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Towards Algebraic Separation Logic

Han-Hing Dang, Peter H�ofner, and Bernhard M�oller

Institut f�ur Informatik, Universit�at Augsburg, D-86135 Augsburg, Germany
fh.dang,hoefner,moellerg@informatik.uni-augsburg.de

Abstract. We present an algebraic approach to separation logic. In par-
ticular, we give algebraic characterisations for all constructs of separa-
tion logic like assertions and commands. The algebraic view does not
only yield new insights on separation logic but also shortens proofs and
enables the use of automated theorem provers for verifying properties at
a more abstract level.

1 Introduction

In many applications correctness of programs is essential. Over the last decades
formal methods have found their way into speci�cation and veri�cation. The
most prominent ones are probably Hoare logic [7] and the wp-calculus of Dijk-
stra [5]. However, they lack expressiveness for shared mutable data structures,
i.e., structures where updatable �elds can be referenced from more than one
point (e.g. [18]). To overcome this de�ciency Reynolds, O'Hearn and others have
developed separation logic that allows reasoning about such data structures.
Their approach extends Hoare logic by assertions to express separation within
memory, both in store and heap. Furthermore the command language is enriched
by some constructs that allows altering these separate ranges. The introduced
mechanism has been extended to allow reasoning about concurrent programs
that work on shared mutable data structures [16].

This paper presents an algebraic approach to separation logic. As a result
many proofs become simpler while still being fully precise. Moreover, this places
the topic into a more general context and therefore allows re-use of a large body
of existing theory.

In Section 2 we recapitulate syntax and semantics of expressions in separation
logic and give a formal de�nition of an update-operator for relations. Section 3
gives the semantics of assertions. After providing the algebraic background in
Section 4, we shift from the validity semantics of separation logic to one based on
the set of states satisfying an assertion. Abstracting from the set view yields an
algebraic interpretation of assertions in the setting of semirings and quantales. In
Section 6 we discuss special classes of assertions: pure assertions do not depend
on the heap at all; intuitionistic assertions do not specify the heap exactly. After
that we extend our algebra to cover the command language of separation logic
in Section 7. We conclude with a short outlook.



2 Basic De�nitions

Separation logic, as an extension of Hoare logic, does not only allow reasoning
about explicitly named program variables, but also about anonymous variables
in dynamically allocated storage. Therefore a program state in separation logic
consists of a store and a heap. In the remainder we consistently write s for stores
and h for heaps.

To simplify the formal treatment, one de�nes values and addresses as integers,
stores and heaps as partial functions from variables or addresses to values and
states as pairs of stores and heaps:

Values = ZZ ;

fnilg �[Addresses � Values ;

Stores = V ; Values ;

Heaps = Addresses ; Values ;

States = Stores �Heaps ;

where V is the set of all variables, �[ denotes the disjoint union on sets and
M ; N denotes the set of partial functions between M and N . With this
de�nition, we slightly deviate from [18] where stores are de�ned as functions
from variables to values of ZZ and heaps as functions from addresses into values
of ZZ , while addresses are also values of ZZ .

The constant nil is a value for pointers that denotes an improper reference
like null in programming languages like Java; by the above de�nitions, nil is not
an address and hence heaps do not assign values to nil.

As usual we denote the domain of a relation (partial function) R by dom(R):

dom(R) =df fx : 9 y:(x; y) 2 Rg :

In particular, the domain of a store denotes all currently used program variables
and dom(h) is the set of all currently allocated addresses on a heap h.

As in [13] and for later de�nitions we also need an operator called update

operator. This operator is used to model changes in stores and heaps. We will
�rst give a de�nition and then explain its meaning.

Let R and S be partial functions. Then we de�ne

R jS =df R [ f(x; y) j (x; y) 2 S ^ x 62 dom(R)g : (1)

Hence the relation R updates the relation S with all possible pairs of R in
such a way that R jS is again a partial function. The domain of the right hand
side of [ above is disjoint from that of R. In particular, R jS can be seen as an
extension of R to dom(R)[dom(S). In later de�nitions we abbreviate an update
f(x; v)g jS on a single variable or address by omitting the set-braces and simply
writing (x; v) jS instead.

Expressions are used to denote values or Boolean conditions on stores and are
independent of the heap, i.e., they only need the store component of a given state
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for their evaluation. Informally exp-expressions are simple arithmetical expres-
sions over variables and values, while bexp-expressions are Boolean expressions
over simple comparisons and true, false. Their syntax is given by

var ::= x j y j z j :::

exp ::= 0 j 1 j 2 j ::: j var j exp � exp j :::

bexp ::= true j false j exp = exp j exp < exp j :::

The semantics es of an expression e w.r.t. a store s is straightforward (as-
suming that all variables occurring in e are contained in dom(s)). For example,

cs = c 8 c 2 ZZ ; trues = true and falses = false :

3 Assertions

Assertions play an important rôle in separation logic. They are used as predicates
to describe the contents of heaps and stores and as pre- or postconditions in
programs, like in Hoare logic:

assert ::= bexp j : assert j assert _ assert j 8 var : assert j

emp j exp 7! exp j assert � assert j assert �� assert :

In the remainder we consistently write p, q and r for assertions. Assertions are
split into two parts: the \classical" ones from predicate logic and four new ones
that express properties of the heap. The former are supplemented by the logical
connectives ^ , ! and 9 that are de�ned, as usual, by p ^ q =df : (: p _ : q),
p! q =df : p _ q and 9 v: p =df :8 v:: p .

The semantics of assertions is given by the relation s; h j= p of satisfaction.
It is de�ned inductively as follows (see e.g. [18]).

s; h j= b ,df bs = true

s; h j= :p ,df s; h 6j= p
s; h j= p _ q ,df s; h j= p or s; h j= q
s; h j= 8 v: p ,df 8x 2 ZZ : (v; x) j s; h j= p
s; h j= emp ,df h = ;
s; h j= e1 7! e2 ,df h = f( es

1
; es

2
)g

s; h j= p � q ,df 9h1; h2 2 Heaps : dom(h1) \ dom(h2) = ; and
h = h1 [ h2 and s; h1 j= p and s; h2 j= q

s; h j= p�� q ,df 8h0 2 Heaps : (dom(h0) \ dom(h) = ; and s; h0 j= p)
implies s; h0 [ h j= q .

Here e is an exp-expression, b a bexp-expression and p, q are assertions. Infor-
mally, s; h j= p holds if the state (s; h) satis�es the assertion p; an assertion p is
called valid i� p holds in every state and �nally p is satis�able if there exists a
state (s; h) which satis�es p. The �rst four clauses do not make any assumptions
about the heap and only carry it along without making any changes to it; they
are well known from predicate logic or Hoare logic [7].
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The remaining lines describe the new parts in separation logic: For an ar-
bitrary state (s; h), emp ensures that the heap h is empty and contains no
addressable cells. An assertion e1 7! e2 with expressions e1 and e2 characterises
states with the singleton heap that has exactly one cell at the address es

1
with

the value es
2
. To reason about more complex heaps, the separating conjunction �

is used. It allows expressing properties of heaps that result from merging smaller
disjoint heaps, i.e., heaps with disjoint domains.

The separating implication p�� q guarantees that if the current heap h is
extended with a heap h0 satisfying p, the merged heap h[ h0 satis�es q (see [18]
and Figure 1). If the heaps are not disjoint, the situation is interpreted as an
error case and the assertion is not satis�ed.

p−∗ q

h

p

h′

q

h ∪ h′

Fig. 1. Separating implication 1

4 Quantales and Residuals

To present our algebraic semantics of separation logic in the next section we now
prepare the algebraic background.

A quantale [19] is a structure (S;�; 0; �; 1) where (S;�) is a complete lattice
and � is completely disjunctive. The in�mum and supremum of two elements
a; b 2 S are denoted by a u b and a + b, resp. The greatest element of S is
denoted by >. The de�nition implies that � is strict, i.e., that 0 � a = 0 = a � 0
for all a 2 S. The notion of a quantale is equivalent to that of a standard Kleene

algebra [3] and a special case of the notion of an idempotent semiring.
A quantale is called Boolean if its underlying lattice is distributive and com-

plemented, whence a Boolean algebra. Equivalently, a quantale S is Boolean if

it satis�es the Huntington axiom a = a+ b + a+ b for all a; b 2 S [11, 10]. The

in�mum is then de�ned by the de Morgan duality aub =df a+ b. An important
Boolean quantale is REL, the algebra of binary relations over a set under union
and composition.

A quantale is called commutative if � commutes, i.e., a � b = b � a for all a; b.
In any quantale, the right residual anb exists and is characterised by the

Galois connection
x � anb ,df a � x � b :

1 The right picture might suggest that the heaps are adjacent after the join. But the
intention is only to bring out abstractly that the united heap satis�es q.
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Symmetrically, the left residual b=a can be de�ned. However, if the underlying
quantale is commutative then both residuals coincide, i.e., anb = b=a. In REL,

RnS is characterised by RnS =df R� ; S, where � denotes relational converse
and ; is relational composition.

5 An Algebraic Model of Assertions

We now give an algebraic interpretation for the semantics of separation logic.
The main idea is to switch from the satisfaction-based semantics for single states
to an equivalent set-based one where every assertion is associated with the set
of all states satisfying it. This considerably eases the proofs of most of the laws
given in [18].

For an arbitrary assertion p we therefore de�ne its set-based semantics as

[[ p ]] =df f(s; h) : s; h j= pg :

The sets [[ p ]] of states will be the elements of our algebra. By this we then have
immediately the connection s; h j= p , (s; h) 2 [[ p ]]. This validity assertion
can be lifted to set of states by setting, for A � States, A j= p , A � [[p]].
The embedding of the standard Boolean connectives is given by

[[: p ]] = f(s; h) : s; h 6j= pg = [[ p ]] ;

[[ p _ q ]] = [[ p ]] [ [[ q ]] ;

[[ 8 v: p ]] = f(s; h) : 8x 2 ZZ : (v; x) j s; h j= p g :

Using these de�nitions, it is straightforward to show that

[[ p ^ q ]] = [[p]] \ [[q]] ; [[ p! q ]] = [[p]] [ [[q]] ; and

[[ 9 v: p ]] = [[ 8 v:: p ]] = f(s; h) : 9x 2 ZZ : (v; x) j s; h j= p g ;

where j is the update operation de�ned in (1).
The emptiness assertion emp and the assertion operator 7! are given by

[[ emp ]] =df f(s; h) : h = ;g

[[e1 7! e2]] =df

�
(s; h) : h =

��
es
1
; es

2

�		
:

Next, we model the separating conjunction � algebraically by

[[ p � q ]] =df [[ p ]] �[ [[ q ]];

P �[Q =df f(s; h [ h0) : (s; h) 2 P ^ (s; h0) 2 Q ^ dom(h) \ dom(h0) = ;g :

In this way inconsistent states as well as \erroneous" merges of non-disjoint
heaps are excluded.

These de�nitions yield an algebraic embedding of separation logic.

Theorem 5.1 The structure AS =df (P(States); � ; ;; �[ ; [[ emp ]]) is a commu-

tative and Boolean quantale with P +Q = P [Q.
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The proof is by straightforward calculations; it can be found in [4]. It is easy to
show that [[true]] is the greatest element in the above quantale, i.e., [[true]] = >,
since every state satis�es the assertion true. This implies immediately that [[true]]
is the neutral element for u. However, in contrast to addition [, multiplication
�[ is in general not idempotent.

Example 5.2 In AS

[[ (x 7! 1) � (x 7! 1) ]] = [[x 7! 1 ]] �[ [[x 7! 1 ]] = ; :

This can be shown by straightforward calculations using the above de�nitions.

[[ (x 7! 1) � (x 7! 1) ]]
= f(s; h) �[ (s0; h0) : (s; h); (s0; h0) 2 [[x 7! 1 ]]g
= f(s; h [ h0) : (s; h); (s; h0) 2 [[x 7! 1 ]] ^ dom(h) \ dom(h0) = ;g
= ; :

[[x 7! 1 ]] is the set of all states that have the single-cell heap f(s(x); 1)g. The
states (s; h) and (s; h0) have to share this particular heap. Hence the domains of
the merged heaps would not be disjoint. Therefore the last step yields the empty
result. ut

As a check of the adequacy of our de�nitions we list a couple of properties.

Lemma 5.3 In separation logic, for assertions p; q; r, we have

(p ^ q) � r ) (p � r) ^ (q � r)
and

p ) r q ) s

p � q ) r � s
:

The second property denotes isotony of separating conjunction.

Proof. As an example we prove the �rst statement. Algebraically, it corresponds
to (p u q) � r � (p � r) u (q � r) which is shown by idempotence and isotony of u:

(p u q) � r = ((p u q) � r) u ((p u q) � r) � (p � r) u (q � r) : ut

More laws and examples can be found in [4].
For the separating implication the set-based semantics extracted from the

de�nition in Section 3 is

[[ p �� q ]] =df f(s; h) : 8h
0 2 Heaps : ( dom(h) \ dom(h0) = ; ^ (s; h0) 2 [[ p ]])

) (s; h [ h0) 2 [[ q ]]g :

This implies that separating implication corresponds to a residual.

Lemma 5.4 In AS, [[ p�� q ]] = [[ p ]]n[[ q ]] = [[ q ]]=[[ p ]].

Proof. We �rst show the claim for a single state. By de�nition above, set theory
and de�nition of �[ , we have
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(s; h) 2 [[p�� q]]
, 8h0 : ((s; h0) 2 [[p]] ^ dom(h) \ dom(h0) = ; ) (s; h [ h0) 2 [[q]])
, f(s; h [ h0) : (s; h0) 2 [[p]] ^ dom(h) \ dom(h0) = ;g � [[q]]
, f(s; h)g �[ [[p]] � [[q]] :

and therefore, for arbitrary set R of states,

R � [[p�� q]]
, 8 (s; h) 2 R : (s; h) 2 [[p�� q]]
, 8 (s; h) 2 R : f(s; h)g �[ [[p]] � [[q]]
, R �[ [[p]] � [[q]] :

Hence, by de�nition of the residual, [[p�� q]] = [[p]]n[[q]]. The second equation
follows immediately from Section 2, since multiplication �[ in AS commutes. ut

Now all laws of [18] about �� follow from the standard theory of residuals
(e.g. [2]). Many of these laws are proved algebraically in [4]. For example, the two
main properties of separating implication, namely the currying and decurrying
rules, are nothing but the transcriptions of the de�ning Galois connection for
right residuals.

Corollary 5.5 In separation logic the following inference rules hold:

p � q ) r

p ) (q�� r)
; (currying)

p ) (q�� r)

p � q ) r
: (decurrying)

This means that q�� r is the weakest assertion guaranteeing that a state in
[[q�� r]] merged with a state in [[q]] yields a state in [[r]].

In his work Reynolds only derives these laws in separation logic (e.g. [18]).
We are not aware of any proof of the equivalence of Lemma 5.4, although many
authors state this claim and refer to Reynolds.

As a further example we prove the algebraic counterpart of the inference rule

q � (q�� p) ) p :

Lemma 5.6 Let S be a quantale. For a; b 2 S the inequality q � (q n p) � p holds.

Proof. By de�nition of residuals we immediately get
q � (q n p) � p , q n p � q n p , true . ut

6 Special Classes of Assertions

Reynolds distinguishes di�erent classes of assertions [18]. We will give algebraic
characterisations for two main classes, namely pure assertions and intuitionistic

assertions. The former are independent of the heap of a state. Therefore these
assertions only express conditions on store variables. The latter do not describe
the domain of a heap exactly. Hence, when using these assertions one does not
know whether the heap contains additional anonymous cells.
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6.1 Pure Assertions

An assertion p is called pure i� it is independent of the heaps of the states
involved, i.e.,

p is pure ,df (8h; h0 2 Heaps : s; h j= p , s; h0 j= p) :

Theorem 6.1 In AS an element [[ p ]] is pure i� it satis�es, for all [[ q ]] and [[ r ]],

[[ p ]] �[ [[ true ]] � [[ p ]] and [[ p ]] \ ([[ q ]] �[ [[ r ]]) � ([[ p ]] \ [[ q ]]) �[ ([[ p ]] \ [[ r ]]) :

Before we give the proof we derive an abstract law to shorten it. The above
theorem motivates the following de�nition.

De�nition 6.2 In an arbitrary Boolean quantale S an element p is called pure

i� it satis�es, for all a; b 2 S,

p � > � p ; (2)

p u (a � b) � (p u a) � (p u b) : (3)

The �rst equation models upwards closure of pure elements. It can be strength-
ened to an equation since its converse holds for arbitrary Boolean quantales.
The second equation enables pure elements to distribute over meet and implies
downward closure. It can be strengthened to equations if p � p � p. This is for
example the case if (2) holds. Moreover we get a compact characterisation if the
underlying quantale commutes.

Lemma 6.3 In a commutative and Boolean quantale, an element p is pure i�

p = (p u 1) � > holds.

Proof. We �rst show that p = (pu 1) � > follows from Equations (2) and (3). By
neutrality of > for u, neutrality of 1 for �, meet-distributivity (3) and isotony,
we get

p = p u > = p u (1 � >) � (p u 1) � (p u >) � (p u 1) � > :

The converse inequation follows by isotony and Equation (2):

(p u 1) � > � p � > � p :

Next we show that p = (p u 1) � > implies the two Equations (2) and (3). The
�rst equation is shown by the assumption, the general law > � > = > and the
assumption again:

p � > = (p u 1) � > � > = (p u 1) � > = p :

For the second equation, we note that in a Boolean quantale the law (s �a)u b =
a u (s � b) holds for all subidentities s (s � 1) (e.g., [15, 8]). From this we get for
arbitrary c by the assumption

p u c = ((p u 1) � >) u c = > u ((p u 1) � c) = (p u 1) � c : (4)
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Moreover in a Boolean quantale subidentities are idempotent, i.e., s�s = s. Using
Equation (4), idempotence, commutativity and Eq. (4) (twice) we get the claim:

p u (a � b) = (p u 1) � a � b = (p u 1) � (p u 1) � a � b

= (p u 1) � a � (p u 1) � b = (p u a) � (p u b) : ut

Corollary 6.4 The set of pure elements forms a complete lattice.

Proof. Lemma 6.3 characterises the pure elements as the �xed points of the
isotone function f(x) = (x u 1) � > on the quantale. By Tarski's �xed point
theorem these form a complete lattice. ut

Proof of Theorem 6.1. By Lemma 6.3 and de�nition of the elements of AS it is
su�cient to show that the following formulas are equivalent in separation logic

8 s 2 Stores; 8h; h0 2 Heaps : (s; h j= p , s; h0 j= p) ; (5)

8 s 2 Stores; 8h 2 Heaps : (s; h j= p , s; h j= (p ^ emp ) � true) : (6)

Since both assertions are universally quanti�ed over states we omit that quanti�-
cation in the remainder and only keep the quanti�ers on heaps. Before proving
this equivalence we simplify s; h j= (p ^ emp ) � true. Using the de�nitions of
Section 3, we get for all h 2 Heaps

s; h j= (p ^ emp ) � true

, 9h1; h2 2 Heaps : dom(h1) \ dom(h2) = ; and h = h1 [ h2
and s; h1 j= p and s; h1 j= emp and s; h2 j= true

, 9h1; h2 2 Heaps : dom(h1) \ dom(h2) = ; and h = h1 [ h2
and s; h1 j= p and h1 = ;

, 9h2 2 Heaps : h = h2 and s; ; j= p
, s; ; j= p :

The last line shows that a pure assertion is independent of the heap and hence, in
particular, has to be satis�ed for the empty heap. Next we show the implication
(5) ) (6). Instantiating Equation (5) and using the above result immediately
imply the claim:

8h; h0 2 Heaps : (s; h j= p , s; h0 j= p)
) 8h 2 Heaps : (s; h j= p , s; ; j= p)
, 8h 2 Heaps : (s; h j= p , s; h j= (p ^ emp ) � true) :

For the converse direction, we take two instances of (6). Then, using again the
above result, we get

8h 2 Heaps : (s; h j= p , s; h j= (p ^ emp ) � true)
and 8h0 2 Heaps : (s; h0 j= p , s; h0 j= (p ^ emp ) � true)

) 8h; h0 2 Heaps : (s; h j= p , s; h j= (p ^ emp ) � true

and s; h0 j= p , s; h0 j= (p ^ emp ) � true)
, 8h; h0 2 Heaps : (s; h j= p , s; ; j= p and s; h0 j= p , s; ; j= p)
) 8h; h0 2 Heaps : (s; h j= p , s; h0 j= p) :

9



ut

The complexity of this proof in predicate-logic illustrates the advantage that is
gained by passing to an algebraic treatment. Logic-based formulas (in particular
in separation logic) can become long and complicated. Calculating at the abstract
level of quantales often shorten the proofs. Moreover the abstraction paves the
way to using �rst-order o�-the-shelf theorem provers for verifying properties;
whereas a �rst-order theorem prover for separation logic has yet to be developed
and implemented (cf. Section 8).

To conclude the paragraph concerning pure elements we list a couple of prop-
erties which can be proved very easily by our algebraic approach.

Lemma 6.5 Consider a Boolean quantale S, pure elements p; q 2 S and arbi-

trary elements a; b 2 S Then

(a) p � a = p u a � >;

(b) (p u a) � b = p u a � b;

(c) p � q = p u q; in particular p � p = p.

Their corresponding counterparts in separation logic and the proofs can again
be found in [4].

The following lemma shows a.o. that in the complete lattice of pure elements
meet and join coincide with composition and sum, respectively.

Lemma 6.6 Pure elements form a Boolean lattice, i.e., they are closed under

+, u and . In particular, p � p = 0.

Proof. We only show the closure for ; the others are straightforward. Since p
is pure we can instantiate the meet-distributivity axiom (3) for pure assertions
using q = p and r = >, i.e., (p �>)up � (pup) � (>up) = 0: From this we obtain
by Boolean algebra (shunting) Equation (2). In Boolean quantales, we have for
arbitrary elements a; b; c

a � b = (c u a) � b+ (c u a) � b = (c u a) � b+ (c u a) � (c u b) + (c u a) � (c u b)

� c � >+> � c+ (c u a) � (c u b) :

The �rst two equations simply use Boolean algebra and distributivity laws, the
approximation in the second line is by isotony. Setting c as a pure element p we
get immediately by Equation (2) and commutativity

a � b � p � >+> � p+ (p u a) � (p u b) � p+ (p u a) � (p u b) :

The remaining claim then follows again by shunting. ut

As far as we know these closure properties are new and were not shown in
separation logic so far.
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6.2 Intuitionistic Assertions

Let us now turn to intuitionistic assertions. Following [18], an assertion p is
intuitionistic i�

8 s 2 Stores; 8h; h0 2 Heaps : (h � h0 and s; h j= p) implies s; h0 j= p : (7)

This means for a heap that satis�es an intuitionistic assertion p that it can be
extended by arbitrary cells and still satis�es p.

Similar calculations as in the proof of Theorem 6.1 yield the equivalence of
Equation (7) and

8 s 2 Stores; 8h; h0 2 Heaps : (s; h j= p � true ) s; h j= p) : (8)

Lifting this to an abstract level motivates the following de�nition.

De�nition 6.7 In an arbitrary Boolean quantale S an element i is called intu-
itionistic i� it satis�es

i � > � i : (9)

Elements of the form i � > are also called vectors or ideals.

Corollary 6.8 Every pure element of a Boolean quantale is intuitionistic.

As before we just give a couple of properties. The proofs are again straightfor-
ward at the algebraic level.

Lemma 6.9 Consider a Boolean quantale S, intuitionistic elements i; j 2 S
and arbitrary elements a; b 2 S Then

(a) (i u 1) � > � i;
(b) i � a � i u (a � >);
(c) (i u a) � b � i u (a � b);
(d) i � j � i u j.

Using the quantale AS, it is easy to see that none of these inequations can
be strengthened to an equation. In particular, unlike as for pure assertions,
multiplication and meet need not coincide.

Example 6.10 Consider i =df j =df [[x 7! 1 � true ]] = [[x 7! 1 ]] �[ [[ true ]].
By this de�nition it is obvious that i and j are intuitionistic. The de�nitions of
Section 3 then immediately imply

i \ j = [[x 7! 1 ]] �[ [[ true ]]

i �[ j = [[x 7! 1 ]] �[ [[ true ]] �[ [[x 7! 1 ]] �[ [[ true ]] = ; :

The last step follows from Example 5.2. ut

Other classes of assertions for separation logic are given in [18] and most of
their algebraic counterparts in [4].
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7 Commands

7.1 Syntax and Semantics

In this section we introduce the command constructs of separation logic. Syn-
tactically, they are given by

comm ::= var := exp j skip j comm; comm

j if bexp then comm else comm j while bexp do comm

j newvar var in comm j newvar var := exp in comm

j var := cons (exp; : : : ; exp)

j var := [exp] j [exp] := exp

j dispose exp

We skip explanations for the well-known �rst three lines.
In a given state s the command v := cons allocates n cells with e s

i
as

the contents of the i-th cell. The cells have to form an unused contiguous re-
gion somewhere on the heap; the concrete allocation process is chosen non-
deterministically. The address of the �rst cell is stored in x while the rest of the
cells can be addressed indirectly via start address.

A dereferencing assignment v := [e] assumes that e is an exp-expression and
the value es (corresponding to *e in C) is an allocated address on the heap, i.e.,
es 2 dom(h) for the current heap h. In particular, after execution, the value of
x is the contents of a dereferenced heap cell.

Conversely, an execution of [e1] := e2 assigns the value of the expression on
the right hand side to the cell whose address is the value of the left hand side.

Finally, the command dispose e is used for deallocating the heap cell with
address es. After execution the disposed cell is not valid anymore, i.e., derefer-
encing that cell would cause a fault in the program execution.

Formally we model commands as relations between states and set Cmds =df

P(States�States). With every command d we associate a relation [[d]]c 2 Cmds;
in particular, [[skip]]c =df I where I is the identity relation. Using standard
relational composition we get (Cmds;�; ;; ;; I) as basic quantale structure. For
all commands we assume that the free variables of all expressions are within the
domains of the stores s involved.

To abbreviate the next de�nition for the new commands, we use a convention
similar to that of the re�nement calculus (e.g. [1]). We characterise relations by
predicates linking the input states (s; h) and output states (s0; h0). If P is such
a predicate then R b= P abbreviates the clause (s; h)R (s0; h0) ,df P .

[[[e1] := e2]]c b= s0 = s ^ h0 = (es
1
; es

2
) jh ^ es

1
2 dom(h) ;

[[v := [e]]]c b= s0 = (v; h(es)) j s ^ h0 = h ;

[[ dispose e]]c b= s0 = s ^ es 2 dom(h) ^ h0 = h� f(es; h(es))g ;

[[v := cons (e1; :::; en)]]c b= 9 a 2 Addresses : s0 = (v; a) j s ^
a; : : : ; a+ n� 1 62 dom(h) ^ h0 = f(a; es

1
); : : : ; (a+ n� 1; es

n
)g jh :
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The condition for dispose guarantees that the dereferenced heap cell is al-
ready allocated, since otherwise we would immediately get a fault in the program
execution. The statement a; : : : ; a+ n� 1 62 dom(h) expresses that all these ad-
dresses have to be unallocated. More details can be found in [4].

7.2 Tests and Hoare Triples

Hoare triples fpg c fqg with p and q as predicates about states and c as command
are used to reason about partial correctness. To model the pre- and postcondi-
tions of such triples in a semiring and quantale setting one uses tests. These
are elements p below the multiplicative identity 1 that have complements :p
relative to 1. In the command quantale they are given by the partial identity
relations of the form P̂ = f(t; t) : t 2 Pg for some set P of states. It is clear
that these subidentities, sets of states and predicates characterising states are in
one-to-one correspondence. Join and meet of two tests coincide with their union
[ and composition ; , resp. The set P can be retrieved from P̂ as P = dom(P̂ ).
Employing tests, we have the following equivalences (e.g., [12]):

fpg c fqg , p � c � :q � 0 , p � c � c � q , p � c = p � c � q :

To use this general approach to Hoare logic we simply need to embed the quantale
of assertions from the previous section into the set of tests of the relational
quantale by the above correspondence between sets of states and partial identity
relations. The operation �[ on assertions is lifted to tests by

P̂ ?[ Q̂ =df
\P �[Q :

The frame rule [17] allows local reasoning and describes the interaction be-
tween the separating conjunction in pre- and postconditions for a command c.
For assertions p, q and r and an arbitrary command c it reads

fpg c fqg

fp � rg c fq � rg

assuming that no free variable of r is modi�ed by c. The premise ensures that
starting the execution of c in a state satisfying p ends in a state satisfying
q. Furthermore the conclusion says that extending the initial and �nal heaps
consistently with disjoint heaps will not invalidate the triple in the premise.
The additional heap cells remain unchanged, as long as no free variable of r is
changed by c. The algebraic counterpart is

P ; C � C ;Q ) (P ?[R) ; C � C ; (Q ?[R) ;

assuming that P , Q and R are partial identities and C is an arbitrary element of
our relational command quantale. Furthermore we have to ensure that C does
not modify any free variables of the assertion R.

Finally we discuss inference rules for commands. By the above abstractions
these rules become simple consequences of the well established general relational
view of commands. Due to lack of space, we only sketch the rule for mutation.
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Theorem 7.1 Let p be an arbitrary assertion and e, e0 be exp-expressions. Then

valid triples for mutation commands are

f(e 7! �)g [e] := e0 f(e 7! e0)g ; (local)

f(e 7! �) � pg [e] := e0 f(e 7! e0) � pg ; (global)

f(e 7! �) � ((e 7! e0)�� p)g [e] := e0 fpg : (backward reasoning)

The local mutation law ensures that the cell at address e has the value e0 after
[e] := e0 is executed; provided there is an allocated cell at e. In the relational
semantics the precondition is satis�ed by es 2 dom(h). The global mutation law
follows from the local one as an instantiation of the frame rule. It implies that
reasoning can be modularised. Conversely, the local rule can be derived from the
global one by setting p = emp . The backward reasoning law is used to determine
a precondition that ensures the postcondition p. The global and the backward
reasoning rules are again interderivable (see [18, 4]).

Further inference rules, like for disposal, overwriting and non-overwriting
allocation as well as lookups are presented and explained in [18]; the algebraic
treatment is similar to the one of mutation and straightforward.

8 Conclusion and Outlook

We have presented an algebraic treatment of separation logic. For assertions we
have introduced a model based on sets of states. By this, separating implication
coincides with a residual and most of the inference rules of [18] are simple conse-
quences of standard residual laws. For pure and intuitionistic assertions we have
given algebraic axiomatisations. Next we have embedded the command language
of separation logic into a relational algebraic structure. In particular, we have
de�ned a relational semantics for the heap-dependent commands and lifted the
set-based semantics of assertions to relations.

To underpin our approach we have algebraically veri�ed one of the standard
examples | an in-place list reversal algorithm. The details can be found in [4].
The term in-place means that there is no copying of whole structures, i.e., the
reversal is done by simple pointer modi�cations.

So far we have not analysed situations where data structures share parts
of their cells (cf. Figure 2). First steps towards an algebraic handling of such
situations are given in [14, 6]. In future work, we will adapt these approaches for
our algebra of separation logic.

Our algebraic approach to separation logic also paves the way to verifying-
properties with o�-the-shelf theorem provers. Boolean semirings and quantales
have proved to be reasonably well suitable for automated theorem provers [9].
Hence one of the next plans for future work is to analyse the power of such
systems for reasoning with separation logic. A long-term perspective is to incor-
porate reasoning about concurrent programs with shared linked data structures
along the lines of [16].
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x 1 2 3 4 5

◦

y 7 8

Fig. 2. Two lists with shared cells.
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