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Abstract. Several case studies indicate that model checking is limited
in the analysis of mesh networks: state space explosion restricts appli-
cability to at most 10 node networks, and quantitative reasoning, often
sufficient for network evaluation, is not possible. Both deficiencies can be
overcome to some extent by the use of statistical model checkers, such as
SMC-Uppaal. In this paper we illustrate this by a quantitative analysis
of two well-known routing protocols for wireless mesh networks, namely
AODV and DYMO. Moreover, we push the limits and show that this
technology is capable of analysing networks of up to 100 nodes.

1 Introduction

Wireless Mesh Networks (WMNs) are self-organising ad-hoc networks that sup-
port broadband communication without relying on a wired backhaul infrastruc-
ture. They have gained popularity through their flexibility which allows them
to be used in a diverse range of applications, from emergency response to trans-
portation systems. Automatic route-discovery, maintenance and repair play a
fundamental role in reliability and performance of such networks where typical
scenarios include dynamic topologies. The engineering challenge is to design pro-
tocols which facilitate good service in spite of these harsh operating conditions.

Traditional approaches to the analysis of WMN protocols are simulation
and test-bed experiments. While these are important evaluation methods they
are typically used for testing implementations rather than design specifications.
Moreover, the analysis is restricted to global properties such as overall through-
put or message delay. Formal analysis of specifications is one way to systemati-
cally screen protocols for flaws and to present counterexamples to diagnose them.
It has been used in locating problems in automatic route-finding protocols [2, 9].

Unfortunately, current state-of-the art model checkers are unable to handle
protocols of the complexity needed for WMN routing in realistic settings. In
previous work [8] we used the model checker Uppaal to analyse basic qualitative
properties of the Ad hoc On-Demand Distance Vector (AODV) routing proto-
col, one of four protocols currently standardised by the IETF MANET working
group. We were able to analyse systematically all network topologies of up to
five nodes. Although this provides a partial analysis, as does simulation, the
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network sizes are far from realistic and quantitative information such as proba-
bilities were not included. In this paper we investigate whether statistical model
checking can combine the systematic methodology of “classical” model checking
with the ability to analyse quantitative properties and realistic scenarios.

Statistical Model Checking (SMC) [20, 19] combines ideas of model check-
ing and simulation with the aim of supporting quantitative analysis as well
as addressing the size barrier that currently prevents useful analysis of large
models. SMC trades certainty for approximation, using Monte Carlo style sam-
pling, and hypothesis testing to interpret the results. We are interested in timed
systems and so we use SMC-Uppaal, the Statistical extension of Uppaal (re-
lease 4.1.11) [4], which supports the composition of timed and/or probabilistic
automata. The sampling is carried out according to the probability distribu-
tion defined by the probabilistic automata. Parameters setting thresholds on the
probability of false negatives (α) and on probabilistic uncertainty (ε) can be used
to specify the statistical confidence on the result. SMC-Uppaal computes the
number of simulation runs needed by using the theoretical Chernoff-Hoeffding
bounds (O

(
1
ε2 ln

2
α

)
), which crucially is independent of the size of the model.

SMC-Uppaal generates an interval [p− ε, p+ ε] for estimating p, the probability
of CTL-property ψ holding w.r.t. the underlying probability distribution.

In this paper we model two routing protocols for WMNs: AODV and DYMO
(Dynamic MANET On-demand).1 One aim is to understand the role of the
different design choices via a number of performance and correctness measures.
We analyse the performance, both over a complete set of topologies for small
networks as well as for medium-to-large network sizes. Since the complexity and
size of these protocols go far beyond what can be analysed with standard model
checking, these case studies provide excellent test bases for demonstrating the
power and capacity of the new statistical tools. We illustrate here the range
and depth of the analysis which is achievable with statistical analysis, which we
believe is currently not possible using traditional simulation alone.

In Sect. 2, we give an informal summary of routing, followed by a descrip-
tion of our Uppaal models, concentrating particularly on timing aspects. Four
categories of experiments are discussed in Sect. 3. The first presents a timing ana-
lysis of AODV; the second and third provide a thorough comparison of AODV
against DYMO both w.r.t. overall performance and quality of the routes dis-
covered, where we find some surprising trends. Finally we demonstrate that this
analysis is scalable, illustrated by redoing a selection of experiments for networks
consisting of up to 100 nodes. In Sect. 4, we review related work and, in Sect. 5,
we reflect on the challenges ahead for SMC.

2 Routing Protocols and their Architecture

On demand routing protocols such as AODV and DYMO are designed to estab-
lish routes only when needed, typically when a new data packet is injected by

1 Since March 2012, DYMO is sometimes referred to as AODVv2.
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a user (application layer). Each node maintains its own routing table thereby
enabling it to act as its own router. Routing tables can be updated whenever
new messages are handled, since incoming messages carry a wealth of informa-
tion concerning network connectivity simply because they have just successfully
travelled from somewhere. Nodes mine that information in different ways, which,
as our analysis shows, yields different behavioural profiles.

The collective information in the nodes’ routing tables is at best a partial
representation of network connectivity as it was sometime in the past; in the
most general scenarios mobility continually modifies that representation. Nodes
following either AODV or DYMO store information about a route towards a
possible destination d (if a route has been discovered) as follows. The total
number of hops in the route (hops), the identity of the very next hop in the
route (nhop), a “destination sequence number” (dsn) (a measure of the freshness
of the entry), and a “validity flag” (flag),2 which is unset whenever information
arrives indicating that one of the downstream links in the route is broken. Whilst
currently our analysis only looks at static topologies we nevertheless find that
these protocols do not always perform as we would expect.

2.1 Basic Architecture for Ad Hoc Routing

AODV and DYMO follow the same basic architecture. Each node maintains a
message queue to store incoming messages and a processor for handling messages.
Whilst the queue is always enabled to receive messages, message handling can
take time and so communication between queue and handler occurs only when
the handler has successfully processed a message. The workflow of the handler
is as follows: first, the next (oldest) message is loaded from its message queue.
Depending on the type of message (see below) the routing table is updated and,
if necessary, a new message is created, and either broadcast or unicast.

The AODV Architecture. Each node maintains its own destination sequence
number, routing table and keeps a record of the messages it has already re-
ceived (or initiated). It also manages a queue to store data packets waiting to
be delivered. Messages are handled appropriately according to their type:

PKT Messages containing data packets play no part in route-finding. In the
case that a node has a valid route for the PKT’s destination, the packet is
forwarded to nhop, the next hop on the route. In the case that the data
packet is injected by the application layer and no (valid) route is known,
the packet is placed on the node’s packet queue, and a route discovery
process is initiated by broadcasting an appropriate RREQ message.

RREQ Route requests are messages, broadcast to every node within transmission
range. They contain information about the originator of the route discov-
ery process, the neighbour that most recently sent it, and the number of
nodes through which the request travelled. All of this information is avail-
able for updating routing tables. The same request can be received via

2 AODV calls it ValidDestination Sequence Number flag ; DYMO Route.Broken.
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different routes and so nodes maintain a record of those that have already
been handled so that duplicates can be discarded. For new requests, the
following actions are taken. (a) If the node is either the destination or has
a valid route to the destination stored in its routing table, a route reply
(RREP) message is generated, which is unicast back to most recent sender.
(b) If the node is neither the destination nor has any information about
the destination, it increments the hop count and broadcasts it on.

RREP Replies are “logically” matched up with the corresponding request that
gave rise to it so that a route for the requested destination can be es-
tablished. The routing table is updated for that destination, by recording
nhop as the neighbour from which the RREP was received and similarly
taking hops and dsn from the RREP. Only if the routing table was changed
during the update, the hop count of the RREP is increased and then (in
the case that the node was not the original initiator) forwarded to the
neighbour from which the corresponding request was received.

RERR Error messages are generated whenever link breaks are detected by some
nodes. Often this occurs when a message (RREP or PKT) fails to be sent. In
these cases an error message is sent to all neighbours. If an RERR message is
received the routing tables are updated—in particular routes are marked
as invalid, and the error message is forwarded to all neighbours.

This informal introduction to AODV should be sufficient to understand the
experiments described below. A detailed description can be found in [14].

The DYMO Architecture. DYMO [15] follows the same basic workflow as
AODV. In this section we only highlight the major design differences.3

(a) DYMO’s mechanism for managing duplicate requests is no longer based on
a queue of handled RREQ messages. Instead DYMO uses sequence numbers
to judge whether information contained in a message should be forwarded.
While this modification saves some memory, it has been shown that the
change can lead to loss of route requests [6].

(b) On the other hand AODV can lose route replies since RREP messages are only
forwarded if the routing table of an intermediate node is updated (changed).4
To avoid this, a node generating a route reply increments the sequence num-
ber for the destination, thereby guaranting that the routing table of nodes
receiving the RREP message will be updated, and the RREP forwarded.

(c) DYMO establishes bidirectional routes between originator and destination.
When an intermediate node initiates a route reply, it unicasts a message
back to the originator of the request (as AODV does), but at the same time
it forwards a route reply to the intended destination of the route request.

(d) DYMO uses the concept of path accumulation: whenever a control message
(RREQ, RREP, RERR) travels via more than one node, information about all
intermediate nodes is stored in the message. In this way, a node receiving a
message establishes routes to all other intermediate nodes. In AODV nodes
only establish routes to a the initiator and to the sender of a message.

3 Our model is based on DYMO’s internet draft version 22.
4 http://www.ietf.org/mail-archive/web/manet/current/msg05702.html
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Fig. 1: Automaton modelling the Queue.

These changes imply (as intended) quite different behaviour: for example (c) and
(d) might mean that DYMO establishes many more routes in the network as a
whole than does AODV. On the other hand (a) could imply that some routes
might not be discovered at all. We investigate some of these differences below.

2.2 AODV and DYMO in Uppaal

In previous work [8], an untimed Uppaal model of AODV was developed and used
to analyse some basic qualitative properties. In this paper we extend that analysis
to quantitative properties combining time and probability. As a consequence the
models needed a significant redesign to include timing constraints on sending
messages between nodes, as well as redesigning communication between nodes
so that the unicast behaviour of DYMO and AODV was correctly rendered using
SMC-Uppaal’s (only) broadcast mechanism.

We model AODV and DYMO as a parallel composition between node pro-
cesses, where each process is a parallel composition of two timed automata, the
Handler and the Queue. Communication between nodes i and j is only feasible
if they are in transmission range of each other. This is modelled by predicates
of the form isconnected[i][j], which is true if and only if i and j can com-
municate. Communication between different nodes i, j are on channels named
according to the type of message being delivered (rerr, rrep, rreq).

The Queue of a node ip is depicted in Fig. 1. Messages (arriving from other
nodes) are stored in a queue, by using the function addmsg. Our model guarantees
that messages sent by nodes within transmission range are received.

The Handler, modelling the message-handling protocol, is far more com-
plicated and has around 20 locations. It is busy while sending messages, and
can only accept a new message from the Queue once it has completely finished
handling a message. Whenever it is not processing a message and there are mes-
sages stored in the Queue, the Queue and the Handler synchronise via channel
imsg[ip], transferring the relevant message data from the Queue to the Handler.
The Handler then follows the workflow sketched in Sect. 2.1. Due to lack of
space, we cannot present the full timed automaton modelling the Handler, but
it is available in full online5. Here, we concentrate on our treatment of time.

According to the specification of AODV [14], the most time consuming activ-
ity is the communication between nodes, which takes on average 40 milliseconds.
5 http://www.hoefner-online.de/nfm2013/
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(a) untimed model
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(b) timed model

Fig. 2: Part of Handler—unicast a message.

In Fig. 2 we compare the extract of a model without time (as used in [8]) with the
corresponding extract including time. For the untimed model we simply guard
the communication with isconnected so that the message (here a rrep) is sent
whenever the nodes are connected, and an error message is generated otherwise.
In the timed model, we use a clock variable t, set to 0 before transmission, and
then we use an intermediate location which has the effect of selecting a delay of
at least 35 milliseconds and no more than 45 milliseconds uniformly at random.
In the case that the nodes are still connected at the time of sending then the
rrep message is successfully transmitted, and otherwise an error is reported.6

3 Experiments

The experiments split into four categories: a timing analysis of AODV (Sect. 3.1);
a comparison between AODV and DYMO (Sect. 3.2); a quantitative analysis of
the two protocols (Sect. 3.3); and a feasibility study of networks of realistic size
(Sect. 3.4). The experiments of the first three categories use the following setup:
3.1GHz Intel Pentium 5 CPU, with 16GB memory, running the Mac OSX 10.7
operating system. The final category needs 128GB memory (3.3GHz). For all
experiments we use SMC-Uppaal 4.1.11 (June 2012). In the first three categories,
the parameters of false negatives (α) and probabilistic uncertainty (ε) are both
set to 0.01—yielding a confidence level of 99% and SMC-Uppaal checks 26492
runs (cf. Chernoff-Hoeffding bound). The last category uses, due to its calcula-
tional complexity, only 738 runs and a confidence level of 95% (α= ε=0.05).

3.1 A Timing Analysis of AODV

The first category extends experiments performed for the untimed model for
AODV [8], exploring in more depth the surprising result that AODV might fail
to discover an existing route in 47% of all network topologies with up to 5 nodes.
6 This complexity needs to be inserted because a change in connectivity could result in
nodes being connected at the start of transmission, but become disconnected before
the transmission is completed.
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For the experiments we generate all topologies of up to 5 nodes, where for
each topology we consider three distinct nodes A, B and C; each with particular
originator/destination roles as per scenario described below. Up to symmetry
this yields 444 topologies. For each scenario we analyse three properties; in total
this requires approximately 4000 experiments for this category.

Initially, for each scenario no routes are known. Then, with a time gap of
35–45 milliseconds, two of the distinct nodes receive a data packet and have to
find routes to the packets’ destinations. The scenarios assign roles as follows:
(i) A is the only originator sending a packet first to B and afterwards to C;
(ii) B and C are originators both sending to A;
(iii) A is sending to B first and then B is also an originator sending to C;
(iv) B is an originator sending to C followed by A sending to B.
For each scenario we analyse two properties and their combination. The first
property examines the time taken for the protocol to complete, i.e., until all
messages have been handled, which encoded in Uppaal’s syntax as

Pr[<=10000](<> (tester.final && emptybuffers())) (1)

This query asks for the probability estimate (Pr) satisfying the CTL-path ex-
pression <>(tester.final && emptybuffers()) within 10000 time units (mil-
liseconds); we choose this bound as a conservative upper bound to ensure that
the analyser explores paths to a depth where the protocol is guaranteed to have
terminated. tester refers to a process which injects the data packets to the orig-
inators (tester.final means that all data packets have been injected), and the
function emptybuffers() checks whether the nodes’ message queues are empty.

The second property examines the time for requested routes to be established.
This differs from (1) since routes are usually found before all buffers are emptied.

Pr[<=10000](<> (OIP1.rt[DIP1].nhop!=0 && OIP2.rt[DIP2].nhop!=0)) (2)

Here, o.rt[d].nhop is the next hop in o’s routing table entry for destination d.
As soon as this value is set (is different to 0), a route to d has been established.

The third property combines the first two and analyses the time which is
needed to finish the protocol and to establish the routes; this estimates the
proportion of runs which end without ever finding a route.

Pr[<=10000](<> (tester.final && emptybuffers() &&
OIP1.rt[DIP1].nhop!=0 && OIP2.rt[DIP2].nhop!=0))

(3)

For every scenario, SMC-Uppaal evaluates the property under consideration
for 26492 runs and returns a probability interval [p−0.01, p+0.01], where p is
the averaged probability over all runs. Probability theory implies that with a
likelihood of 99% the “real” value is inside this interval.

Fig. 3 displays the results for all 5-node networks.7 The x-axis represents the
time (in milliseconds) for the property to be satisfied; the y-axis represents the
average number of simulation runs per topology for the property to be satisfied.
7 The graphs for network sizes 3 and 4 look similar and can be found at
http://www.hoefner-online.de/nfm2013/
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Fig. 3: A timed analysis of AODV (5-node topologies).9

For example the highest peak in (b) shows that 720 simulation runs (out of
26492) need 164ms to finish the protocol. Figs. (b–d) refer to Properties (1), (2)
and (3). Each graph depicts the results for each scenario. For example the solid
graph corresponds to the the first scenario (A is the originator and B and C
are the destinations). The overall probability that the property is satisfied is
indicated by the percentage given in the legend.8

Analysis of the results. All of the experiments yield a periodic behaviour of
roughly 40 milliseconds corresponding to the average time for sending a message.
Surprising is that the performance of AODV is fairly stable across scenarios.
8 More precisely, the probability shown is the average of all medians of the probability
intervals returned by Uppaal.

9 Figures 3, 4 and 7 have been produced using the tool R [16].
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Fig. 3(b) shows that AODV always terminates and presents the running
times for termination. Fig. 3(c) shows that in general route establishment occurs
much earlier; the results also show that AODV cannot always establish routes:
in the case of 3-node topologies routes are not established in 11.7% of all cases;
for networks with 4 nodes in 10.85% of all cases; and in case of 5 nodes in
approximately 10% of all cases.

Fig. 3(d) confirms that the quantitative analysis gives significantly more in-
sight than an untimed analysis such as reported in [8]. There, we considered a
similar property and found that in 47.3% of all 5-node topologies there is the
possibility of route-discovery failure—a quantitative analysis was not possible.
Our quantitative analysis shows that failure to find a route can now be estimated
at around 10%. There are two reasons for this dramatic difference. First, the in-
clusion of time ruled out some scenarios where route failure was due to messages
overtaking each other. Second, and more significant, the new analysis determines
the number of runs (not the number of topologies), where route discovery fails
and indicates that discovery failures are rare: whereas in half of the topologies
route failure is possible [8], in only ∼10% of all runs failure actually happens.

3.2 AODV versus DYMO

In Sect. 2 we have outlined the design differences between AODV and DYMO.
Moreover, we have speculated on what those differences might imply w.r.t. over-
all performance. We now run exactly the same experiments as described in
Sect. 3.1, this time for DYMO. The results averaged over all 4-node networks
and all scenarios for both routing protocols are presented in Fig. 4; in these
diagrams we also indicate the average times by vertical bars.

To our surprise, the variation in performance between the two is marginal:
DYMO appears to be more reliable in that it can establish more routes than does
AODV in some cases (Fig. 4(b,c)). DYMO takes on average longer to complete
(Fig. 4(a)) but the average time to find routes is almost exactly the same as for
AODV (Fig. 4(b)).

A first analysis of the circumstances behind the observed non-establishment of
routes in DYMO is presented in [6], indicating that problems occur when mess-
ages can overtake others. The reason why DYMO needs longer running times is
the additional RREP-message sent to the destination of a route request (cf. Page 4).

3.3 Quantitative Measurements

So far we have looked at running times and route discovery. In this section we
illustrate how to the use Value-Estimation-Feature (E) of SMC-Uppaal to explore
the quality and quantity of the routes established by AODV and DYMO.

One side effect of broadcasting route requests is that intermediate nodes,
which handle those requests, are able to establish routes to the originator. Whilst
this certainly represents an increase in “knowledge” across the network, there is
no guarantee that the routes established are optimal. In [13] it is shown that non-
optimal paths can impact overall performance of packet delivery dramatically.
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Fig. 4: AODV vs. DYMO (4-node topologies)

We examine two properties: the total number of routes established over all
routing tables, averaged over all network topologies for up to 5 nodes; and the
average difference between the length of the route established and the length of
the optimal route.

Route Quantity. Routing tables are updated whenever control messages are
received. In case of RREQ and RREP messages, AODV does so only for the origi-
nator/destination and for the sender of the message, whereas DYMO uses path
accumulation (cf. Page 4). This difference in design implies that DYMO could
potentially establish more routes than AODV. We check whether this is indeed
the case for all topologies and all scenarios described earlier using the property

E[<=10000;26492](max:total_knowledge()) (4)
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Here, the function total_knowledge() counts the number of entries in all rout-
ing tables along a run (path); max takes the largest of these values. Since value
estimation does not determine the number of runs, we set it to the same number
as determined previously (26492); the time bound is again set to 10000.

3 nodes 4 nodes 5 nodes
AODV 5.28 8.83 13.99
DYMO 5.25 7.87 11.94

max 6 12 20

Table 1: Average number of routes found

Table 1 presents the results,
grouped by network size. Note
that the last row shows the max-
imal number of possible rout-
ing table entries: this is n ·(n−1)
since each node can hold n−1
entries in an n-node network.
To our surprise, DYMO estab-

lishes fewer routes on average than does AODV. (Although it does establish
more of the requested routes Fig. 4.) A possible explanation is the following:
when DYMO floods the network with the first RREQ, many nodes establish many
routes (more than with AODV), due to path accumulation. When the second
RREQ is sent, the chance of an intermediate route reply is now greater (than for
AODV)—an intermediate route reply means that the RREQ is not forwarded, thus
additional opportunities to create routes in receiving nodes are suppressed.10

Route Quality. In almost all routing protocols based on RREQ-broadcast, non-
optimal routes can be established [13]. This can happen when the destination
does not forward the RREQ message, as the example in Fig. 5 shows. The scenario
depicts node S searching for a route to node T . As soon as T receives the RREQ
message, it generates a route reply, and suppresses the RREQ. Node A receives
the same RREQ via B and establishes a non-optimal path to S via B.

In our second experiment we check the extent of establishing non-optimal
routes. We use the query E[<=10000;26492](max:quality()), which is sim-
ilar to (4), but instead uses a function quality that compares the length of
established routes with the length of the corresponding optimal routes.11

The results in Table 2 show that the average deviation from the optimal
length (in %�) is small; which is to be expected in small networks. More inter-
esting is that again DYMO performs less well than AODV. Again a potential
explanation for this is the implication of path accumulation in DYMO. In the
example, node A establishes a (non-optimal) route to S, but because of path
accumulation node A will also establish a non-optimal path to B (as well as all
the other nodes on this non-optimal path).

3.4 Networks of Realistic Size

In complex protocols used for routing, analysis by “classical” model checking is
limited to around 8 nodes. WMNs usually consist of more than 50 nodes placing
them far beyond the capabilities of systematic logical analysis. In this section
we explore the scalability of SMC for such networks.
10 An example is found at the website—it requires detailed knowledge of the protocols.
11 The length of optimal routes can be calculated from the static network topology.
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3 nodes 4 nodes 5 nodes
AODV 0.00%� 0.50%� 2.31%�
DYMO 0.00%� 2.00%� 9.68%�

S

B

T A
RREQ

R
R
E
Q

Table 2: Average deviation from the
optimal

Fig. 5: Node A “accidentally” cre-
ates a non-optimal route to S.

Our first task is to generate a sample realistic topology. We use the Node
Placement Algorithm for Realistic Topologies (NPART) [12]. This tool allows
the specification of arbitrary-sized topologies and transmission ranges, and it
has been shown that generated topologies have graph characteristics similar to
realistic wireless multihop ones.

B

C

A

transmission range:

Fig. 6: A topology with 100 nodes

We analyse NPART topologies
consisting of 25, 50, 75 and 100 nodes.
Fig. 6 depicts the 100-node topology
used for our analysis. The links be-
tween nodes are determined by the
distance between nodes; rather than
displaying the actual 201 links, we
instead indicate the link distance by
scale. The node labelled A is the orig-
inator of two packets with destina-
tions B and C, both of which are con-
nected to A albeit at several hops dis-
tance. We check Property (3), which
confirms that both routes are found
and that the protocols terminates.
More significant are the resources re-
quired to perform the experiments for
large networks which we report next.

A network with 25 nodes is easily checked with a standard desktop machine
in less than half an hour with a confidence level of 95% (which means 738 runs).
However the memory consumption grows with the number of nodes. A summary
of our observations is given in Table 3.

#nodes 50 75 100
memory (Gb) 14 30 80
run time (m) 270 328 1777

Table 3: Memory Consumption12

Fig. 7 shows that the protocol finishes on average within 24 × 40ms13 for
the given scenario. This also suggests that there is little interference between the

13 The average time for sending a single message.
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two requests for B and C, since the number of hops between A and C is roughly
10, and so at least 20 messages are required to establish that route alone.

4 Related work
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Fig. 7: Property (3) with 100 nodes

Traditionally, protocols for WMNs are
evaluated using test-bed experiments and
simulation, e.g., [10]. Test-bed experi-
ments evaluate protocols under realis-
tic circumstances, whereas simulation is
performed on a single machine, thus is
closely related to our work. Simulation-
based studies show that AODV performs
better than DYMO in some scenarios and
vice versa in others [1, 11]. Under packet
delivery ratio (PDR) as measure Saleem
et al. [17] imply that DYMO compares un-
favourably to AODV (consistent with our
results), but this analysis does not help to
diagnose the reasons for this conclusion.

More recently formal analysis has been used to investigate the behaviour of
complex protocols [2, 5]. Although formal analysis is often more detailed than
test bed analysis, with the result that only small samples can be investigated,
the outcome is often a more penetrating understanding of protocol behaviour.
For example a study using the Spin model checker showed that an early draft
of AODV could create routing loops [2]; Zave [21] uses the Alloy analyser in
combination with the Spin model checker to show that no published version of
the Chord ring-maintenance protocol is correct, and Schuts et al. establish an
impossibility result for clock synchronisation in the Chess gMAC WSN proto-
col [18]. Other specific formal analyses of AODV include that of Chiyangwa and
Kwiatkowska [5] who investigate the relation between protocol parameters and
performance, such as time outs in AODV, and Espensen et al. [7] use coloured
Petri nets to perform test runs to confirm specified behaviour.

5 Conclusion and Outlook

Our aim in this study was twofold: (i) We developed timed models for AODV and
DYMO in order to carry out a systematic analysis across all small networks. In
comparison to simulation and test bed studies, our analysis based on quality and
quantity enabled us to examine reasons for observed differences in performance
between AODV and DYMO, which was an open question before (cf. studies in
[1, 11]). (ii) We examined the feasibility of SMC w.r.t. scalability. None of the
formal studies above analysed routing protocols for networks containing more
than 10 nodes, whereas our results imply that networks of realistic size can be
analysed. Finally we draw some general conclusions about SMC critical analysis.
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5.1 Statistical Model Checking: Lessons Learned

Resourcing. One of the main bottlenecks in the analysis was time—to analyse
a 100 node network takes about 30 hours. One of the next steps is to determine
whether the most recent distributed release [3] is able to reduce that overhead.

Choosing the right scenario. For small networks it is possible to analyse all
topologies for given scenarios. This gives a good overall view of the performance
and behaviour in any situation. For large networks this is not feasible, and so the
selection of topologies in combination with the right scenarios becomes some-
thing of a “stab in the dark”.For our study we used the comparison of AODV
and DYMO to observe that odd behaviour occur in the setting of two requests,
thus we chose that scenario for our large networks. In general, a systematic ana-
lysis of small networks can be used as a preliminary phase for selecting the most
informative scenarios.

Interpreting the results. The results are frequently hard to interpret, partic-
ularly when they indicate odd behaviour. Unfortunately SMC-Uppaal does not
store traces during analysis, thus it is not possible to recover counterexamples to
explain the observations. We tried to diagnose odd observations by formulating
more probing queries beyond looking at overall performance. This suggests that
more powerful statistical analysis such as “rare event simulation” in combination
with multiple queries could be used to compile better evidence.

5.2 Future work

The models for AODV and DYMO are general enough to allow for the study of
more complex scenarios, in particular mobility. In future work we will develop a
number of mobility models for understanding the behaviour of these and other
routing protocols.
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