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Abstract. Based on experience from the hardware industry, product
families have entered the software development process as well, since
software developers often prefer not to build a single product but rather
a family of similar products that share at least one common functionality
while having well-identified variabilities. Such shared commonalities, also
called features, reach from common hardware parts to software artefacts
such as requirements, architectural properties, components, middleware,
or code. We use idempotent semirings as the basis for a feature algebra
that allows a formal treatment of the above notions as well as calculations
with them. In particular models of feature algebra the elements are sets
of products, i.e. product families. We extend the algebra to cover prod-
uct lines, refinement, product development and product classification.
Finally we briefly describe a prototype implementation of one particular
model.

1 Introduction

Software development models relate, in general, to the development of single
software systems from the requirements stage to the maintenance one. This
classical method of developing software is described in [12] as sequential comple-
tion. There, a particular system is developed completely to the delivery stage;
only after that similar systems are developed by keeping large parts of the work-
ing system and changing relatively small parts of it. Contrarily, in [12], Parnas
introduces the notion of program family and defines it as follows:

“We consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common
properties of the set and then determining the special properties of the
individual family members.”
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Parnas also proposes a design process for the concurrent development of the
members of a program family. Since his paper [12], the notion of product family
has gained a lot of attention and has found its way into the software development
process in industry [13]. Indeed, software developers that are pressured by the
increase in the speed of time-to-market and the necessity of launching new prod-
ucts do not build a single product but a family of similar products that share at
least one common functionality and have well identified variabilities [5]. Their
goal is to target many market segments or domains. Also, in the competitive
market of today, they cannot afford to decline a request from a client who wants
a special variant that is slightly different from the company’s other products.
In this situation, the company would have advantage in gathering the require-
ments for and designing families of software systems instead of single software
systems. For example, in embedded system development, software depends on
hardware and the developer needs to change software specifications frequently
because of hardware specification changes. Hence, the developer ends up with
many variations of the intended system that need to be managed. Prioritising
development tasks and planning them become very challenging. A model that
helps to capture the variabilities and commonalities of the members of a system
family would be very helpful in dealing with these difficulties.

The concept of software product family comes from the hardware industry.
There, hardware product lines allow manufacturing several variants of products,
which leads to a significant reduction of operational costs. The paradigm of prod-
uct line has been transferred to the software embedded in the products. To cope
with a large number of software variants needed by an industrial product line,
the software industry has been organising its software assets in software product
families [13]. Hence, plainly, a product family can be defined as a set of prod-
ucts that share common hardware or software artefacts such as requirements,
architectural properties, components, middleware, or code. In the remainder,
we denote by feature any of these artefacts. We note that, according to [14], a
feature is a conceptual characteristic that is visible to stakeholders (e.g., users,
customers, developers, managers, etc.). A subfamily of a family F' is a subset
whose elements share more features than are shared by all the members of F.
Sometimes, for practical reasons, a specific software subfamily is called a prod-
uct line. For instance, in a context of software development based on the family
approach, a subfamily is called a product line when its members have a common
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of a core assets
in a prescribed way [5,14]. Therefore, factors other than the structure of the
members of a family are involved in defining a product line.

The family-oriented software development is based on the assumption that
it is possible to predict the changes that are likely to be performed on a system.
This assumption is true in most of the cases. For instance, the manufacturers
of robots (and their embedded software) know from the start that customers
will want to have robots with several basic means of locomotion, such as treads,



wheels, or legs and with several navigation systems which are more or less so-
phisticated.

The aim of the present paper is to underpin these ideas with a formalism
that allows a mathematically precise description of product families as well as
calculations with them. To this end we propose an algebra that we use to describe
and analyse the commonalities and variabilities of a system family.

Since systems are characterised by their features, we call our approach fea-
ture algebra. We will present models where elements of feature algebras are sets
of products, i.e. product families. Starting from idempotent semirings, we will
define feature algebra in Section 4, extend it to cover product lines, refinements,
product development and product classification. This approach allows compact
and precise algebraic manipulations and calculations on these structures.

2 Literature Review

In the literature, we find several feature-driven processes for the development of
software system families that propose models to describe the commonalities and
variabilities of a system family. For brevity, we focus on the key processes relevant
to the family description technique that we propose: Feature-Oriented Domain
Analysis (FODA) [9], Feature-Oriented Reuse Method (FORM) [10], Featured
Reuse-Driven Software Engineering Business (FeatuRSEB) [8] and Generative
Programming (GP) [6]. The reader can find other feature modelling techniques
in [2].

FODA uses feature models which are the means to give the mandatory, op-
tional and alternative concepts within a domain [9, 14]. For example, in a car,
we have a transmission system as a mandatory feature, and an air conditioning
as an optional feature. However, the transmission system can either be manual
or automatic. These two feature-options (manual and automatic) are said to be
alternative features. The part of the FODA feature model most related to our
work is the feature diagram. It constitutes a tree of features and captures the
above relationships (i.e., mandatory, optional, and alternative) among features.

In [14], the authors propose the use of feature diagrams which are trees. Each
feature may be annotated with a weight giving a kind of priority assigned to it.
Then, they use basic concepts of fuzzy set theory to model variability in software
product lines.

FORM starts with an analysis of commonalities among applications in a par-
ticular domain in terms of services, operating environments, domain technologies
and implementation techniques. Then a model called feature model is constructed
to capture commonalities as an AND/OR graph [11, pages 40-41& 99-100]. The
AND nodes in this graph indicate mandatory features and OR nodes indicate
alternative features selectable for different applications. The model is then used
to derive parameterised reference architectures and appropriate reusable com-
ponents instantiable during application development [10].

In FeatuRSEB, the feature model is represented by a graph (not necessary a
tree) of features. The edges are mainly UML dependence relationships: com-



posed_of , optional_feature and alternative_relationship. The graph enables to
specify the requires and mutual exclusion constraints. The feature model in Fea-
tuRSEB can be seen as an improvement of the model of FODA.

GP is a software engineering paradigm based on modelling of software sys-
tem families. Its feature modelling aims to capture commonalities and variation
points within the family. A feature model is represented by a hierarchically
arranged diagram where a parent feature is composed of a combination of some
or all of its children. A vertex parent feature and its children in this diagram
can have one of the following relationships [6]:

— And: indicates that all children must be considered in the composition of
the parent feature;

— Alternative: indicates that only one child forms the parent feature;

— Or: indicates that one or more children features can be involved in the com-
position of the parent feature (a cardinality (n,m) can be added where n
gives a minimum number of features and m gives the maximum number of
features that can compose the parent);

— Mandatory: indicates that children features are required;

— Optional: indicates that children features are optional.

3 Example of a Simple Product Family

The following example is adapted from a case study given in [4]. An electronic
company might have a family of three product lines: mp3 Players, DVD Players
and Hard Disk Recorders. Table 1 presents the commonalities and the variability
of this family. All its members share the list of features given in the Common-
alities column. A member can have some mandatory features and might have
some optional features that another member of the same product line lacks.
For instance, we can have a DVD Player that is able to play music CDs while
another does not have this feature. However, all the DVD players of the DVD
Player product line must have the Play DVD feature. Also, it is possible to have
a DVD player that is able to play several DVDs simultaneously.

We see that there are at least two different models of DVD players described.
But how many different models are described in Table 17 And what are the
properties/features of these products? Later on we will give the answer to these
two questions. If we had a model which gives us all combinations of features we
would be able to build new products. Vice versa, such a model would allow us
to calculate commonalities of a given set of products.

4 Algebraic Structure and Basic Properties

In this section we introduce the algebraic structure of feature algebra. Since it is
based on semirings we will first present these. Afterwards, we will define product
families, feature algebra, a refinement relation on feature algebra and, in a set
based model, features and products. In Section 6 the latter two are defined in
general.



Table 1. Commonalities and variability of a set of product lines

Product line H Mandatory Optional Commonalities

mp3 Player — Play mp3 files — Record mp3 files

DVD Player — Play DVD — Play music CD

— View pictures
from picture CD

— Audio equaliser
— Video algorithms
for DVD players
and hard disk

— Burn CD B
— Play n additional gcﬁi €rs .
DVDs at th — Dolby surroun
sa\rlnestine ¢ (advanced audio
features)
Hard Disk Recorder " mp3 player

— organise mp3 files

Definition 4.1 A semiring is a quintuple (S, +,0,,1) such that (S,+,0) is a
commutative monoid and (S, -, 1) is a monoid such that - distributes over + and
0 is an annihilator, i.e., 0-a = 0 = a-0. The semiring is commutative if -
is commutative and it is idempotent if 4+ is idempotent, i.e., a + a = a. In the
latter case the relation a < b <4 a4+ b = b is a partial order, i.e., a reflexive,
antisymmetric and transitive relation, called the natural order on S. It has 0 as
its least element. Moreover, + and - are isotone with respect to <.

In our current context, 4+ can be interpreted as a choice between optionalities
of products and features and - as their composition or mandatory presence.
An important example of an idempotent (but not commutative) semiring is
REL, the algebra of binary relations over a set under relational composition.
More details about (idempotent) semirings and examples of their relevance to
computer science can be found,e.g., in [7].

For abbreviation and to handle the given case studies, we call an idempotent
commutative semiring a feature algebra. Its elements are termed product families
and can be considered as abstractly representing sets of products each of which
is composed of a number of features. On every feature algebra we can define a
relation that expresses that one product family refines another in a certain sense.

Example 4.2 Let IF be a set of arbitrary elements that we call features. Often,
features can be seen as basic properties of products. Therefore we call a collection
(set) of features a product. The set of all possible products is P =45 P(IF),
the power set or set of all subsets of IF. A collection of products (an element of
P(IP)) is called product family. Note that according to this general definition the
members of a product family need not have common features. Commonalities
will be discussed in Section 6.

For example, looking at the DVD example of Table 1, an mp3 player is a
product with the features ’play mp3 files’, record mp3 files’, ’audio visualiser’
and so on.

We use the following abbreviations:



Abbreviations:

p-mp3 Play mp3 files
r-mp3 Record mp3 files
c1 Audio equaliser
c2 Video algorithms
c3 Dolby surround

Now we can describe the mp3 players algebraically as
mp3_player = p-mp3 - (r-mp3 +1)-c1-ca-cs3.

Here 1 = {(} denotes the family consisting just of the empty product that has
no features, so that (r-mp3 + 1) expresses optionality of r_mp3. For clarity the
algebraic notation omits the set brackets.

We now formally define the operation - which is a composition or a merging
operator for all features:

- P(IP) x P(IP) — P(IP)
P-Q={pUqg:pePqgeq}.
The second operation + offers a choice between products of different product
families:
+:P(IP) x P(IP) — P(IP)
P+Q=PUQ,

With these definitions the structure
IPFS =df (P(]P), +a @7 ) {(Z)})

forms a feature algebra called product family algebra. The set-based model does
not allow multiple occurrences of the same feature in a product. If this is desired,
one can use an analogous model that employs multisets (also called bags) of
features. This bag-based model is denoted by IPFB. a

Using feature algebra offers abstraction from set-theory. On the one hand it
provides a common structure that subsumes IPFB and IPFS and on the other
hand it avoids many set-theoretic notations, like accumulations of braces, and
emphasises the relevant aspects like commonalities.

The refinement relation C on a feature algebra is defined as

alb g dc:a<lb-c.

As an example we use again the DVD product line. A standard mp3-player
that can only play mp3 files is refined by a mp3-recorder that can play and
record mp3 files. In the algebraic setting this behaviour is expressed by

p-mp3-r-mp3-cy-co-csEp-mp3d-c1-ca-c3 .



It is easy to see that the refinement relation is a preorder, i.e., a reflexive and
transitive relation. Informally, a C b means that every product in a has at least
all the features of some product in b, but possibly additional ones.

Further examples for feature algebras are all lattices with join as 4+ and meet
as - operation. In this case the refinement relation is the same as the natural
order (which coincides with the lattice order).

Until now we have not made use of the commutativity of multiplication.
Most of the following basic properties hold only if - is commutative. In the
context of our case studies and the corresponding algebras IPFS and IPFB the
commutativity is significant, since products and product families should not
depend on the ordering of features.

Lemma 4.3 Let a,b,c be elements of a feature algebra, then we have

a<b=albl, (1)
a-bCb, (2)
aCa+b, (3)
aCb=a+cChtec, (4)
aCb=a-cCb-c, (5)
aC0& a<0, (6)
0OCalC1l. (7)
Proof. (1) Set ¢ =1 in the definition of C.
(2) a-bCb<e dc:a-b<b-c<a-b<b-a < true.
The last step only holds if - is commutative.
(3) Immediate from a < a + b and (1).
(4) Suppose a C b, say a < b-d. Then by isotony
a+c<b-d+c<b-d+c+c-d+b=(b+c)-(d+1),
ie,at+cCb+ec
(5) By definition, isotony w.r.t. < and commutativity we get
aCbe dd:a<b-d=3dd:a-¢c<b-¢c-d = a-cCbh-c
(6) By annihilation,a T0 < Jc:a<0-¢c & a<0.
(7) Set a =0 and b =1, resp., in (2). O

In IPFS and IPFB, (2) describes the situation that adding features (multi-
plying by an element in our algebra) refines products. (3) offers an alternative
product on the right hand side. So we have a choice. But this does not affect that
a refines itself (a C a). (4) and (5) are standard isotony laws. (7) says that the
empty set of products 0 refines all families — all its products indeed have at least
as many features as some product in a. Moreover, (7) reflects that the product
without any features (which is represented by 1) is refined by any family.

Lemma 4.4 If a feature algebra contains a <-greatest element T, we have

aCbe a<b- T sa-T<b-T.



Proof. First weshowa T b < a<b-T.

(=)aCbe Jc:a<b-c=a<b-T.
(<)Sete =T.

Now, weshowa <b-T < a-T <b-T.

(<) By isotony and a < a-T.
(=) By isotony and T - T =T (which follows by T-T < T). O

E.g., in IPFS the greatest element is P(IP), whereas in IPFB there is no
greatest element.

As already mentioned, C is a preorder. We now show that C forms a partial
order only in a very special case.

Lemma 4.5 C is antisymmetric if and only if it is the identity relation, i.e., iff
alb= a=0.

Proof. First, the identity relation clearly is antisymmetric.

Now suppose that C is antisymmetric and assume a = b. Then by isotony
(4) and idempotence of + we get a + b C b. By (3) we also have b C a + b. Now
antisymmetry shows a = b. O

As the last property of C, we show that the choice operator can be split w.r.t.
C or, in other words, that + produces a supremum w.r.t. £ as well.

Lemma 4.6
a+bCc<s alcecAbCe.

Proof.

(=) By the definition of C, lattice algebra and the definition again
a+bCc < dd: a+b<cd < dd: a<cdANb<cd= alcAbLCec
(<) By isotony and distributivity
a<c-dANb<c-e=>a+b<c-d+c-e=c-(d+e).
Hence, aCcAbCc = a+bLCec. O

5 Example of a More Complex Product Family

Our next case study is borrowed from [15] where it is used to illustrate a set-
theoretic approach to reasoning about domains of what is called n-dimensional
and hierarchical product families. It consists of a product family of mobile robots
that reflect different hardware platforms and several different behaviours. The
robot family is constructed using two hardware platforms: a Pioneer platform
and a logo-bot platform. The behaviour of the robots ranges from a random
exploration of an area to a more or less sophisticated navigation inside an area
that is cluttered with obstacles. More details about the case study can be found
in Thompson et al. [16], where the platforms are thoroughly described.



Similar to Thompson et al. [16] we present the members of the family accord-
ing to two perspectives: hardware and behaviour. Table 2 gives a description of
the robot family from a hardware perspective and Table 3 describes it from a
behaviour perspective.

As described in Table 2, the robot family includes three product lines: Ba-
sic Platform, Enhanced Obstacle Detection and Environmental Vision. All the
members of the Basic Platform product line share the following features:

— basic means of locomotion that could be treads, wheels, or legs;
ability to turn an angle « from the initial heading;

— ability to move forward;

— ability to move backward;

ability to stay inactive.

The variability among the members of a product line is due in part to the
use of a variety of hardware. For instance, if we take the robotic collision sensors
that protect robots from being damaged when they approach an obstruction or
contact, then we obtain members with different sensing technologies. In our case,
there are three main methods to sense contact with an obstruction: pneumatic,
mechanical and a combination of mechanical and pneumatic. A member of the
Basic Platform can have more than one collision sensor. The sensors could be of
different types. The optional features of the members of Basic Platform product
line are given in the third column of Table 2.

The DVD example of Section 3 was chosen for its simplicity to illustrate basic
notions. The present example illustrates a family of products that exposes a more
sophisticated structure of its subfamilies. It emphasises the fact that products
can be defined from more than one perspective. Within a given perspective,
subfamilies are defined based on other subfamilies. For instance, in the robot
example the subfamily Enhanced Obstacle Detection is constructed on top of
basic platform subfamily. The specification of the robot family as described in
Table 2 can be found in Appendix A.

10
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Table 2. Commonalities and variability of a robot family (a hardware perspective)

Product line

HMandatory

Optional

‘ Commonalities

Basic Platform

— Speed of locomotion

- Limited to low speed of locomotion

- Extended to high speed of locomotion
— Locomotion control system

- Basic control (only on or off)

- Digital valued indication of locomotion

speed and direction

— Platform size

- Small

- Medium

- Large
— Type of collision sensors

- Pneumatic

- Mechanical

- Combination of mechanical and pneumatic
— Number of collision sensors

- between 0 and 3 for a small platform

- between 0 and 7 for a medium platform

- between 0 and 11 for a large platform

— Basic means of locomotion that could be
treads, wheels, or legs
— Ability to turn an angle « from the initial heading
— Ability to move forward
— Ability to move backward
— Ability to stay inactive

Enhanced Obsta-
cle Detection

— Basic Platform
with at least
ONE collision
sensor

— Type of range finder

- Small Ultrasonic Range Finder

- Low-cost Ultrasonic Ranger

- Compact High Performance Ultrasonic Ranger
— Number of range finders

- between 0 and 1 for a small platform

- between 0 and 2 for a medium platform

- between 0 and 3 for a large platform

— One range finder

Environmental
Vision

— Enhanced Ob-
stacle Detection

— Environmental vision system
- Back and white vision
- Primary colors vision

— Sensor capable of determining the color of objects
in the robot’s environment
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Table 3. Commonalities and variability of a robot family (a behavior perspective)

Product line HMandatory Optional ‘Commonalities
Random — Attempt to — Obstacle detection for treads-mode of locomotion |- Avoid colliding
Exploration avoid colliding |- Obstacle detection for wheels-mode of locomotion |- First collision recovery
with obstacles |- Obstacle detection for legs-mode of locomotion |- Normal behavior in the absence of an obstacle,
— Two successive collision recovery collision, or any other specified behavior
(can tolerate another collision during the recovery| (move forward at maximum speed)
from a previous collision)
— Three successive collision recovery
— Dictated normal behavior in the absence of an
obstacle
Random — Random Explo-|— Small platform navigation through a door — Locate doors in its environment
Exploration ration — Medium platform navigation through a door

with the Ability to

Negotiate Doors

— Navigate
through doors

— Large platform navigation through a door

Random
Exploration

with the Ability to
Signal when it En-
counters Objects of a

Particular Color

— Random Explo-
ration

— Environmental
Vision

— Detect an object of a specified color




6 Further Notions and Properties

In the literature, terms like product family and subfamily are used without
any exact definition. Therefore, we want to make these terms formally precise.
Already in Section 4 we have defined some notions like feature and product in the
special models of IPFS and IPFB, however, in terms of these particular models
and not in general algebraic terms. In the remainder let F = (5,4,0,-,1) be a
feature algebra.

Definition 6.1 An element « is said to be a product, if a # 0 and
Vb:b<a=b=0Vb=a A Vbc:a<b+c= (a<bVa<ec). (8
The set of all products is denoted by IP.

Intuitively, this means that a product cannot be split using the choice operator
+. In IPFS and IPFB an element is a product iff it contains only one element,
i.e., it is a singleton set.

In Example 4.2 we have also given a definition of features for the concrete
case. Again we want to give an abstract algebraic counterpart. Analogously to
Definition 6.1, we ask for indecomposability, but this time w.r.t. multiplication
rather than addition.

Definition 6.2 An element a is called feature if it is a product and
Vb:bla=b=0Vb=a A Vbc:al|(b-¢c)= (a]bV alc), 9)

where the divisibility relation | is given by |y <4 32z : 2 = y- 2. The set of
all features is denoted by IF.

From the mathematical point of view, the characteristics of products (8)
and features (9) are similar and well known. We give a uniform treatment of
both notions in Appendices B and C, where we also discuss the order-theoretic
background.

As a special kind of products we have the generated products (for short gIP),
i.e., those products that are obtained by multiplication of features:

glP =4 PNIF",

n
where IF* =4, { [Tzi:neNx € IF‘} is the set of all elements that arise by
i=1

multiplying an arbitrary finite number of features. Over a finite set IF' of features,
in IPFS as well as in IPFB the set of generated products is equal to the set of all
products, i.e., glP = IP.

13



Definition 6.3 A product family or family (IPFam) is a set of generated prod-
ucts that have at least one common feature, i.e,

aEIPFam@HfGIF:ElIQgIP:a:f~Zzi.

x; €l
We call b a subfamily of a iff b < a.

Of course, the family a may have more common features than just f; they
could be extracted from the sum by distributivity. But in our definition we
wanted to emphasise that there is at least one. It is obvious that each subfamily
of a forms a family again, since it has f as a common feature.

Sometimes, for practical reasons, a specific subfamily is called a product line.
For instance, in a context of software development based on the family approach,
a subfamily that needs to be developed in the same production site or by the
same development team is called a product line. Therefore, factors other than
the structure of its members can be involved in defining a product line.

To get a measure for similarity we give the following definitions:

Definition 6.4 Let k € IN. The family f; is said to be k-near the family fo, if
Jg#0: 3wy eF=Fatynfi=z-gAfo=y-g,

where IF<F =qf { I[Tzi:keN,n <k a; GIF}.
i=1

Since every product is also a product family (which has only one member), we
also have a notion for measure similarity of products. In particular, each product
of a family is at least l-near any other element of the same family (they have
the common feature f).

Finally, we discuss the case of a finite set of features IF. Then we have an
additional special element in IPF'S, which is characterised by

1 =y {{ H]in}}.

This element contains only one product, namely the product that has all possible
features. In this case we have a - II = II if a # 0. Then, by setting ¢ = II in
the definition of the refinement relation T Section 4)

IHCa.

In general, we call an element p # 0 satisfying, for all a € S\{0}, a-p = p
(= p-a by commutativity) a weak zero, since it annihilates almost all elements.

Lemma 6.5 (i) A weak zero is unique if it exists.
(i) A weak zero p refines everything except 0, i.e., p C a < a # 0.
(iii) If p is a weak zero then aEp < a < p.

14



Proof. (i) Assume p and ¢ to be weak zeros. Then, by definition, p = p-q
(ii)(=) Assumea = 0. Then by definition of weak zero and annihilation p = 0,
which contradicts the definition of p.
(<) By definition p < p-a if a # 0 and hence, p C a.
(iii) By definition of C and weak zero,
aCpe decialp-ce a<0Va<p s a<lp. O

I
2

Note that in IPFB there is no weak zero, since multiple occurrences of features
are allowed.

7 Building Product Families and Generating Product
Lines

In this section we present some useful properties of feature algebras concerning
finding common features, building up product families, finding new products and
excluding special feature combinations.

We first address the issue of finding the commonalities of a given set of
products. This is a very relevant issue since the identification of common artifacts
within systems (e.g. chips, software modules, etc.) enhances hardware/software
reuse. If we look at feature algebras like IPFS and IPFB we can formalise this
problem as finding “the greatest common divisor” or to factor out the features
common to all given products. This relation to “classical” algorithms again shows
an advantage of using an algebraic approach. Solving ged (greatest common
divisor) is well known and easy, whereas finding commonalities using diagrams
(e.g., FODA) or trees (e.g., FORM) is more complex.

Example 7.1 Resuming the product line of Section 3 and Example 4.2, we give
an explicit example. Assume two different products: An mp3-player defined as

p-mp3-cy-ca - C3
and an mp3-recorder given by
p-mp3 - r-mp3 - cyp-cy .

To find all common parts we look at the sum of the two products, i.e., we create
a set of products, and by simple calculations using distributivity we get

p-mp3 - ¢y - co - (cg +r-mp3) .
Thus the common parts are p-mp3, ¢1 and co. O

Such calculations can easily done by a program; we will briefly describe a proto-
type in the next section. Of course one can calculate the common parts of any
set of products. If there is at least one common feature, all the products form a
product family. After factoring out the common parts, we can iterate this proce-
dure for a subset of the given products and find again common parts. In this way

15



we can form subproduct families if necessary. Hence, using the algebraic rules in
different directions, we can both structure and generate product families and
product lines.

Starting with a set of features, we can create new products just by combining
these features in all possible ways. This can easily be automated. For example,
using our prototype which is described in Section 8, we calculate that the Basic
Platform subfamily consists of 13635 products.

However, there are products with combinations of features that are impossible
or undesirable. For example, it is unreasonable to have a robot that has both
wheels and legs as basic means of locomotion. This requirement can be coded in
feature algebra by postulating the additional equation

wheels - legs = 0 .

This exclusion property is also implemented in our prototype. For the robot

example we also exclude combinations of impossible or undesirable features (see

next section) from the Basic Platform subfamily and are left with 1539 products.
There are many other properties like:

“If a product has feature f; it also needs to have feature f5”.

Most of these requirements can easily be modelled and implemented using our
algebra.

8 A Prototype Implementation in Haskell

To check the adequacy of our definitions we have written a prototype imple-
mentation of the IPFB model! in the functional programming language Haskell.
Features are simply encoded as strings. Bags are represented as ordered lists
and - as bag union by merging. Sets of bags are implemented as repetition-free
ordered lists and + as repetition-removing merge.

This prototype can normalise algebraic expressions over features into a sum-
of-products-form. A small pretty-printing facility allows us to display the results
as the sequence of all products described by such an expression.

As an example we give the code corresponding to Table 1 of Section 3.

-- basic features:

p_mp3 = bf "play mp3-files"
r_mp3 = bf "record mp3-files"
o_mp3 = bf "organise mp3-files"
p_dvd = bf "play DVD"

p_cd = bf "play CD"

v_cd = bf "view picture CD"
b_cd = bf "burn CD"

a_cd = bf "play additional CD"

! The program and a short description can be found at: http://www.informatik.uni-
augsburg.de/lehrstuehle/dbis/pmi/publications/all_pmi_tech-reports .
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cl
c2
c3

bf "audio equaliser"
bf "video algorithms"
bf "dolby surround"

-- composed features

mp3_player = p_mp3 .*. (opt [r_mp3])

dvd_player = p_dvd .*. (opt [p_cd , v_cd , b_cd , a_cd])
hd = opt [mp3_player, o_mp3]

--whole product line
p_line = cl .*. c2 .*. c3 .x. (mp3_player .+. dvd_player .+. hd)

The product line contains 22 products, printed out as follows:

Common Parts
audio equaliser
dolby surround
video algorithms

play CD
play DVD
play additional CD

play CD

play DVD

play additional CD
view picture CD

Feature exclusion as discussed in the previous section, can be also encoded
using an algebraic expression. For instance, all the required exclusion properties
of the robot example are given by

excludes = treads .*. wheels
.+. treads .*. legs
.+. wheels .*. legs
.+. limited_spd .*, extended_spd
.+. basic_ctrl .x, digital_ctrl
.+. small_pltfrm .*. large_pltfrm
.+. medium_pltfrm .*. large_pltfrm
.+. small_pltfrm .*. c_sensor .~. 4
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.+. medium_pltfrm .*. c_sensor .”. 5
.+. large_pltfrm .*. c_sensor .”. 6

Here ~ is the exponentiation operator. Due to the fact that 0 is an annihilator
for -, the last line excludes large platforms with more than 5 collision sensors.

9 Conclusion and Outlook

The adoption of the product family paradigm in software development aims at
recognising a reality in software development industry noticed decades ago [12]:
economical constraints impose a concurrent approach to software development
replacing the early sequential one. The research work about software product
families aims at studying the commonalities/variability occurring among the
products in order to have a better management of software production. However,
a review of the literature reveals a wide set of notions and terms used without
formal definitions. A clear and simple mathematical setting for the usage of this
paradigm arises as a necessity.

In this paper we have introduced feature algebra as an idempotent commuta-
tive semiring. We have given a set-based and a bag-based model of the proposed
algebra. To compare elements of our algebra, besides the natural order defined
on an idempotent semiring we use a refinement relation and have established
some of its basic properties. Then we have given formal definitions of common
terms that are intuitively used in the literature such as product, feature, and
family. We introduced as well new notions such as that of a weak zero, and a
measure for similarity among products and families.

The proposed algebra not only allows us to express the basic notions used
by the product family paradigm community, but also enables algebraic ma-
nipulations of families of specifications, which enhances the generation of new
knowledge about them. The notions and relationships introduced in FODA [9],
FORM [10], FeatuRSEB [8] and GP [6] and expressed with graphical notations
can easily be stated within our algebra. For instance, the alternative is expressed
using the + operator, and we write f = b-(1+a)-c (where b, and ¢ are families)
to express that a feature a is optional in a family f.

In contrast to other product family specification formalisms, like FODA and
FORM, there exists a large body of theoretical results for idempotent com-
mutative semiring and for algebraic techniques in general with strong impact
for research related to problems of consistency, correctness, compatibility and
reusability.

Many items found in the literature support the potential scalability of alge-
braic approaches in specifying industrial-scale software product families [1, 3].
However, we think that empirical substantiation of the scalability of our ap-
proach is needed.

This work opens new questions and brings in new research horizons. One of
the questions is how to generate the specification of individual members of a given
family from the specifications of features and the feature-algebraic specification
of a family. One can envisage that the specifications of all the features are stored
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in a specification depository and the specification of a product is generated on the
fly. There is no need to have rigid specifications of products that are members of
a family. This flexibility in generating specifications on the fly eases coping with
the changes that frequently affect specifications of features. The proposed feature
algebra provides a solid base on which to build for answering these questions.

As illustrated in [15], a product family might need to be specified from sev-
eral perspectives. For example, in embedded systems, a product family needs to
be specified from hardware and software perspectives. We conjecture that these
perspectives are somehow interdependent. When this interdependence is known,
how can we model the global specification of a family (involves all the perspec-
tives) within a super-structure (such as a product structure) of feature algebras?
The aim of further work in this area is to tackle these questions.
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A Specification of the robot family

--basic features:

treads = bf "Moves around on treads"

wheels bf "Moves around on wheels"

legs = bf "Moves around on legs"
basic_means_of_locomotion = treads .+. wheels .+. legs

turn bf "Able to turn an angle from the initial heading"
bf "Able to move forward"
bf "Able to move backward"

bf "Able to stay inactive"

move_frwrd
move_bckwrd
stay_idle

limited_spd
extended_spd

bf "Robot limited to low speed of locomotion"
bf "Robot extended to high speed of locomotion"

basic_ctrl = bf "Robot equipped with basic control (only on or off)"
digital_ctrl = bf "Robot equipped with digital valued indication of
locomotion speed and direction"

small_pltfrm = bf "Small size platform robot"
medium_pltfrm = bf "Medium size platform robot"
large_pltfrm = bf "Large size platform robot"

c_s_pneumatic = bf "Pneumatic collision sensor"

c_s_mechanical = bf "Mechanical collision sensor"

c_s_combination = bf "Collision sensor is a combination of mechanical
and pneumatic"

sur_finder = bf "Small Ultrasonic Range Finder"
lcur_finder = bf "Low-cost Ultrasonic Ranger"
chpu_finder = bf "Compact High Performance Ultrasonic Ranger"

v_s_color_vision bf "Sensor capable of determining the color of
objects in the robot’s environment"
black_white_vision bf "Black and white environmental vision system"

primary_colors_vision = bf "Primary colors environmental vision system"

speed_of_locomotion = limited_spd .+. extended_spd
locomotion_ctrl_sys = basic_ctrl .+. digital_ctrl

c_sensor = c_s_pneumatic .+. c_s_mechanical .+. c_s_combination
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rng_finder =

platform_size_snsor

platform_size_finder

sur_finder

-- PRODUCT LINES

basic_platform

.+. lcur_finder

small_pltfrm
medium_pltfrm
large_pltfrm

small_pltfrm
medium_pltfrm
large_pltfrm

* * ¥

* X *

.+. chpu_finder

(c_sensor ."<=.
&=,

(c_sensor

(c_sensor .7 <=.

(rng_finder
(rng_finder
(rng_finder

= basic_means_of_locomotion

turn
move_fr
move_bc

* K K X X ¥ *

enhanced_obstacle_detection

environmental_vision =

wrd
kwrd

stay_idle
opt [speed_of_locomotion]
opt [locomotion_ctrl_sys]
opt [platform_size_snsor]

= basic_platform

.*, c_sensor

.*. opt[platform_size_finder]

enhanced_obstacle_detection
%, v_s_color_vision

.*. opt[black_white_vision]
.*. opt[primary_colors_vision]

-- Constraints on all the products to exclude the impossible

-- or undesirable combinations of features

excludes =

TP E R R YRR e

treads .*. wheels
treads .*. legs
wheels .*. legs

limited_spd
basic_ctrl
basic_ctrl
small_pltfrm
medium_pltfrm
small_pltfrm
medium_pltfrm
large_pltfrm

c_sensor
c_sensor
c_sensor

* X X X X X X ¥
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digital_ctrl
digital_ctrl
large_pltfrm
large_pltfrm
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B Singles and Feature Propagation

In Section 6 we introduced products (8) and features (9). The definition of these
structures have the same form. Therefore we give a common treatment of the
notions of product and feature in this section.

Definition B.1 Consider a monoid (S,®,0) and a € S\{0}. Define a < b <
dc:b=a®c. Then a is a single iff

Vb:b=<a= (b=0Vb=a)) A
(Vb,c:a=xb®dc= (axbVa=xc).

The set of all singles of S is denoted by SG.

In Section C we relate this definitions to standard order-theoretic notions.
Hence, according to Definitions 6.1 and 6.2 products are singles w.r.t. < as
relation < and features are singles in the set of products w.r.t. |. Therefore, the
relation =< is the natural order < in the case of + and | in the case of -.
The following corollary shows that sums of singles can be uniquely decom-
posed into their single parts. For IPFS and IPFB this means that every (finite)

set can be composed by singleton sets, i.e., for a set A, A = |J a, which is
a€A
obviously true. In general we get

Corollary B.2 Assume a monoid (S, ®,0).
1. If a is a single and J C IN is finite then
ax@Pb e Ijesazb;.
icJ
2. Let I,J C N be finite and a;,b; be singles. Then
Pa=Pbi=A{a:icl}={b:jeJ}.
icl =

Proof. 1. Straightforward induction on |J|.

2. Consider an a;. By 1. there is some b; with a; =< b;. Since qa; is a single we
must have a; = b;, hence a; € {b; : j € J}. This shows (C); the reverse
inclusion is shown symmetrically. a

Part 2. says that the ordering of the factors in a product generated by singles
is irrelevant.

In the remainder we show some properties for singles, which result in the
feature propagation lemma, a lemma which is very interesting for the feature
algebras IPFS and IPFB.

Definition B.3 In a partial order (S, <) we set

SG(z) =gr {a : a <z, acSG}.
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Lemma B.4 Over a monoid S we have SG(z @ y) = SG(z) & SG(y).

Proof. For a € SG, we get by definition of SG(x), Corollary B.2.1 and definitoin
again

a € SG(z ®y)
S axXrdy
SaxrzVaxy
< a € SG(z) V a € SG(y)
< a € SG(z) USG(y) .
O
Corollary B.5 Over a monoid S we have x <y = SG(z) C SG(y).
Proof. x =<y
&S de:xPe=y
= Jc¢: SG(z @ ¢) = SG(y)
< Je: SG(z) ® SG(c) = SG(y)
< SG(z) C SG(y) .
O

Definition B.6 The partial order (S, <) is called generated if

Ve eSS . x= |_|
SG(z)

We call it finitely generated if it is generated and for all x € S the set SG is
finite.

The feature algebras IPFS and PLB have this property and therefore we
have glP = 1P (cf. Page 13).

Corollary B.7 Let S be generated. Then SG(z) C SG(y) = = = y and
SG(z) =0 iff = 0.

Proof. First,
SG(x) € SG(y) = || = || e 2=y.
SG(z)  SG(y)

Second, by definition SG(0) = 0. Moreover, if SG(z) =@ thenz = || =]|]|=0.
SG(z) 0

O

Hence by Corollary B.5 and B.7 we have for a generated S that SG(z) C
SG(y) & = =y.

Definition B.8 We call a semiring S strongly generated if it is generated and
SG is closed under composition, i.e., if SG-SG C SG.
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The presented feature algebras IPFS and IPFB as well as the language semi-
ring have this property, whereas the relation semiring and the path semiring
don’t.

Corollary B.9 A strongly and finitely generated semiring does not have proper
divisors of 0, i.e., x-y=0 = =0V y=0.

Proof. We know x = @ a and y = @ b where both sums are finite.

a€SG(z) bESG(y)
Hence by distributivity, associativity and commutativity,

x-y=( @ a)~(@ b) = @ @ a-b.

a€SG(x) beSG(y) a€SG(x) beSG(y)

By strong generatedness all products a - b (if any) are single again. So the whole
sum can be 0 iff it is empty, i.e., iff SG(z) =0 vV SG(y) =0, ie,if z=0Vy =0
by Corollary B.7. O

Now we are ready to prove the feature propagation lemma. This lemma
describes the situation that in the case where a refines ¢, there exists an element
d such that c-d is the same as a. In IPFS and IPFB this lemma says that we can
build up a single product which includes all the missing features.

Lemma B.10 Assume a strongly and finitely generated semiring S and let ¢ €

SG. Then
aCc=3ddeS:a=c-d.

Proof. Assume a C ¢, say a < ¢- b for some b € S. Then
c-b=c- @ e= @ c-e.
e€SG(b) e€SG(b)

By strong generatedness, all products ¢ - e are singles, so that SG(c-b) = {c-e:
e € SG(b)} by Corollary B.2.2. From a = ¢ - b we infer by Corollary B.5 that
SG(a) C SG(c-b). So by Corollary B.2.2 there must be a subset B C SG(b)
with SG(a) = {c-e: e € B}. Now

a= @)f:@c-e:c-@e,

fESG(a e€B e€B

so that we can set d =4 @ e. O
eeB

C Order-Theoretic Background

In this section we want give an order-theoretic background for singles, features
and products. In B we have already shown that features as well as products are
singles. Now we show how singles can be classified in an algebraic manner using
well-known definitions. Therefore we recapitulate these.
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Definition C.1 Let (S, <) be a partial order with a smallest element 0
1. An element a € S is atomic or an atom if
aZ0AVz:2<a= (x=0V z=a).
2. An element a € S is join-irreducible if
Vbc:a=b+c= (a=bVa=c).
3. An element a € S is join-prime if
Vbc:a<b+ce (a<bVa<c).

So our singles are exactly the atomic and join-prime elements. We have the
following relations between these notions.

Lemma C.2

Every atom is join-irreducible.

Every join-prime element is join-irreducible.

If S is a distributive lattice then every join-irreducible element is join-prime.
If S is a Boolean lattice then every join-irreducible element is an atom. Hence
in this case all three notions coincide.

oo~

Proof. Let a,b,c€ S.
1. First, we assume a # 0

b+c=a
= { ordering [}
b<a
= {aatom]
b=0Vb=a
=  {{ b+ c=a and neutrality of 0 [}
c=aVb=a.

Now we assume a = 0 and b+ ¢ = 0. In particular b 4+ ¢ < 0 and there
for by lattice algebra b < 0 A ¢ < 0. The claim follows since 0 is the least
element.
2. b+c=a
= { ordering [}
a<b+ec

= { a join-prime [}
a<bVvVa<ece.
Since b+c=a = b<a A ¢ < a we get from that by antisymmetry of <
that a=b V a=c.
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3. a<b+ec
& { ordering [}
afl(b+c)=a
& { distributivity }
(and)+ (aMe)=a
= { a join-irreducible J}
a=allbVa=allc
& { ordering [}
a<bVvVa<e.
4. Assume b < a,ie. b=allb.

TRUE

< { Boolean algebra [}
a=(amb)+ (aMb)

= { a join-irreducible }
a=albVa=anb

<  {{b=amnb and ordering J}
a=bVa<b

< { Boolean algebra [}
a=bVanb=0

& {b=anb]
a=bVvb=0.

O

Hence we have shown that the definition of singles (products and features) fits
well in the classical notion of algebra.

Atomics is a very intricate theorem and can be
worked out with algebra but you would want to take
it by degrees because you might spend the whole
night proving a bit of it with rulers and cosines and
similar other instruments and then at the wind-up
not believe what you had proved at all. If that hap-
pened you would have to go back over it till you got
a place where you could believe your own facts and
figures as delineated from Hall and Knight’s Algebra
and then go on again from that particular place till
you had the whole thing properly believed and not
have bits of it half-believed or a doubt in your head
hurting you like when you lose the stud of your shirt
in bed.

Flann O’Brien, The Third Policeman
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