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Algebraic Structure of Web Services

Peter Höfner1 Florian Lautenbacher2

Institute of Computer Science, University of Augsburg, Germany

Abstract

The Service-Oriented Architecture is gaining more and more attention and one way of realising it is the
usage of Web Services. But which Web Services need to be invoked to reach a goal and which parameters
are necessary at the beginning or are returned at the end? In this report we present an algebraic structure of
Web Services in order to formally describe the Web Services and assist the users in Web Service composition.
Hence, we apply relation algebra, tests, Kleene star and modal operators to characterise Web Services and
Web Service Composition.
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1 Introduction

Today companies face challenges in changing jurisdiction, new products and rivalling

competitors. This leads to the need of adapting their business processes frequently

and in acceptable time. Hence, more loosely-coupled components are necessary in

order to achieve this goal. The Service-Oriented Architecture (SOA) represents an

approach that facilitates this loose coupling while at the same time providing suf-

ficient quality of service necessary for acceptable solutions. Web Services are one

possibility to fulfil the requirements of a service-oriented computing world. The

W3C defines a Web Service as a software system designed to support interopera-

ble machine-to-machine interaction over a network [8]. This definition encompasses

many different systems, but in common usage the term refers to those services that

use SOAP-formatted [7] XML envelopes and have their interfaces described by the

Web Services Description Language (WSDL) [23]. With standards like WSDL and

the Web Service Business Process Execution Language (WSBPEL) [14], both ver-

sion 2.0, one can describe the data types, messages and flow of processes to model

not only a simple Web Service but also the composition (or orchestration) of several

Web Services. But this composition is still mostly done manually. There are already

first (non-algebraic) approaches to use AI-based planners or different algorithms to

achieve an orchestration. On the other hand, formal algebras for Web Services exist,

but most of them are not used for Web Service composition so far.

In this report we present an algebraic structure for Web Services. It is used for

characterising Web Service composition and to determine inputs and outputs of

Web Services. The theoretical aspects and definitions are illustrated by a running

example in order to assist the readers’ understanding. We try to keep the theory

simple and to focus on its application.
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We start with binary relations and relation algebras which have many applica-

tions in mathematics and computer science (e.g. [25,11]); they are well known and

provide a rich theory. This report shows that Web Services are another applica-

tion. Together with modal operators, tests and the Kleene star they can be used to

describe Web Services and their composition in an acceptable manner.

This report is structured as follows: in the next section we describe related work

on formal approaches on Web Services as well as on Web Service composition. In

Section 3 we define Web Methods and Web Services based on relational algebras

and show the benefits in a running example. We go into further detail about the

algebraic structure in Section 4. Section 5 defines the composition of Web Services

on the algebraic context. We establish the concept of Web Service restriction in

Section 6. This paves the way to characterise preconditions and goals as elaborated

in more detail in Section 7. Before presenting a small case study in Section 9 we

recapitulate the concept of iteration and show how the used Web Services can be

found using the algebra of traces. We conclude with an outlook on on-going and

future work. In particular, we sketch how to determine the execution order of Web

Services.

2 Related work

There are plenty of approaches to Web Service composition. A composition can

be achieved agent-based (as in [18,6]), based on interaction protocols [26], symbolic

transition systems [24] or based on some kind of logic [9]. Very often process algebras

or petri nets are used, too. The semantic web community has used planning tech-

niques to address the problem of automated composition of semantic Web Services,

e.g. based on OWL-S [19] descriptions of input/output/precondition and effect.

In [20] SHOP2, a hierarchical task network (HTN) planner, is employed for Web

Service composition. The HTN planner creates workflows by task decomposition.

In [10] a composition algebra is defined which covers inputs and outputs of a Web

Service and is based on CCS [21] and CSP [12]. It regards choices, parallel processes

and synchronisation. This process algebra solves the composition problem which is

generally addressed as finding a composite process showing a requested behaviour.

The authors first perform a top-down behaviour decomposition and afterwards a

bottom-up process composition and provide an algorithm for the composition of

Web Services. Using our algebraic structure one does not need algorithms for the

composition anymore, but the composition is automatically inferred via the algebra.

In [9] Web Services are defined based on service nets as a subclass of Petri nets.

The created Web Service algebra includes empty services, sequences, choices, iter-

ators, parallel constructs and more advanced workflow patterns like discriminators.

Desired properties of that service algebra are described, but the aspect of Web Ser-

vice composition is not considered. It describes the formal semantics and algebraic

properties of single services and the (existing) orchestration of services. Also, it

includes advanced workflow patterns, but the composition of services needs to be

predefined and can not be inferred through the algebra automatically.
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3 Towards a Formalisation of Web Services

In this section we develop an algebraic characterisation of Web Services and present

also an algebraic definition of Web Service composition. Obviously, a Web Ser-

vice consists of an interface and the implementation. In the interface (described in

WSDL) several Web Methods are defined. These receive input messages and reply

with output messages which both can be of a simple type such as string, integer,

etc. or of a complex type. For our first formalisation of Web Services we assume

that both, the types of the input data and the output data are known before and

therefore there is a knowledge set K, a set which includes the input and the output

as subsets. Types which might be nested or semantically described are topics for

further research and also the concrete binding and port information of Web Services

are currently neglected for the sake of simplicity.

Definition 3.1 A Web Method is a tuple (I,O), where K is a knowledge set and

I ⊆ O ⊆ K.

The condition I ⊆ O guarantees that we do not lose any information, i.e., any

information which is known before the execution of a Web Method is also known

afterwards. Mathematically, a Web Method is an ordered pair . In the definition, I

denotes the set of all data needed by the Web Method. If all input is provided, an

execution of the Web Method will produce all data which are given in the set O.

Otherwise this specification means that if one element of I is missing, the Web

Method cannot be executed and therefore no output is produced. (∅, O) 3 represents

a Web Method where no input is needed, i.e., it can be executed at any time.

Due to readability we want to avoid the repetition of the input data in the output

as well as the brackets. Therefore we use a grammar-style notation. In particular

i1 i2 . . . in → o1 o2 . . . om ⇔df ({i1, i2 . . . , in}, {i1, i2 . . . , in} ∪ {o1, o2 . . . , om}) .

Like in grammars a choice of rules u → v and u → w is abbreviated by u → v |w.

Furthermore a choice of rules u → w and v → w is denoted by u | v → w. If the

left hand side or the right hand side of the production rule is empty, i.e., I = ∅ or

O\I = ∅ (I = O), we write ∅ → o1 . . . om and i1 . . . in → ∅ respectively.

Running Example Booking a flight is a very simple example of a Web Method.

A customer needs (at least) the date of arrival , the airport of departure, the desti-

nation and his credit card number. By using the abbreviations a, dep, des, cc for

the above information and etix for an electronic ticket which is issued during the

execution of the Web Method, we get

flightcc =df a dep des cc → etix .

By definition, this is the same as ({a, dep, des, cc}, {a, dep, des, cc, etix}). ⊓⊔

A Web Method is the simplest form of a Web Service; but it contains neither

choice nor does it offer a straightforward composition operation. To eliminate the

former deficiency, we define a simple Web Service.

3 The symbol ∅ denotes the empty set w.r.t. the knowledge set K, whereas we will use ∅ to denote empty
sets w.r.t. other sets.
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Definition 3.2 A simple Web Service is a collection of Web Methods.

Running Example For our example we now assume that the customer who wants

to book a flight has the choice of using his credit card number or his frequent

flier card instead (ff for short). To characterise the choice we model two different

Web Methods flightcc and flightff, where flightcc is defined as above and

flightff =df a dep des ff → etix. The simple Web Service for booking a flight

is then defined as

flight =df {flightff, flightcc} .

By this, we have the choice between different Web Methods. ⊓⊔

Since we assumed that the input I as well as the output O are subsets of K,

a simple Web Method becomes a homogeneous relation on P(K). Hence the alge-

braic structure of binary relations under union and sequential composition is also

interesting. In Section 4 we will give its exact definition.

With the embedding of Web Services into the framework of relations we can

now take advantage of all the mathematical background. For example there are two

operations on relations, choice and sequential composition. The former one is just

the set-theoretic union and describes the choice between Web Methods or simple

Web Services, respectively. The sequential composition of two ordered pairs (r, s)

and (t, u) is defined by

(r, s) ; (t, u) =df







(r, u) if s = t

undefined otherwise .

This composition can be lifted pointwise to a composition of relations. The compo-

sition of two relations R and S is defined as

R ; S =df {r ; s | r ∈ R, s ∈ S, r ; s defined} .

Note, that by definition r ; s is defined only if the output set of r has the same size

as the input set of s. Unfortunately, this definition yields a strange behaviour in the

setting of Web Services, which is illustrated by the following example. Afterwards

we will present a possible solution for this deficit.

Running Example Assuming that the customer does not only want to book a

flight but also a hotel room. Therefore, we introduce a Web Service

hotel =df {a d cat → res} ,

where a and d denotes the date of arrival and departure (we assume that a is exactly

the same as the day of the flight), cat describes the room’s category and res stands

for a reservation number which is given by the hotel after a successful booking.

Intuitively, the result of booking both, a flight and a hotel room should be

{S cc | S ff | S cc ff → etix res} ,

where S = a d dep des cat is the common set of all input data. Informally this

means that if the customer has enough input data he is able to book both a flight
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and a hotel. In particular, he needs his credit card, his frequent flier card, or both.

But the ordering of booking a flight and booking a hotel should not matter.

Relational composition of flight and hotel yields an empty set, since the

output of flight does not match the input of hotel and vice versa. ⊓⊔

The problem is, that executing the second Web Method needs more information

than the first one provides. Vice versa the second Web Method cannot be executed if

the first one provides to many information, like etix in the above example.To bridge

this gap, we define a Web Service as a collection of Web Methods which is based on

a simple Web Service with additional information, which remains untouched during

execution of the Web Service and is just added to the output data.

Definition 3.3 Consider a knowledge set K. The (extended) Web Service of a sim-

ple Web Service W is the relation {(I ∪ E,O ∪ E) : (I,O) ∈ W,E ⊆ K\O} and

denoted by ≪W≫ 4.

In this definition E is the context and the extension of the simple Web Service W ,

which just takes any information that is not needed as input for execution and adds

this information unchanged to the output. Obviously, each element of a Web Service

is again a Web Method. Moreover, the definition implies the following result if ≪ .≫
is seen as a function:

Lemma 3.4 ≪ .≫ is additive and idempotent, i.e., ≪V ∪ W≫ = ≪V≫ ∪ ≪W≫
and ≪≪V≫≫ = ≪V≫ for Web Services V and W .

Proof. Additivity follows by straightforward set-theoretic calculations:

≪V ∪ W≫
= {(I ∪ E,O ∪ E) : (I,O) ∈ V ∪ W,E ⊆ K\O}
= {(I ∪ E,O ∪ E) : (I,O) ∈ V ∨ (I,O) ∈ W,E ⊆ K\O}
= {(I ∪ E,O ∪ E) : (I,O) ∈ V,E ⊆ K\O} ∪

{(I ∪ E,O ∪ E) : (I,O) ∈ W,E ⊆ K\O}
= ≪V≫ ∪ ≪W≫

The proof for idempotence is split into two parts.

≪V ≫⊆≪≪V≫≫ follows immediately from the definition of extended Web Ser-

vices (choose E = ∅). The converse direction can be proved as follows:

≪≪V≫≫

= {[ definition of ≪ .≫ ]}

{(I1 ∪ E1, O1 ∪ E1) : (I1, O1) ∈≪V≫, E1 ⊆ K\O1}

= {[ definition of ≪ .≫ ]}

{(I1 ∪ E1, O1 ∪ E1) :

(I1, O1) ∈ {(I2 ∪ E2, O2 ∪ E2) : (I2, O2) ∈ V,E2 ⊆ K\O2}, E1 ⊆ K\O1}

= {[ replace I1 and O1 ]}

{(I2 ∪ E2 ∪ E1, O2 ∪ E2 ∪ E1) :

(I2, O2) ∈ V,E2 ⊆ K\O2, E1 ⊆ K\(O2 ∪ E2)}

⊆ {[ set theory ]}

{(I2 ∪ E2 ∪ E1, O2 ∪ E2 ∪ E1) : (I2, O2) ∈ V,E2 ∪ E1 ⊆ K\O2}

4 When possible, we will skip the set-brackets of W for readability.

5
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= {[ definition of ≪ .≫ ]}

≪V≫
2

In particular, ≪ .≫ is also strict, i.e., ≪∅≫= ∅.

Running Example Let K = {a, d, cat, res, dep, des}. The Web Service based

on hotel is

≪hotel≫= {S | S dep | S des | S dep des → res} ,

where S = a d cat. The second Web Method hands over information about departure

(dep), the third information about destination (des) and the last one dep and des.

⊓⊔

Now, we can use the standard sequential composition of relations to formalise

the desired behaviour and to define Web Service composition in a formal way.

Definition 3.5 Consider a knowledge set K and two (simple) Web Services V and

W over K. The Web Service composition of V and W , is defined as

V ◦ W =df ≪V≫ ; ≪W≫ .

Running Example Determining the Web Service composition of the simple Web

Services flight and hotel over {a, d, dep, des, cat, cc, ff, etix, res} yields

flight ◦ hotel =≪flight≫ ; ≪hotel≫= {S cc | S ff | S cc ff → etix res} ,

where S = a d dep des cat is again the set of common knowledge of all involved

Web Methods. Furthermore we get flight◦hotel = hotel◦flight. This is exactly

the desired behaviour (see above). ⊓⊔

Before discussing some basic properties of Web Service composition in Section 5,

we will set up the theoretical background.

As we will see in the next section, the use of algebra offers abstraction from

relations and set theory. One advantage is that it masks all the set-theoretic notation

(like brackets) and concentrates on the interesting aspects.

4 Algebraic Structure

As already shown, Web Services can be interpreted as relations. The corresponding

abstract algebraic structures of relations are idempotent semirings, which we will

discuss in this section.

Definition 4.1 A semiring is a quintuple (S,+, 0, · , 1) such that (S,+, 0) is a com-

mutative monoid and (S, · , 1) is a monoid such that · distributes over + and 0 is an

annihilator. Concretely, we have the following axioms for semirings.
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• additive monoid: a + (b + c) = (a + b) + c and a + 0 = a = 0 + a ,

• commutativity: a + b = b + a ,

• multiplicative monoid: a · (b · c) = (a · b) · c and a · 1 = a = 1 · a ,

• distributivity: a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c ,

• annihilation: a · 0 = 0 = 0 · a .

On an idempotent semiring (or i-semiring) addition is idempotent, i.e., a+a = a.

In the setting of i-semirings the relation a ≤ b ⇔df a + b = b is a partial order,

i.e., a reflexive, antisymmetric and transitive relation, called the natural order on

S. It has 0 as its least element. Moreover, + and · are isotone with respect to ≤ .

As usual multiplication binds stronger than addition.

It is straightforward that the algebra of binary relations over a set K

REL(K) =df (P(K ×K),∪, ∅, ; ,∆) ,

where ∆ = {(x, x) : x ∈ K} is the identity relation, forms an i-semiring. More

details about (idempotent) semirings and examples of their relevance to computer

science can e.g. be found in [3].

This structure allows us to express Web Service composition and the choice

between Web Services in an abstract way. There are some special elements which

have to be discussed: ∆ is the Web Service which does nothing than to hand over

all input data. From a semantic point of view it can be seen as skip. ∅ is an

“improper” Web Service, due to the annihilation laws it stops every calculation and

can therefore be seen as abort. The last special element is magic = K×K, the Web

Service that can do anything.

It is also straightforward to show that REL(K) forms a relation algebra (e.g. [25])

and therefore can be equipped by additional operations. e.g., for calculating the

converse. But in the setting of Web Services converse means to undo an already

executed Web Services. Since we do not want such a behaviour, we calculate in the

more abstract setting of i-semirings.

5 Web Service Composition

We have already defined Web Service composition in the context of binary relations

(cf. Definition 3.5). The composition for two Web Services V and W was to extend

each element and then use relational composition, i.e.,

V ◦ W = ≪V≫ ; ≪W≫ .

Using the algebraic structure of the previous section we can now derive basic

properties of Web Service composition.

Since Web Service composition is defined in terms of sequential composition of

relations and therefore in terms of multiplication of i-semirings in general, we get

Corollary 5.1 Web Service composition is associative and distributes over choice.
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Proof. Associativity follows by associativity of relations and ≪V ◦ W≫ = V ◦W .

Using Lemma 3.4 and the distributivity laws of relation algebra, we get for arbitrary

Web Services U, V,W

U ◦ (V ∪ W )

= ≪U≫ ; ≪(V ∪ W )≫
= ≪U≫ ;(≪V≫ ∪ ≪W≫)

= ≪U≫ ; ≪V≫ ∪ ≪U≫ ; ≪W≫
= U ◦ V ∪ U ◦ W

The second distributivity law can be proved in a similar way.

2

These properties are of course necessary for Web Service composition; but in

contrast to other approaches there is no need to add these as axioms, since they

can be derived in our setting.

Lemma 5.2 For arbitrary Web Services V and W, the composed Web Service V ◦
W is again an extended Web Service, i.e. there is a simple Web Service X with

≪X≫ = V ◦ W .

The proof is by straight-forward calculations similar to the proof of Lemma 3.4.

It can be found in Appendix A. In particular, V ◦ W is again a Web Service and

therefore we get

Corollary 5.3 The set of (extended) Web Services form an i-semiring under set

union and Web Service composition.

Note that if V ◦ W = W ◦ V , then the two Web Services can be executed in

parallel (when neglecting possible dependencies on some shared resources).

Running Example Let us expand the above example by a “planning the trip”

Web Service. Therefore we assume that there is a simple Web Service which collects

all necessary information, but needs no input data at all.

plan =df {∅ → S cc | S ff | S cc ff} ,

where S = a d dep des cat. In fact there are three different outputs depending

on the information on the credit and the frequent flier card. (The customer has to

specify at least one.) Furthermore let K =df {a, d, dep, des, cc, ff, cat, etix, res}
be the knowledge set. In the remainder we denote the Web Services ≪flight≫,

≪hotel≫ and ≪plan≫ by f, h and p, resp. Composing these Web Services yields

p ; h ; f = p ; f ; h = {∅ → S P cc ff | S P cc | S P ff, cc | ff → S P cc ff} ,

f ; p ; h = f ; h ; p = h ; p ; f = h ; f ; p = ∅ ,

where S = cat a d dep des is the set of data which has to be collected by the

Web Service under all circumstances and P = etix res is the set of data produced

by the Web Services after successful execution. The composed Web Services in the

last line coincide with the empty service, since p “produces” knowledge which is
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already needed by f or h before and therefore yields a conflict. For example, after

the execution of f the date of departure (dep) is known, since this is in the output

set. But then it is not possible that the Web Service for planning (p) specifies this

date. This conflict yields an abortion and an empty result set. Such a behaviour

seems quite natural for us, since otherwise the customer would for example be able

to change the date for travelling after booking the hotel and before booking the

flight. Note if we add more elements to the knowledge set K then p ; h ; f contains

even more elements. ⊓⊔

6 Web Service Restriction

Our aim is not only to characterise Web Service composition but also algebraic

notions to express the needed input data to perform a certain action or to use

assertions to guarantee a certain knowledge.

Therefore, we introduce the concept of tests and will show lateron how to use

them in modal operators in order to search for Web Services that achieve a specified

goal and detect the data that is needed to invoke these Web Services.

Running Example We assume the Web Service flight ∪ hotel which either

books a hotel room or a flight. To test a successful booking (if a customer has an e-

ticket at the end of execution) we use the term ≪flight ∪ hotel≫ ; ≪etix → ∅≫.

⊓⊔

In REL a test can be modelled as a subrelation of the identity relation; meet

and join of such partial identities coincide with their composition and union. Gen-

eralising this, one defines a test in an i-semiring [17] to be an element p ≤ 1 that

has a complement q relative to 1, i.e., p + q = 1 and p · q = 0 = q · p. The set

of all tests of an i-semiring S is denoted by test(S). It is not hard to show that

test(S) is closed under + and · and has 0 and 1 as its least and greatest elements.

Moreover, the complement ¬p of a test p is uniquely determined by the definition.

Hence test(S) forms a Boolean algebra. In the remainder we will consistently write

a, b . . . for arbitrary semiring elements and p, q, . . . for tests. Furthermore, we freely

use the Boolean laws for tests; e.g. an important property is

p · a · q ≤ 0 ⇔ a · q ≤ ¬p · a . (1)

With the above definition of tests we deviate slightly from [17], in that we do not

allow an arbitrary Boolean algebra of subidentities as test(S) but only the maxi-

mal complemented one. The reason is that the axiomatisation of modal operators,

presented below, forces this maximality anyway (see [5]).

Running Example Assume a user who has not executed a Web Service and who

wants to plan a trip (see above). Therefore he has not specified any data before the

execution of the Web Services. But, p ; h ; f can also contain Web Methods which

start with some data. To distinguish Web Services with no input, we insert a test

t =df {(∅, ∅)} at the beginning of the calculation. Since the result is not empty for

t ; p ; f ; h and t ; p ; h ; f

9
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the execution of the Web Services in this order yields a positive result (a hotel room

and a flight is booked). Note that we use t and not the extended Web Service ≪t≫,

since we want to guarantee that an execution starts without any input. Usually, one

has to use the extended one if a test occurs inside an execution (see above). ⊓⊔

Of course similar to a restriction at the beginning of a calculation, we can also

use tests to enforce particular results (e.g., a · p) or to enforce knowledge inside a

computation or intermediate results (e.g., a · p · b). Since tests do not determine any

new data, they contain only Web Methods of the form i1 . . . in → ∅.

By the above examples, we have seen that tests form sets of possible current

information or sets of possible configurations.

In Section 7 we show another criterion to guarantee a positive result. For this

we further need an additional property about extended Web Services.

Lemma 6.1 Any extended Web Service which is also a test in the i-semiring can

be split into parts. That is, for any subsets X,Y,Z of a given knowledge set K with

X = Y ∪ Z we have

≪(X,X)≫= {(Y, Y )} ◦ {(Z,Z)} =≪(Y, Y )≫ ; ≪(Z,Z)≫ .

Proof. The proof is a special case of Lemma 5.2. It is by straightforward, set-

theoretic calculations.

≪(Y, Y )≫ ; ≪(Z,Z)≫

= {[ definition of ≪ .≫ ]}

{(Y ∪ EY , Y ∪ EY ) : EY ⊆ K\Y } ∪ {(Z ∪ EZ , Z ∪ EZ) : EZ ⊆ K\Z}

= {[ relational composition ]}

{(Y ∪ EY , Z ∪ EZ) : EY ⊆ K\Y,EZ ⊆ K\Z, Y ∪ EY = Z ∪ EZ}

= {[ set E ⊆ EY ∩ EZ , and EY ⊆ E ∪ Y \Z and EZ ⊆ E ∪ Z\Y , resp. ]}

{(Y ∪ Z ∪ E,Y ∪ Z ∪ E) : E ⊆ K\(Y ∪ Z)}

= {[ definition of ≪ .≫ ]}

≪(Y ∪ Z, Y ∪ Z)≫

= {[ X = Y ∪ Z ]}

≪(X,X)≫

The third step uses, next to the definition some basic set-theoretic rules. 2

Since on tests ; coincides with meet, informally the lemma describes that the

test “X holds” can be replaced by two tests, namely “Y holds” and “Z holds”.

Running Example Given the test ≪etix res → ∅≫. By the above lemma this

can be split into ≪etix → ∅≫ ; ≪res → ∅≫. ⊓⊔

7 Preconditions and Modal Operators

As we have seen, tests can be used to model assertions for Web Services. But they

are also the basis for defining modal operators [4] which are used for modelling ter-

mination and an abstract version of the wlp-operator [22]. The resulting formalism

is similar to propositional dynamic logic but also strongly related to temporal logics.

In this section we discuss these operators with respect to Web Services. In particu-
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lar we show how to determine necessary information which has to be specified by a

customer when a certain goal is given, e.g. to receive an e-ticket in the end.

Definition 7.1 An i-semiring S is called modal [4] if it can be endowed with a total

(forward) box operation |a] : test(S) → test(S), for each a, b ∈ S, that satisfies

p ≤ |a]q ⇔ p · a · ¬q ≤ 0 and |a · b]p = |a](|b]p) .

A (forward) diamond is defined as the de Morgan dual of the box; |a〉p =df ¬|a]¬p.

Informally, in the context of Web Services, |a〉p characterises the set of possible

information with at least one successor in p when executing the Web Service a, i.e.,

the preimage of the set p under a. |a]p characterises the situation where there is

no execution of a, that starts in p and terminates in ¬q. Using Equation (1) shows

that whenever an execution of a terminates in ¬q, the execution has to start in

¬p and therefore |a]p models the possible infomation from which execution of a is

guaranteed to terminate in an element of p or the execution is not possible. Formally,

in REL and also in Web Services, one has (x, x) ∈ |R]q ⇔ (∀y : xRy ⇒ (y, y) ∈ q).

Furthermore, in [22] it is shown that the box operator coincides with the wlp-

operator, i.e., wlp.(a, p).q = |a]q.

For a better understanding let us have a look at our running example.

Running Example A customer needs an electronic ticket and a reservation number

for a successful booking. Therefore the aim after execution is to reach the set q =df

≪ etix res → ∅≫. This example determines all elements which either yield no

execution or, if an execution exists, it leads to a successful booking of a hotel and

a flight. Determining |f ; h]q yields in total 512 elements.

Let us have a look in more detail. There are a lot of elements like res → ∅ for

which an execution of f ; h yields an abortion and the result is the empty set. On

the other hand there are elements like a d cc des dep cat → ∅ where the execution

of the Web Services flight and hotel yields the desired result. ⊓⊔

In contrast to the box operator |a〉q is characterised by (x, x) ∈ |R〉q ⇔ ∃(y, y) ∈
q : xRy in REL and Web Services.

Running Example |f ; h〉q determines all possible starting configurations that

have at least one successful execution path, i.e, there is at least one possibility

of execution where the involved Web Services yield an e-ticket and a reservation

number. ⊓⊔

The combination of both operators guarantees that at least one result of the

Web Service a exists and all resulting information is in p. This is expressed by

|a〉p · |a]p .

Running Example Determining |f ; h〉q ; |f ; h]q with q =df ≪etix res → ∅≫
yields indeed the desired result; namely exactly the information which is needed to

use both Web Services:

|f ; h〉q ; |f ; h]q = {S cc | S ff | S cc ff → ∅} ,

11
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where S = cat a d dep des is again the set of data which has to specified by the user

under all circumstances. Interpreting that result we now know that the customer

has to give next to S either his credit card number (cc), the number of his frequent

flier card (ff) or both. ⊓⊔

Of course this result is not a surprise since we constructed the Web Services in

exactly that way, but since the modal operators can be applied to any Web Services

they can be used to determine the necessary data. For this purpose it is useful to

provide some basic laws for boxes and diamonds. The proofs as well as many more

properties can be found in [5].

Lemma 7.2 For elements a ∈ S and p, q ∈ test(S)

|a](p · q) = |a]p · |a]q, |a〉(p + q) = |a〉p + |a〉q,

|a + b]p = |a]p · |b]p, |a + b〉p = |a〉p + |b〉p,

|p]q = ¬p + q, |p〉q = p · q,

|a · b〉p = |a〉|b〉p

The first line explains how to decompose a Web Service if the goal (p ·q or p+ q)

can be split. The second line splits the Web Service itself, the third row calculates

the test if the execution step is a test itself. The last row shows that the diamond

satisfies the same law for composition as the box operator.

Running Example We want to determine the necessary information to receive

an e-ticket and a reservation number after the execution of a Web Service W =

flight ◦ hotel (provided execution is possible). Therefore we have to determine

|W ] ≪etix res → ∅≫ .

By Lemma 6.1 and the first equation of Lemma 7.2 this expression is equivalent

to |W ] ≪etix → ∅≫ ; |W ] ≪res → ∅≫. By simple calculations this is the same

as |≪flight≫] ≪etix → ∅≫ ; |≪hotel≫] ≪res → ∅≫. This shows that the

calculation can be splitted into a part for booking the flight and one for booking

the hotel. ⊓⊔

Obviously, the splitting rules of Lemma 6.1 and 7.2 cannot be applied in each

situation. In particular if a single Web Service produces two dependent results, the

splitting is not useful.

Note, that backwards boxes [a|p and diamonds 〈a|p, which describes all possible

ending states of an element, is easily defined as a domain operator in the opposite

semiring (i.e., the one that swaps the order of composition).

In particular, the backward box is defined by p ≤ [a|q ⇔ ¬q · a · p ≤ 0 and

[a · b|p = [b|([a|p). The backward diamond is again defined as the de Morgan dual

〈a|p =df ¬[a|¬p.

Using backwards modal operators one can now characterise goals for Web Ser-

vices instead of preliminaries.

Running Example Usually, a system starts with no information. Therefore con-

sider the test t =df {(∅, ∅)}. Then [p ; h ; f|t ; 〈p ; h ; f|t yields the set of possible

knowledge after successful execution of all three Web Services. ⊓⊔

12
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8 Web Service Iteration

To round off the discussion about the algebraic structure of Web Services, we briefly

discuss a possibility how to formalise the iteration of Web Services in the algebra

setting without giving too many details. Obviously it seems useful to characterise

an arbitrary, but finite number of iterations in the setting of Web Services.

To iterate a Web Services V twice, we can use the expression V 2. But how

can we formalise an arbitrary iteration? We have to determine the reflexive and

transitive closure of a Web Service which is expressed and denoted by the Kleene

star ∗. Therefore the expression

V ∗ =
⋃

i∈IN

V i

determines the desired behaviour.

Running Example Instead of giving the concrete order of the Web Services p, f

and h, one might say that the user is allowed to execute each Web Service which he

wants in any ordering. Hence, (p∪ f∪ h)∗ would give all iterations where either the

flight, the hotel or the overall planning would be executed first and then the others.

The result of this iteration is skip (the element ∆) or p, f, h, pf, ph, fp, fh, hp,

hf, pfh, phf, fph, fhp, hpf, hfp, ... 5 or any other combination of these services. It

would also yield to the result with multiple occurrences of one single Web Service

like pfp (or any similar), but this cannot be executed, i.e., pfp = ∅. Moreover we

have

(p ∪ f ∪ h)∗ ; q = p ; f ; h ; q ∪ p ; h ; f ; q = p ; (f ∪ h) ; q .

The last step is by distributivity. Therefore we now have the possible sequences that

yield the desired result. Moreover, since

p ; f ; h ; q = p ; h ; f ; q = p ; (f ∪ h) ; q (2)

we also know that f and h can be executed in parallel. ⊓⊔

We do not want to discuss this operation and structure (which is known as

Kleene algebra) and its connection to Web Services. Instead we will present some

longer examples in the next section. More details concerning the reflexive, transitive

closure within relations can be found e.g. in [25], about Kleene algebra in [2,16].

9 Simple Case Study

We have implemented relations, Web Service composition, tests and modal operators

in Haskell. With this implementation we have build up a small case study to show

that using the presented theory is useful for determine information about Web

Services. 6

When planning a business trip, it is essential to know which data are necessary

in order to book a flight, a hotel, etc. Since the used Web Services are mostly not

5 Due to readability we leave ; implicit.
6 The Haskell code, the encodings of our examples and the result sets can be found at
http://www.informatik.uni-augsburg.de/dbis/pr/wsalgebra.html .

13
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known in advance, it would be nice if this could be computed. Imagine the following

Web Service that needs the departure, the destination, the date of a flight and either

a credit card number or a frequent flyer number to book a flight. The return value is

an electronic ticket number for the booked flight. We want to book two flights: one

to the destination des and additionally a return flight (getting etix and etix2):

≪flight≫=df {a dep des cc | a dep des ff → etix,

d dep des cc | d dep des ff des → etix2} .

Hence, the expression

¬(etix ∪ etix2) ; |flight∗〉(etix ; etix2) ; |flight∗](etix ; etix2)

would compute all input parameters that are possible on the knowledge set K = {a,
d, dep, des, cc, ff, etix, etix2, smt}, where smt describes something additional.

The test ¬(etix ∪ etix2) guarantees that the customer has not bought any ticket

before the execution of the Web Service. The query yields six results: All include a,

d, dep and des and (not surprisingly) all recombinations of cc, ff and smt. Since we

know that two iterations of flight yield two tickets, the star in the above expression

could be replaced by flight2. Nevertheless, since normal users do not have such

knowledge we modelled the desired behaviour with an arbitrary finite iteration.

But much more interesting are the input parameters that are necessary for differ-

ent Web Services: what is needed in order to book two flights, a hotel and a car, get-

ting the result of a reservation number of the hotel (res), of the car (resnrc) and of

the two e-tickets? In addition to that we also want our car to be insured against acci-

dents. On the extended knowledge set K ∪ {cat, kind, resnrc, insurenr, res} with

the additional Web Services for renting a car ≪car≫=df {a d des cc → resnrc}
and for insuring the car ≪insure≫=df {resnrc cc → insurenr} the query

¬(etix ∪ etix2 ∪ res ∪ resnrc ∪ insurenr)·

|(flight ∪ hotel ∪ car ∪ insure)∗〉(etix · etix2 · res · resnrc · insurenr)

will return this information whereas we already prevent getting results when the

goal parameters are existing in advance. The query returns the following four results:

{S | S ff | S ff smt | S smt → ∅} ,

where S = a, d, dep, des, cat, kind, cc.

The results show that using the given inputs (S) one can achieve the results using

the Web Services flight, hotel, car, insure. More precisely, it can be shown

that the Web Services can be executed in a given order (similar to Equation (2)).

Collecting the inputs (S) in a Web Service plan = {∅ → S} the following process

model would be the result of the computation (cf. Figure 1): At the beginning you

need to plan the business trip, then you can book the hotel and the flight as well as

the car and additionally an insurance for the car. The hotel booking, flight booking

and car booking are independent from each other and therefore could be modelled

in parallel, whereas the insurance depends on the car booking Web Service.

14
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Fig. 1. Process model for the case study.

10 Remember the Web Services

Using a relational approach works fine for calculating inputs and/or outputs. But,

until now, we are not able to determine any execution order for Web Services. For

example, if we calculate (p∪f∪h)∗q we find that there is at least one execution that

delivers an e-ticket and a reservation number at the end, since (p∪f∪h)∗q 6= ∅. But,

we do not know which services need to be executed in which order. Nevertheless,

since we have lifted Web Services to an abstract algebraic level, we can replace the

relational model by any other model which is also based on i-semirings without

recalculating properties again. This is another advantage of our approach. In this

section we introduce the algebra of traces, another (well-known) i-semiring, which

is useful for Web Service composition, too.

First, we want to set up the foundational structure. Like in formal languages a

word over a set Σ is a mapping [0..n] → Σ. The empty word is denoted by ǫ and

concatenation of words σ0 and σ1 by σ0.σ1. We write first(σ) for the first element

of a word σ and last(σ) for its last element.

Informally, a trace is a special word where elements of two sets are alternated.

In detail, a (finite) trace over arbitrary sets P and A is either ǫ or a word σ such

that first(σ), last(σ) ∈ P and in which elements from P and A alternate. The

concatenation of two traces is defined as follows. The product of traces τ0 and τ1 is

the trace

τ0 · τ1 =







σ0.s.σ1 if τ0 = σ0.s and τ1 = s.σ1 ,

undefined otherwise .

Intuitively, τ0·τ1 glues two traces together when the last state of τ0 and the first state

of τ1 are equal. Sometimes this operation is also called trace fusion. It then follows

that first(τ0 · τ1) = first(τ0) and last(τ0 · τ1) = last(τ1) whenever this product exists.

Similar to sequential composition of relations, the trace product can be lifted to sets

of traces by S ·T = {τ0 ·τ1 : τ0 ∈ S, τ1 ∈ T and τ0 ·τ1 defined}. Traces naturally arise

in the context of labelled transition systems [1] and as an abstract interpretation

for program schemes [15]. We will show that they are also useful and quite natural

in the context of Web Services. But first we set up the theoretical background.

Lemma 10.1 The powerset over traces combined with set union as addition and

the lifted trace product as multiplication forms an idempotent test semiring.

The proof is straightforward by checking the axioms.

To derive an interpretation of the trace model for Web Services we redefine the
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concept of a Web Method. Let K be a set of possible knowledge as before (see

Section 3) and N some namespace (a set of names).

Definition 10.2 A Web Method is a trace k0a1k1 . . . ankn over P(K) and N , where

ki ⊆ ki+1 ⊆ K. A Web Method is called atomic if it has length 1, i.e, if n = 1.

Instead of considering only input and outputs the Web Method contains also

the names of the used (atomic) Web Methods. In more detail, traces collect all

information used. The ki represent all occurred input/output data. In particular,

it also contains the temporary ones which occur between the execution of different

Web Services; the ai store the name of the executed Web Services.

Running Example The analogous Web Method for flightcc of Section 3 is for

example the trace

{a, dep, des, cc} flightcc {a, dep, des, cc, etix} ,

where {a, dep, des, cc, etix} ⊆ K and flightcc is an element of N . ⊓⊔

All the notation and properties defined in the previous sections can directly

be adapted to the trace model and therefore we will not recapitulate them. In

particular, Web Service composition can be reused. 7

To retrieve the relation-based model, which we discussed in the first part of the

paper, from the trace-based one, one can apply the projection

φ(τ) =







(first(τ), last(τ)) if τ 6= ǫ ,

undefined if τ = ǫ .

Obviously, the use of this projection yields a loss of information. The trace model

does not only save all used information; in some sense it is even more intuitive.

For example, tests in the relational approach are sets where all elements look like

(X,X). This duplication is quite unnatural. In the trace model tests contain words

of the form k ⊆ K (traces with length 1) and therefore have no duplication inside.

Similar to Section 6, they test or restrict the execution paths.

Running Example Going back to the calculation (p∪f∪h)∗ ;q. The Web Services

are now defined as follows:

p = ≪∅ plan {a, d, dep, des, cat, kind, cc}≫

f = ≪{a, dep, des, cc} flightcc {a, dep, des, cc, etix},

{a, dep, des, ff} flightff {a, dep, des, ff, etix}≫

h = ≪{a, d, cat} hotel {a, d, cat, res}≫ .

Similar to Section 8 the composition of p, f and h yields

(p ∪ f ∪ h)∗ ; q = p ; f ; h ; q + p ; h ; f ; q = p ; (f ∪ h) ; q.

7 Sequential composition has to be replaced by product of traces, e.g. in Web Service composition. That is
why we overload symbols and use ∪ and ; also as operation on trace semirings.
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The last step is by distributivity. Therefore we now have the possible sequences

that yield the desired result: at first the planning Web Service must be executed

and then the Web Services for booking a flight and hotel can be invoked. Moreover,

since p ;f ;h ; q = p ;h ;f ; q = p ; (f∪h) ; q we also know that f and h can be executed

in parallel. ⊓⊔

11 Conclusion and Outlook

In this report we presented a first step towards an algebra of Web Services and

showed how to make advantage of the resulting algebraic structures. In particular,

Web Services can be embedded into the well-known structure of relations which by

adding operations for composition and choice form an i-semiring. Henceforth, we

considered Web Services from a syntactical point of view and started to see them

as tuples of input and output data.

This embedding leads to a definition of Web Service composition on an algebraic

level. After that we were able to add restrictions to Web Services, e.g., to select

those Web Services satisfying a specific condition. Furthermore, we used modal

operators to determine necessary information which guarantee to reach certain goals.

Throughout the report we tried to illustrate the developed theory by an on-going

example, which was expanded to a simple case study. Additionally, the algebraic

setting paved the way to replace the relational by a trace-based model. Using traces

offered the possibility to determine the execution order of Web Services.

One of the great advantages of our approach is certainly the simplicity and the

well-known theory. For example, using relations allows us to apply all the well-

known and efficient algorithm for determining certain relations like the reflexive

and transitive closure (e.g. [25]).

Overall, this report is only a first step towards a full algebraic characterisation.

Nevertheless it shows the basics and provides the ground for on-going and further

work. There are various open questions which can hopefully be solved.

First of all it might be interesting to see if the algebra leads to simplifications

which can be used to optimise and reorganise Web Services. We already touched

this question at the end of Section 7.

Secondly, a problem of our approach is that semantic mismatches may lead to

an empty result set. We have not considered situations where the input does not

match the output exactly. For example a Web Service might have the birthdate as

output whereas the “next” Web Service only requires a date in general. To solve

such situations one has to include some taxonomy or ontology (which says that

every birthdate is also a general date). This ontology of course has to be combined

with the Web Service composition. Re-using an idea of [13] where the composition

of an i-semiring is enriched by an additional relation seems quite promising to solve

this deficit.

Probably the most challenging open problem is a formal characterisation of

semantic Web Services. But, we are quite optimistic that our approach can be

re-used for semantic Web Services. We hope that tests can be used to model for

example preconditions and effects.
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A Omitted Proof

Lemma 5.2 For arbitrary Web Services V and W, the composed Web Service V ◦
W is again an extended Web Service, i.e. there is a simple Web Service X with

≪X≫ = V ◦ W .

Proof.

≪V≫ ; ≪W≫

= {[ definition of ≪.≫ ]}

{(IV ∪ EV , OV ∪ EV ) : EV ⊆ K\OV };
{(IW ∪ EW , OW ∪ EW ) : EW ⊆ K\OW }

= {[ definition of sequential composition ]}

{(IV ∪ EV , OW ∪ EW ) :

EV ⊆ K\OV , EW ⊆ K\OW , OV ∪ EV = IW ∪ EW }

= {[ see below ]}

{(IV ∪ IW\OV ∪ EX , OV ∪ OW ∪ EX) :

EX ⊆ K\(OV ∪ OW ), OV \IW ⊆ K\OW }

= {[ definition ]}

≪{(IV ∪ IW\OV , OV ∪ OW ) : OV \IW ⊆ K\OW }≫

Then, setting X = {(IV ∪ IW\OV , OV ∪ OW ) : OV \IW ⊆ K\OW } completes

the proof.

The condition OV \IW ⊆ K\OW states that the second Web Service W cannot

produce something that was already created by V .

The third step uses next to the definition some basic set-theoretic rules. It is

split into two inequalities. To show these inequalities, we name the condition for

sequential composition:

OV ∪ EV = IW ∪ EW . (∗)

“⊆” We have to show, that for all extensions EV and EW there is an extention EX

satisfying the properties of the fourth line. For arbitrary, but fixed EV and EW ,

we choose ẼX = EV ∩ EW . Let us now check the necessary equations for ẼX .

– First, we show ẼX ⊆ K\(OV ∪ OW ). By definition, the assumptions EV ⊆
K\OV and EW ⊆ K\OW , and set-theory, we get immediately

ẼX = EV ∩ EW ⊆ K\OV ∩ K\OW = K\(OV ∪ OW ) .

– Next, we show that the inputs are equal, i.e., IV ∪EV = IV ∪ IW \OV ∪ ẼX . By

isotony, it is sufficient to show that EV = IW \OV ∪ ẼX . Again, we split this

equation into two inequations. For “⊆” we use set-theory , (∗), distributivity,

the assumption EV ⊆ K\OV and definition of ẼX , and set-theory again:

EV = EV ∩ EV ⊆ (IW ∪ EW ) ∩ EV = (IW ∩ EV ) ∪ (EW ∩ EV )

= (IW ∩ EV )\OV ∪ ẼX ⊆ IW\OV ∪ ẼX .

For the converse direction we have to show that IW\OV ∪ (EV ∩ EW ) ⊆ EV .

By set-theory we have only to prove that IW\OV ⊆ EV , which immediately

follows from (∗).
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– Now, we show that the outputs are equal, i.e., OW ∪EW = OV ∪OW ∪ ẼX . For

the first direction, we only have to show that EW ⊆ OV ∪ ẼX . The claim then

follows by isotony. By set-theory, (∗), set-theory again and definition of ẼX , we

get

EW = EW ∩ EW ⊆ (OV ∪ EV ) ∩ EW ⊆ OV ∪ (EV ∩ EW ) = OV ∪ ẼX .

For the converse direction it is sufficient to show that OV ⊆ OW ∪ EW . The

claim then follows by isotony and the fact that ẼX ⊆ EW . The remaining

inequality follows immediately from (∗) and IW ⊆ OW .

– Last, we have to verify the condition OV \IW ⊆ K\OW . This follows by (∗),
set-theory (twice) and the assumption EW ⊆ K\OW :

OV \IW ⊆ (IW ∪ EW )\IW ⊆ EW \IW ⊆ EW ⊆ K\OW .

“⊇” Let us now prove the converse direction. For an arbitrary, but fixed EX we set

ẼV = EX ∪ IW\OV and ẼW = EX ∪ OV \IW . Again, we have to check that ẼV

and ẼW satisfy all desired properties.

– First, we show ẼV ⊆ K\OV and ẼW ⊆ K\OW . By straightforward calcu-

lations EX ⊆ K\OV and EX ⊆ K\OW and definition of ẼV and ẼW , it is

sufficient to show that IW \OV ⊆ K\OV and OV \IW ⊆ K\OW . The former

claim follows directly from the definition of K, the latter is an assumption.

– Next, we have to show that the inputs and outputs are equal. The equality of

the inputs is immediately by definition.

IV ∪ ẼV = IV ∪ EX ∪ IW \OV .

The equation concerning the output follows by definition, the set-theoretic fact

A ∪ B\A = A ∪ B and IW ⊆ OW :

OW ∪ ẼW = OW ∪ EX ∪ OV \IW = OW ∪ EX ∪ OV .

– Last, we have to show Equation (∗). Similar to the previous calculation, this

follows by definition, set-theoretic and definition again:

OV ∪ ẼV = OV ∪ EX ∪ IW\OV = OV ∪ EX ∪ IW = IW ∪ ẼW .
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