

!rt[msglocal.dip].flag 
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&& msglocal.oip!=ip
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!rt[msglocal.dip].flag 
&& msglocal.dip!=ip
&& msglocal.oip==ip
&& queues[msglocal.dip]==0

clk>=time_sending−time_spread

rt[msglocal.dip].flag 
&& msglocal.dip!=ip

clk>=time_sending−time_spread

rt[msglocal.dip].flag 
&& msglocal.dip!=ip 
&& !isconnected(ip,rt[msglocal.dip].nhop)

!rt[msglocal.dip].flag 
&&msglocal.dip!=ip
&& msglocal.oip==ip
&& queues[msglocal.dip]>0

msglocal.dip==ip

clk>=time_sending−time_spread

rt[msglocal.dip]!= update(rt[msglocal.dip],msglocal.dsn,1,1,msglocal.hops+1,msglocal.sip)
&& msglocal.oip!=ip 
&& rt[msglocal.oip].flag 
&& !isconnected(ip,rt[msglocal.oip].nhop)

clk>=time_sending−time_spread

rt[msglocal.dip]!= update(rt[msglocal.dip],msglocal.dsn,1,1,msglocal.hops+1,msglocal.sip)
&& msglocal.oip!=ip && rt[msglocal.oip].flag

rt[msglocal.dip] !=update(rt[msglocal.dip],msglocal.dsn,1,1,msglocal.hops+1,msglocal.sip)
&& msglocal.oip==ip

rt[msglocal.dip]!=update(rt[msglocal.dip],msglocal.dsn,1,1,msglocal.hops+1,msglocal.sip)
&& msglocal.oip!=ip && !rt[msglocal.oip].flag

rt[msglocal.dip] == update(rt[msglocal.dip],msglocal.dsn,1,1,msglocal.hops+1,msglocal.sip)

clk>=time_sending−time_spread

!rreqs[msglocal.oip][msglocal.rreqid] 
&& msglocal.dip!=ip && rt[msglocal.dip].flag 
&& msglocal.dsn<=rt[msglocal.dip].dsn 
&& rt[msglocal.dip].dsk==1
&& !isconnected(ip,oipnhop())

clk>=time_sending−time_spread

!rreqs[msglocal.oip][msglocal.rreqid] 
&& msglocal.dip==ip
&& !isconnected(ip,oipnhop())

clk>=time_sending−time_spread
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clk>=time_sending−time_spread
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&& msglocal.dip==ip
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msglocal.msgtype==RREQ

msglocal.msgtype==NONE msglocal.msgtype==NONE

createerrip(rt[diptmp].nhop),
createerrsn(rt[diptmp].nhop),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
idle[ip]=1

diptmp=dip,
clk=0,
idle[ip]=0

queues[diptmp]−−,
msgglobal=createpkt(diptmp,ip),
idle[ip]=1

diptmp=dip,
clk=0,
idle[ip]=0

propagateerr(msglocal.sip),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
deleteerr(),
deletemsg(),
idle[ip]=1

clk=0

deleteerr(),
deletemsg(),
idle[ip]=1

msgglobal=createerr(ip),
emptyerrsnglobal(),
emptyerripglobal(),
errsnglobal[msglocal.dip]=rt[msglocal.dip].dsn,
erripglobal[msglocal.dip]=1,
deletemsg(),
idle[ip]=1

clk=0

queues[msglocal.dip]++,
sn=(sn==0)?0:(sn+1),
rreqid++,
rreqs[ip][rreqid]=1,
msgglobal=createreq(0,rreqid,msglocal.dip,rt[msglocal.dip].dsn,rt[msglocal.dip].dsk,ip,sn,ip),
deletemsg(),
idle[ip]=1

clk=0

msgglobal=msglocal,
deletemsg(),
idle[ip]=1

clk=0

createerrip(rt[msglocal.dip].nhop),
createerrsn(rt[msglocal.dip].nhop),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
deletemsg(),
idle[ip]=1

clk=0

queues[msglocal.dip]++,
deletemsg(),
idle[ip]=1

deletemsg(),
idle[ip]=1,
delivered++

rt[msglocal.dip]=update(rt[msglocal.dip], msglocal.dsn, 1, 1, msglocal.hops+1, msglocal.sip),
createerrip(rt[msglocal.oip].nhop),
createerrsn(rt[msglocal.oip].nhop),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.dip]=update(rt[msglocal.dip], msglocal.dsn, 1,1, msglocal.hops+1, msglocal.sip),
msgglobal=
createrep(msglocal.hops+1,msglocal.dip,msglocal.dsn,msglocal.oip, ip) ,
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.dip]=update(rt[msglocal.dip], msglocal.dsn, 1, 1, msglocal.hops+1, msglocal.sip),
deletemsg(),
idle[ip]=1

rt[msglocal.dip]=update(rt[msglocal.dip], msglocal.dsn, 1,1, msglocal.hops+1, msglocal.sip),
deletemsg(),
idle[ip]=1

deletemsg(),
idle[ip]=1

rt[msglocal.oip]=update(rt[msglocal.oip], msglocal.osn, 1,1, msglocal.hops+1, msglocal.sip),
rreqs[msglocal.oip][msglocal.rreqid]=1,
createerrip(rt[msglocal.oip].nhop),
createerrsn(rt[msglocal.oip].nhop),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.oip]=update(rt[msglocal.oip], msglocal.osn, 1, 1, msglocal.hops+1, msglocal.sip),
rreqs[msglocal.oip][msglocal.rreqid]=1,
sn=(sn>msglocal.dsn)?sn:msglocal.dsn,
createerrip(rt[msglocal.oip].nhop),
createerrsn(rt[msglocal.oip].nhop),
invalidatert(erriplocal,errsnlocal),
msgglobal=createerr(ip),
erripglobal=erriplocal,
errsnglobal=errsnlocal,
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.oip]=update(rt[msglocal.oip], msglocal.osn, 1,1, msglocal.hops+1, msglocal.sip),
rreqs[msglocal.oip][msglocal.rreqid]=1,
msgglobal=createreq(msglocal.hops+1,msglocal.rreqid,msglocal.dip,
 (msglocal.dsn>rt[msglocal.dip].dsn)?msglocal.dsn:rt[msglocal.dip].dsn, msglocal.dsk,
  msglocal.oip,msglocal.osn,ip),
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.oip]=update(rt[msglocal.oip], msglocal.osn, 1, 1, msglocal.hops+1, msglocal.sip),
rreqs[msglocal.oip][msglocal.rreqid]=1,
msgglobal=createrep(rt[msglocal.dip].hops,msglocal.dip,rt[msglocal.dip].dsn,msglocal.oip,ip),
deletemsg(),
idle[ip]=1

clk=0

rt[msglocal.oip]=update(rt[msglocal.oip], msglocal.osn, 1,1, msglocal.hops+1, msglocal.sip),
rreqs[msglocal.oip][msglocal.rreqid]=1,
sn=(sn>msglocal.dsn)?sn:msglocal.dsn,
msgglobal=createrep(0,msglocal.dip,sn,msglocal.oip,ip),
deletemsg(),
idle[ip]=1

clk=0

deletemsg(),
idle[ip]=1

sipupdate()

sipupdate()

sipupdate()

msglocal=msgglobal,
idle[ip]=0

msglocal=msgglobal,
erriplocal=erripglobal,
errsnlocal=errsnglobal,
idle[ip]=0

RERR_pro

RREQ_pro RREP_pro

PKT_pro

AODV_pro

rerr[ip]!

tau[ip]!

pkt[ip][rt[diptmp].nhop]!
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pkt[ip][rt[msglocal.dip].nhop]!

rerr[ip]!

rerr[ip]!

rrep[ip][rt[msglocal.oip].nhop]!

rerr[ip]!

rerr[ip]!

rreq[ip]!

rrep[ip][oipnhop()]!

rrep[ip][oipnhop()]!

tau[ip]!
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imsg[ip]? ierr[ip]?

clk<=time_sending+time_spread clk<=time_sending+time_spread clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

clk<=time_sending+time_spread

(b) Detail: updating data and forwarding a message

Fig. 2. Overall structure of the SMC-Uppaal model of AODV

Our models cover all core components of AODV. However, we encoded one
main assumption: whenever a message is sent and the receiver of the message
is within transmission range, the message will be received. In reality message
loss during transmission happens regularly, for example due to communication
failures or packet collisions. This loss could easily be modelled using Uppaal’s
broadcast mechanism in combination with probabilistic automata. However, this
abstraction enables us to interpret a failure of guaranteed message delivery as an
imperfection in the protocol, rather than as a result of a chosen formalism not
allowing guaranteed delivery. Due to lack of space we cannot give more details
about the modelling; more details about the model basic can be found in [11].

Next to the automata modelling the behaviour of the node, two additional
automata are needed: the first is a scenario generator initiating the route discov-
ery process, i.e., it forces one of the nodes to generate and broadcast a RREQ
message. The second automaton models the mobility within the network.

3 Modelling Dynamic Topologies

To analyse quantitative properties of AODV and to compare different variants
in a dynamic network, we use a topology-based mobility model [9]. It reflects the
impact of mobility on the network topology and distinguishes static and mobile
nodes; only connections to and from mobile nodes can change. Each movement
is characterised either by adding a new link to or by removing an existing link
from the connectivity graph. Whenever a mobile node M enters the transmission
range of a node A, a new link is established between M and A. If M leaves the
transmission range, the link between these two nodes is removed.

To decrease the number of possible topology changes due to a large number
of mobile nodes, we set up the topology as follows: the network consists of 16
static and one mobile node.5 The static nodes form a 2-dimensional rectangular
grid with grid size 1, i.e. the smallest distance between two nodes is 1 unit
(cf. Fig. 3(a)); the transmission range is set to 1.25. In reality, 1 unit might
correspond to 100 metres, the transmission range to 125 m, a realistic value.

5 We also performed experiments with more than one mobile node; but these experi-
ments do not show new (odd) results.
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A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

(a) grid with 16 nodes (static topology)

M

(b) node moving between zones
(transmission ranges are indicated)

Fig. 3. Topology-based mobility model

The transmission ranges of the nodes Aij (1 ≤ i, j ≤ 4) split the grid into 102
different zones. The different zones are shown in Fig. 3(a). When a mobile node
M moves within a zone, the exact position of the node does not matter, since
it does not enter or leave the transmission range of any node—the connectivity
graph stays the same. For example any node that is within the central zone is
connected to nodes A22, A23, A32 and A33 (cf. Fig. 3(b)) When M transits the
border of a zone, it triggers a network topology change. Only the change of the
connectivity graph is considered, other details such as the exact direction and
angle of transmitting are not needed for characterising the dynamic network. In
the example given in Fig. 3(b), M moves to the left and enters the transmission
range of A21. Next, in fainter colours, the node enters transmission range of A31

and leaves the range of A23.
The topology-based model captures the topology changes as a Markovian

transition function prob(T1, T2), that assigns to two topologies T1 and T2 a
transition probability. The probability of moving from one zone to a neighbouring
zone is based on the ratio of the length the two zones share compared to the
overall border length of the zone in which the node is in. For instance, the
probability of transiting from the central segment of the grid to any adjacent
zone is 1

8 , due to equal segment lengths.
Our model sets the speed of the mobile node in such a way that the node

has to change zones every 35–45 time units, where the probability to leave the
zone at time t is equally distributed in the interval.

The zones can be grouped by their shapes; each shape forms an equivalence
class. The Uppaal model reflects this observation. Each mobile node is modelled
by a separate timed and probabilistic automaton; each location of the automaton
characterises exactly one equivalence class. (See [9] for details.)

4 Experiments

Our experiments analyse the impact of mobile nodes and dynamic topologies on
AODV; they are grouped into several categories: the first category analyses the
probability of route establishment for a single route discovery process, i.e., an
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originator node oip is searching for a route to dip; the second category analyses
the likelihood of route establishment between oip and dip when additional route
discovery processes occur; the last category changes the speed of the mobile node.

Before discussing the experiments, we briefly describe some foundations of
statistical model checking. SMC [20,19] combines ideas of model checking and
simulation with the aim of supporting quantitative analysis as well as addressing
the size barrier that prevents useful analysis of large models. By trading certainty
for approximation, it uses Monte Carlo style sampling, and hypothesis testing to
interpret the results. The sampling follows the probability distribution defined by
the non-deterministic and probabilistic automata. Parameters setting thresholds
on the probability of false negatives (α) and on probabilistic uncertainty (ε)
can be used to specify the statistical confidence on the result. SMC-Uppaal
computes the number of simulation runs needed by using Chernoff-Hoeffding
bounds, which is independent of the size of the model; it generates an interval
[p− ε, p+ ε] for estimating p, the probability of CTL-property ψ holding w.r.t.
the underlying probability distribution.

For most of our experiments we use “only” a confidence level of 95% and
allow a large probabilistic interval of 10%—this is the default setting of SMC-
Uppaal and means that both α and ε are set to 5%. When using this set up,
SMC-Uppaal simulates 738 runs to determine the probability of a property.

Experiments with α= ε= 1% (26492 runs) are also feasible with a standard
desktop machine, but require much more time. While an experiment using a
confidence level of 95% takes only a couple of minutes; an experiment using a
level of 99% takes more than 3 hours. We illustrate this by our first experiment.

4.1 Single Route Discovery Process

Our first experiment is based on 17 nodes; 16 forming a grid (Fig. 3(a)) and one
mobile node M which is located in the middle of the grid at the beginning of
the experiment. After a delay between 140 and 160 time units (the time that
the mobile node needs to perform four movements) the first RREQ message is
broadcast. By this delay, the location of M is random at the point the route
discovery process is initiated.

In the experiment A11 searches for a route to A44, that means it initiates
a route discovery process. We are interested whether (and at which time) A11

establishes a route to A44. In Uppaal syntax this reachability property is

Pr[<=2000](<>A11.rt[A44].nhop!=0) . (1)

Checking this query determines the probability (Pr) satisfying the CTL-path
expression <>(A11.rt[A44].nhop!=0) with a time bound of 2000 time units;
we choose this bound as a conservative upper bound to ensure that the analyser
explores paths to a depth where the protocol is guaranteed to have terminated.
The term ip.rt[dip] refers to a route to dip stored inside the routing table of
node ip. Whenever the next hop nhop is set ( 6= 0), a route has been established.

The results are summarised in Table 2. From an experimental point of view,
the table shows that a confidence level of 99% does not yield much better results
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probability time Uppaal
model conf. level route discovery route discovery running time

1. basic 95% [55.4336,65.4336] 595.67 4m 18s
2. basic 99% [59.7806,61.7806] 597.52 157m 44s
3. resend 95% [95.00,100.00] 847.04 6m 03s
4. resend 99% [98.9623,100.00] 836.87 209m 43s
5. dflag 95% [54.4851,64.4851] 597.50 4m 52s
6. dflag 99% [59.5655,61.5655] 597.63 164m 21s
7. dflag res 95% [64.5122,74.5122] 698.70 7m 47s
8. dflag res 99% [68.2133,70.2133] 688.79 249m 12s
9. dflag res’ 95% [81.3144,91.3144] 822.89 7m 08s

10. dflag res’ 99% [83.4104,85.4104] 807.43 230m 57s
11. repair 95% [59.7696,69.7696] 607.86 7m 31s
12. repair 99% [63.5742,65.5742] 606.53 165m 11s

Table 2. Single Route Discovery Ratio (confidence level 95% and 99%)6

than a confidence level of 95%; but the running times of Uppaal (last column)
are much higher (in average by a factor of 33.6).

Next to the running times of Uppaal the table lists the model (first column),
the probability of a successful route discovery (third column) and the average
time needed to establish a route between A11 and A44 (fourth column). It is no
surprise that the models basic and dflag yield the same results—in this setting
they behave identically. Furthermore, it is obvious that the probability for suc-
cessful route discovery increases when using the resend option, while at the same
time the discovery time increases as well. However, the experiments reveal three
surprising and unexpected observations concerning AODV.

Observation 1 A single mobile node can already have a massive impact on the
success of route discovery. In our setting the probability of route discovery can
decrease by about 40%.

A32 A33 A34

A44

M

Fig. 4. Mobile node shortens
distance

Using the same setting without mobility
(e.g., the mobile node does not exist or keeps
sitting in the centre of the grid), the probability
of route discovery success is 100%. The success
rate in our experiment using AODV basic, is
only 60.78±1% (Row 2 of Table 2). The setting
of the experiment guarantees that the RREQ
reaches the destination A44 and that A44 will
generate a route reply. It means that the route reply, which is unicast back via
a previously established path gets lost. Since the experiment consists of a single

6 We use a standard computer equipped with a 3.1 GHz Intel Pentium 5 CPU, 16 GB
memory, running a Mac OS operating system. As SMC-tool, we use SMC-Uppaal,
the Statistical extension of Uppaal (release 4.1.11) [3], which supports both timed
and probabilistic systems. Timing aspects are heavily needed to model AODV (cf.
Sect. 2); the topology-based mobility model relies on probabilistic choices to deter-
mine the movement of the node.
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request only, RREP messages are not dropped and situations as the one sketched
in Fig. 1 cannot occur. As a consequence, failure in route discovery means that
a RREP message could not be unicast, which means that the established route
from A44 to A11 uses the mobile node.

At first glance it seems to be impossible that 40% of all established routes
use the mobile node as intermediate hop. But a closer analysis on time interval
when a route for A11 is discovered shows that this is in fact the case since a route
via a mobile node can shorten the distance between originator and destination.
In general, AODV prefers shorter routes, hence it would choose the route via
the mobile node M . Fig. 4 illustrates how a mobile node decreases the distance
between A32 and A44 from 3 hops to 2. The lesson learned is that static nodes
should be set up in a way that it is unlikely for a mobile node to shorten the
distance, or static and mobile nodes should be distinguished and routes via static
nodes only should be preferred, even if they are longer.

Observation 2 The model dflag res does not yield much improvement w.r.t.
route discovery compared to basic and is much worse than using resend alone.

The chance that a route is established by the first route discovery process is
around 60% (cf. basic). In case no route is established (chance ∼ 40%), a new re-
quest is issued; the chance that this second request yields a route establishment
between A11 and A44 is again 60%. Putting these numbers together the success
rate for dflag res should be 0.6 + 0.4 · 0.6≈ 0.84 = 84%. Surprisingly, the prob-
ability determined by our experiments is only around 70% in case of dflag res
(Row 7 and 8 of Table 2). That means that many RREP messages are lost (using
the same reasoning as before, no RREQ message is lost). The explanation lies
in the RREP-forwarding mechanism of AODV. As explained in Sect. 2, RREP
messages are not forwarded if they do not contain new information. Let us now
assume that the first RREQ reaches the destination A44, which unicasts a RREP
message to the next hop on the route back to A11, say to node A34. This reply
gets lost afterwards. Since the resend-option is set, the originator issues another
request, which also reaches A44. In case the route to A11 is not changed in A44’s
routing table, A44 sends another RREP message to A34. This message does not
contain new information and is dropped by the intermediate node.

To repair this flaw, we change the RREP-generation procedure. Whenever a
RREP message is generated, a counter (the sequence number), which indicates
the freshness of the message is incremented.7 This change is implemented in
dflag res’ ; the evaluation results for this model are now as expected.

Observation 3 AODV’s option of intermediate route reply should be used.

Let us have a look at the models resend and dflag res’. The difference be-
tween the two models is that in the former model intermediate nodes are allowed
to reply. Looking at the results, we notice a dramatic difference in the likelihood
of route discovery. In the model resend the second request is followed by the

7 In fact AODVv2 and LOADng, the successor protocols of AODV (still under devel-
opment), implement exactly this variant.
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generation of more than one RREP message. In fact, each node that estab-
lished a route to A44 during the first RREQ-RREP-cycle (before the reply was
lost), will generate a RREP message. Due to this, route establishment is guar-
anteed. In contrast, there is only one RREP message for each and every request
in dflag res’. This observation clearly indicates that intermediate route reply
is a useful feature. Interestingly, there seems to be the tendency of preferring
protocols without this feature: the two successors of AODV, AODVv2 [17] and
LOADng [6] follow this philosophy and set the D-flag as default—if at all, they
allow intermediate route reply as an optional feature.
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Fig. 5. Probability of route-establishment

The first set of experiments
considered a route discovery from
A11 to A44, the largest distance
a packet can travel in our set
up. We expected to see the clear-
est results by using this distance.
However, we also performed ex-
periments with all other pairs of
nodes. Fig. 5 summarises some
results. It illustrates the proba-
bility of route-discovery (y-axis)
depending on the distance be-
tween originator and destination
(x-axis). Of course, the larger
the distance between originator
and destination, the smaller the
chance of route establishment. Interestingly, there is a clear drop down at a dis-
tance of four nodes. It seems that from this point on resending guarantees the
success. Moreover, the graph illustrates that exhaustive MC cannot help: MC is
usually limited to topologies of up to 6 nodes, distances of 5 hops and more are
not possible if one considers a non-linear topology.

4.2 Two Independent Route Discovery Processes

In order to evaluate the performance of variants of AODV under different net-
work (traffic) load, we check the probability of route discovery when two route
discovery processes are performed in parallel. For this second set of experiments,
we are again interested in a route from A11 to A44. However, shortly (35-45 mil-
liseconds) after the packet is handed over to A11, a second data packet is injected
at another node, destined for some destination; in fact we did experiments for
all destinations, but present only two observations—due to lack of space.

Observation 4 RREP messages are dropped more often than expected.

We consider the scenario where the second request is sent from A22 to A44.
Since some nodes drop RREP messages (cf. Sect. 2.2), the probability of route
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distance orginator class probability

between orig. of 2nd request (avg.)

1 {A12, A21} nodes at border 43.36%

2 {A13, A31} nodes at border 17, 75%
{A22} inner node 13.28%

3 {A14, A41} nodes at border 43, 10%
{A23, A32} inner nodes 29.74%

4 {A24, A42} nodes at border 71, 61%
{A33} inner node 47.29%

5 {A34, A43} nodes at border 80.42%

Table 3. Two route discovery processes looking for the same destination A44

establishment between A11 and A44 should decrease (compared to the 60% of
Table 2). However, SMC-Uppaal shows that the probability of A11 finding a route
to A44 is in the probability interval [8.27913, 18.2791], i.e., a route discovery is
unlikely. More results for the basic model are summarised in Table 3, grouped
by the distance between the two originators. The table lists only the originator
of the second route request; both the originator (A11) of the first request and
the destination (A44) of both requests are fixed.

There is a correspondence between the success of route discovery and the
distance between the two originators; moreover inner nodes have more influence
on route discovery than nodes lying on the border of the network. This shows that
the example of Fig. 1 occurs regularly. However, if the second originator oip2 is
far away from the first originator A11 no RREP message is dropped, since a route
between oip2 and A44 is established before the RREQ from A11 reaches oip2. In
the case of oip2 ∈ {A24, A42, A34, A43}, the probability even increases. This is in
line with Observation 3: when intermediate route reply is enabled, more RREP
message are generated and the probability of route discovery success grows.

Observation 5 “Busy” mobile nodes increase the chance of route discovery.

One could rephrase this observation to “adding noise sometimes increases
performance”. At first glance it seems that adding additional network traffic—
here a second route discovery processes—should not increase performance. But,
let us look the scenario where the first data packet needs to be send from A11

to A44 (as before); the second packet is sent from A31 to the mobile node M .
While handling the second RREQ most of the nodes will not learn about A44

and A11. However it turns out that in the basic model, the probability of route
discovery increases from around 60% to 72%. One reason is that the mobile node
handles the request and generates a RREP message. While doing this it cannot
handle the first RREQ; in case the first RREQ is sent to M and it is handling a
different messages (is busy), the message is buffered. If the message is buffered
for a while, the chance that the RREQ from A11 reaches A44 via a path without
M as an intermediate hop, increases. Hence not the shortest, but the “fastest”
route is established from A44 to A11; this route is then used to send the RREP,
since it does not use the mobile node as intermediate hop, the RREP is not lost.
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model probabilityfast probabilitymoderate probabilityslow

basic [48.5230,58.5230] [55.4336,65.4336] [61.9377,71.9377]

resend [94.8645,100.00] [95.00,100.00] [94.3225,100.00]

dflag [50.0136,60.0136] [54.4851,64.4851] [63.2927,73.2927]

dflag res [60.1762,70.1762] [64.5122,74.5122] [70.6098,80.6098]

dflag res’ [75.8943,85.8943] [81.3144,91.3144] [85.5149,95.5149]

repair [54.0786,64.0786] [57.6016,67.6016] [65.5962,75.5962]

Table 4. different mobile node speed and impact on AODV variants

4.3 Influence of Speed of Mobile Nodes

In our experiments the topology changes within a time frame of 35 to 45 mil-
liseconds; This also determines the speed of the mobile node. One might argue
that the speed of the mobile node affects our analysis and that other speeds
could yield different behaviour. As shown in Table 4, this is not the case—the
probabilities slightly change, but stay in the same ball park. Moreover the re-
lationship between the different variants stays the same; a variant that is more
reliable with a fast mobile node, is also more reliable with a slower node. For
this category of experiments we enforce a topology change within the interval
[25, 35] (fast), [35, 45] (moderate), and [95, 105] (slow), respectively.

5 Related Work

Model checking has been used to analyse routing protocols in general and AODV
in particular. For example, Bhargavan et al. [1] were amongst the first to use
model checking—they used the SPIN model checker—on a draft of AODV,
demonstrating the feasibility and value of automated verification of routing pro-
tocols. Musuvathi et al. [15] introduced the CMC model checker primarily to
search for coding errors in implementations of protocols written in C. They used
AODV as an example and, as well as discovering a number of errors, they also
found a problem with the specification itself, which has since been corrected.
Chiyangwa and Kwiatkowska [4] used the timing features of UPPAAL to study
the relationship between the timing parameters and the performance of route
discovery. None of these studies performed a quantitative analysis of AODV.

Statistical model checking techniques [20,19] are rather new. So far they
have been used in a couple of case studies. Bulychey et al. [2] for example apply
the SMC-Uppaal to an analysis of an instance of the Lightweight Media access
Control (LMAC) protocol; by this they are able to analyse ring topologies of
up to 10 nodes.8 Applications of SMC within biological systems are discussed
in [5,13]. To the best of our knowledge, SMC was not used for the analysis of
routing protocols so far—except in [11], where SMC-Uppaal is used to compare
AODV and DYMO and to illustrate that even large topologies (up to 100 nodes)
can be analysed by SMC. Our experiments are in line with this. However, it is
unique in the sense that we carefully study variants of AODV.

8 Other case studies include firewire, bluetooth, and a train gate
(see http://people.cs.aau.dk/~adavid/smc/cases.html for an overview).

http://people.cs.aau.dk/~adavid/smc/cases.html
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6 Conclusion and Future Work

The aim of this paper has been a careful (quantitative) analysis of AODV and
its variants using statistical model checking techniques. By this, we have made
surprising observations on the behaviour of AODV. We have shown for exam-
ple that some optional features (D-flag) should not be combined with others
(resending). Another result shows that a well-known shortcoming occurs more
often than expected and has a tremendous effect on the success of route estab-
lishment. One challenge we faced while performing our experiments has been the
interpreting the data.

The results were often surprising and hard to interpret, particularly when
they indicate odd behaviour. Unfortunately SMC-Uppaal does not store traces
during analysis, thus it is difficult to recover counterexamples to explain the
observations. At the moment counter examples are constructed “by hand” by
formulating more probing queries beyond looking at overall performance. This
suggests that more powerful statistical analysis such as “rare event simulation”
in combination with multiple queries could be used to compile better evidence.

Next to this careful analysis, we also showed that SMC is a suitable tool for
analysing WMNs. In this setting classical MC was limited to topologies with up
to 6 nodes and therefore having a realistic mobility model was not possible.

Future work will be a continuation of our case study. In particular we want
to look at topologies of up to 100 nodes—it has been shown that an analysis
of such networks is possible [11]. However, choosing the right scenario is crucial
here: Since one cannot analyse all scenarios, one has to pick the right topologies
and the right mobility model(s); but in some sense finding the correct setting
becomes a “stab in the dark”. We hope that our previous experience helps to
set the experiments right.
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