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Algebraic Separation Logic

H.-H Dang1, P. Höfner1, B. Möller1

Institut für Informatik, Universität Augsburg, D-86159 Augsburg, Germany

Abstract

We present an algebraic approach to separation logic. In particular, we give an algebraic characterisation for assertions
of separation logic, discuss different classes of assertions and prove abstract laws fully algebraically. After that, we
use our algebraic framework to give a relational semantics of the commands of the simple programming language
associated with separation logic. On this basis we prove the frame rule in an abstract and concise way. We also propose
a more general version of separating conjunction which leads to a frame rule that is easier to prove. In particular, we
show how to algebraically formulate the requirement that a command does not change certain variables; this is also
expressed more conveniently using the generalised separating conjunction. The algebraic view does not only yield
new insights on separation logic but also shortens proofs due to a point free representation. It is largely first-order and
hence enables the use of off-the-shelf automated theorem provers for verifying properties at a more abstract level.

Keywords: separation logic, algebra

1. Introduction

Two prominent formal methods for reasoning about the correctness of programs are Hoare logic [20] and the
wp-calculus of Dijkstra [18]. These approaches, although foundational, lack expressiveness for shared mutable data
structures, i.e., structures where updatable fields can be referenced from more than one point. To overcome this
deficiency, Reynolds, O’Hearn and others have developed separation logic for reasoning about complex and shared
data structures [40, 42]. Their approach extends Hoare logic by a “spatial conjunction” and adds assertions to express
separation between memory regions. In particular, for arbitrary assertions p and q the conjunction p ∗ q asserts that
p and q both hold, but each for a separate part of the storage. This allows expressing aspects of locality, e.g., that
mutation of a single cell in the part that satisfies p will not affect the part that satisfies q. Hence, when reasoning about
a program, one may concentrate on the memory locations that are actually touched by its execution and then embed
them into a larger memory context.

The basic idea of the spatial conjunction is related to early work of Burstall [8] which was then explicitly described
in an intutionistic logic by Reynolds and others. This classical version of separation logic was extended by Reynolds
with a command language that allows altering separate ranges and includes pointer arithmetic. This language has been
extended to concurrent programs that work on shared mutable data structures [39].

In this paper we present an abstract algebraic approach to separation logic. Our approach is based on quan-
tales [37], also called standard Kleene algebras [11]. They are a special case of the fundamental algebraic structure of
idempotent semirings, which have been used in various applications ranging from concurrency control [10, 21, 22] to
program analysis and semantics. In particular, there are already algebraic characterisations for Hoare logic [27, 35]
and the wp-calculus of Dijkstra [36], which serve as the basis of our current approach.

The algebraic approach achieves several goals. First, the view becomes more abstract, which leads to a consid-
erable reduction of detail and hence allows simpler and more concise proofs. On some occasions also additional
precision is gained. Second, the algebraic abstraction places the topic into a more general context and therefore allows
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Preprint submitted to Elsevier July 31, 2010



re-use of a large body of existing theory. Last but not least, since it is largely formulated in pure first-order logic, the
algebraic view enables the use of off-the-shelf automated theorem provers for verifying properties at the more abstract
level.

The paper is organised as follows. In Section 2 we recapitulate syntax and semantics of the expressions and
formulas of separation logic. Section 3 gives the semantics of assertions. After providing the algebraic background
in Section 4, we shift from the validity semantics of separation logic to one based on the set of states that satisfy an
assertion. Abstracting from that set view yields an algebraic interpretation of assertions in the setting of idempotent
semirings and quantales. In Section 6 we discuss special classes of assertions: intuitionistic assertions that do not
specify the heap exactly; pure assertions which do not depend on the heap at all; precise assertions to characterise an
unambiguous heap portion; and supported assertions that guarantee a subheap for all heaps that satisfy the assertion.
After that we extend our algebra to cover the command part of separation logic in Section 7 and finally in Section 8
we give an algebraic proof for the frame rule and a more liberal version of it that also enables a simpler treatment of
variable side conditions. We conclude with a short outlook.

2. Basic Definitions

Separation logic, as an extension of Hoare logic, does not only allow reasoning about explicitly named program
variables, but also about anonymous variables in dynamically allocated storage. Therefore a program state in separa-
tion logic consists of a store and a heap. In the remainder we consistently write s for stores and h for heaps.

To simplify the formal treatment, one defines values and addresses as integers, stores and heaps as partial functions
from variables or addresses to values and states as pairs of stores and heaps:

Values = Z ,

{nil} ·∪Addresses ⊆ Values ,

Stores = V ; Values ,

Heaps = Addresses ; Values ,

States = Stores × Heaps ,

where V is the set of program variables, ·∪ denotes the disjoint union on sets and M ; N denotes the set of partial
functions between M and N. The constant nil is a value for pointers that denotes an improper reference like null in
programming languages like Java or C; by the above definitions, nil is not an address and hence heaps do not assign
values to nil.

As usual we denote the domain of a relation (or partial function) R by dom(R):

dom(R) =df {x : ∃ y : (x, y) ∈ R} .

In particular, the domain of a store dom(s) denotes all currently used program variables and dom(h) is the set of all
currently allocated addresses on a heap h.

As in [31] and for later definitions we also need an update operator. It is used to model changes in stores and
heaps. Let f1 and f2 be partial functions. Then we define

f1 | f2 =df f1 ∪ {(x, y) : (x, y) ∈ f2 ∧ x < dom( f1)} . (1)

The function f1 updates the function f2 with all possible pairs of f1 in such a way that f1 | f2 is again a partial function.
The domain of the right argument of ∪ above is disjoint from that of f1. In particular, f1 | f2 can be seen as an extension
of f1 to dom( f1) ∪ dom( f2). In later definitions we abbreviate an update {(x, v)} | f on a single variable or address by
omitting the set-braces and simply writing (x, v) | f instead.

Expressions are used to denote values or Boolean conditions on stores and are independent of the heap, i.e., they
only need the store component of a given state for their evaluation. Informally, exp-expressions are simple arithmetical
expressions over variables and values, while bexp-expressions are Boolean expressions over simple comparisons and

2



true, false. Their syntax is given by

var ::= x | y | z | ...
exp ::= 0 | 1 | 2 | ... | var | exp ± exp | ...

bexp ::= true | false | exp = exp | exp < exp | ...
The semantics es of an expression e w.r.t. a store s is straightforward (assuming that all variables occurring in e

are contained in dom(s)). For example,

zs = z ∀ z ∈ Values = Z , trues = true and falses = false .

3. Assertions

Assertions play an important rôle in separation logic. They are used as predicates to describe properties of heaps
and stores and as pre- or postconditions in programs, like in Hoare logic:

assert ::= bexp | ¬ assert | assert ∨ assert | ∀ var. assert |
emp | exp 7→ exp | assert ∗ assert | assert−∗ assert .

In the remainder we consistently write p, q and r for assertions of separation logic. Assertions are split into two
parts: the “classical” ones from predicate logic and four new ones that express properties of the heap. The former
are supplemented by the logical connectives ∧ , → and ∃ that are defined, as usual, by p ∧ q =df ¬ (¬ p ∨ ¬ q),
p→ q =df ¬ p ∨ q and ∃ v : p =df ¬∀ v : ¬ p .

The semantics of assertions is given by the relation s, h |= p of satisfaction. Informally, s, h |= p holds if the
state (s, h) satisfies the assertion p ; an assertion p is called valid iff p holds in every state and, finally, p is satisfiable
if there exists a state (s, h) which satisfies p. The semantics is defined inductively as follows (e.g. [42]).

s, h |= b ⇔df bs = true
s, h |= ¬p ⇔df s, h 6|= p
s, h |= p ∨ q ⇔df s, h |= p or s, h |= q
s, h |= ∀ v : p ⇔df ∀ x ∈ Z : (v, x) | s, h |= p
s, h |= emp ⇔df h = ∅
s, h |= e1 7→ e2 ⇔df h = {( es

1 , es
2 )}

s, h |= p ∗ q ⇔df ∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and
h = h1 ∪ h2 and s, h1 |= p and s, h2 |= q

s, h |= p−∗ q ⇔df ∀ h′ ∈ Heaps : (dom(h′) ∩ dom(h) = ∅ and s, h′ |= p)
implies s, h′ ∪ h |= q .

Here, b is a bexp-expression, p, q are assertions and e1, e2 are exp-expressions. The first four clauses do not consider
the heap; they are well known from predicate logic or Hoare logic [20]. The remaining lines describe the new parts
in separation logic: For an arbitrary state (s, h), emp ensures that the heap h is empty and contains no addressable
cells. An assertion e1 7→ e2 characterises states with the singleton heap that has exactly one cell at the address es

1
with the value es

2 . To reason about more complex heaps, the separating conjunction ∗ is used. It allows expressing
properties of heaps that result from merging smaller disjoint heaps, i.e., heaps with disjoint domains. Note, that there
is no separating operator for stores. Later, in Section 8, we will introduce an operator � for splitting stores and heaps
simultaneously.

The separating implication p−∗ q guarantees, that if a heap h is extended with a heap h′ satisfying p , the combined
heap h ∪ h′ satisfies q (cf. Figure 1). An attempt to combine two non-disjoint heaps is interpreted as an error case and
therefore the assertion is not satisfied for the corresponding states.

1The right picture might suggest that the heaps are adjacent after the join. But the intention is only to bring out abstractly that the united heap
satisfies q.
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p−∗ q
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h ∪ h′

Figure 1: Separating implication 1

4. Quantales

To present our algebraic semantics of separation logic in the next section, we now prepare the algebraic back-
ground. The main algebraic structure for assertions and commands which we discuss in the next sections is a quantale.

A quantale [37, 43] is a structure (S ,≤, ·, 1) where (S ,≤) is a complete lattice, (S , ·, 1) is a monoid and multiplica-
tion · distributes over arbitrary suprema: for a ∈ S and T ⊆ S ,

a · (⊔T ) =
⊔{a · b : b ∈ T } and (

⊔
T ) · a =

⊔{b · a : b ∈ T } , (2)

where, for U ⊆ S , the element
⊔

U is the supremum of U. The least and greatest element of S are denoted by 0 and
>, resp. The infimum and supremum of two elements a, b ∈ S are denoted by au b and a + b, resp. We assume for the
rest of this paper that · binds tighter than u and +. The definition implies that · is strict, i.e., we have 0 · a = 0 = a · 0
for all a ∈ S . The notion of a quantale is equivalent to that of a standard Kleene algebra [11] and a special case of the
notion of an idempotent semiring.

A quantale is called Boolean if its underlying lattice is distributive and complemented, whence a Boolean algebra.
An important Boolean quantale is REL, the algebra of binary relations over a set under set inclusion ⊆ , relation
composition ; and set complement .

A useful property we will need is shunting:

a u b ≤ c ⇔ b ≤ c + a . (shu)

In particular, a u b ≤ 0 ⇔ b ≤ a.
A quantale is called commutative if a · b = b · a for all a, b ∈ S . In any quantale, the right residual a\b [4] exists

and is characterised by the Galois connection

x ≤ a\b ⇔df a · x ≤ b .

Symmetrically, the left residual b/a can be defined. However, if the underlying quantale is commutative then both

residuals coincide, i.e., a\b = b/a. In REL, one has R1\R2 = R1˘ ; R2 and R1/R2 = R1 ; R2˘, where ˘ denotes relational
converse. In a Boolean quantale, the right detachment abb can be defined based on the left residual as

abb =df a/b .

In REL, R1bR2 = R1 ; R2˘. By de Morgan’s laws, the Galois connection for / transforms into the exchange law

abb ≤ x ⇔ x · b ≤ a (exc)

for b that generalises the Schröder rule of relational calculus. An important consequence is the Dedekind rule [26]

a u (b · c) ≤ (abc u b) · c . (Ded)

The operator b is isotone in both arguments.
In every quantale we define a test as an element t ≤ 1 that has a complement ¬t relative to 1, i.e., t + ¬t = 1 and

t · ¬t = 0 = t · ¬t. The set of all tests of S is denoted by test(S ). It is closed under + and ·, which coincide with t and
u, resp., and forms a Boolean algebra with 0 and 1 as its least and greatest elements.
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In a Boolean quantale, for each a the element au 1 is a test with complement ¬(au 1) = au 1; in particular, every
element below 1 is a test. Moreover, according to [34] for a test t and arbitrary elements a, b ∈ S

t · (a u b) = t · a u b = t · a u t · b. (testdist)

And as a direct consequence, the equation t1 · a u t2 · a = t1 · t2 · a holds for tests t1, t2 and arbitrary elements a.
Algebraic structures in general are suitable for automated theorem proving. However, quantales are not easy to

encode and perform rather badly [13]. This is mainly due to the two distributivity laws (2). If one only uses the
distributivity laws of the form a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a one can use any first-order automated
theorem proving system (ATP system). Examples are Prover9 [30] and Waldmeister [7]. This simpler structure —
an idempotent semiring — is particularly suitable for ATP systems [24, 25]. For the purpose of this paper, we have
proven most of the theorems. Most of the input files can be found at a web page [23]. However, to demonstrate the
simplicity of our algebra, we will present most of the proofs within the paper.

5. An Algebraic Model of Assertions

In this section we give an algebraic interpretation for the semantics of separation logic. The main idea is to switch
from the satisfaction-based semantics for single states to an equivalent set-based pointfree one where every assertion
is associated with the set of all states satisfying it. This simplifies proofs considerably. For an arbitrary assertion p we
therefore define its set-based semantics as

[[ p ]] =df {(s, h) : s, h |= p} .
Sets of states will be the elements of our algebra, which later will be abstracted to an arbitrary Boolean quantale. For
the standard Boolean connectives we obtain

[[¬ p ]] = {(s, h) : s, h 6|= p} = [[ p ]] ,

[[ p ∨ q ]] = [[ p ]] ∪ [[ q ]] ,

[[ p ∧ q ]] = [[p]] ∩ [[q]] , [[ p→ q ]] = [[p]] ∪ [[q]] ,
[[∀ v : p ]] = {(s, h) : ∀ x ∈ Z : (v, x) | s, h |= p } ,

=
d

x ∈Z
{(s, h) : ((v, x) | s, h) ∈ [[ p ]]} ,

[[∃ v : p ]] = [[∀ v : ¬ p ]] = {(s, h) : ∃ x ∈ Z : (v, x) | s, h |= p }
=

⊔
x ∈Z
{(s, h) : ((v, x) | s, h) ∈ [[ p ]]} ,

where | is the update operation defined in (1).
The emptiness assertion emp and the assertion operator 7→ are given by

[[ emp ]] = {(s, h) : h = ∅}
[[e1 7→ e2]] =

{
(s, h) : h =

{(
es

1 , e
s
2
)}}

.

Next, we reformulate the separating conjunction ∗ algebraically as

[[ p ∗ q ]] = [[ p ]] ·∪ [[ q ]],where

P ·∪Q =df {(s, h ∪ h′) : (s, h) ∈ P ∧ (s, h′) ∈ Q ∧ dom(h) ∩ dom(h′) = ∅} .
This yields an algebraic embedding of separation logic assertions.

Theorem 5.1. The structure AS =df (P(States), ⊆ , ·∪ , [[ emp ]]) is a commutative and Boolean quantale with P+Q =

P ∪ Q.

The proof is by straightforward calculations; it can be found in [12]. It is easy to show that [[true]] is the greatest element
in the above quantale, i.e., [[true]] = >, since every state satisfies the assertion true. This implies immediately that
[[true]] is the neutral element for u. However, in contrast to addition ∪, multiplication ·∪ is in general not idempotent.
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Example 5.2. In AS, the set [[ x 7→ 1 ]] consists of all states (s, h) that have the single-cell heap {(s(x), 1)}. We
calculate

[[ (x 7→ 1) ∗ (x 7→ 1) ]]
= [[ (x 7→ 1) ]] ·∪ [[ (x 7→ 1) ]]
= {(s, h ∪ h′) : (s, h), (s, h′) ∈ [[ x 7→ 1 ]] ∧ dom(h) ∩ dom(h′) = ∅}
= ∅ .

In the last step, the states (s, h) and (s, h′) would have to share that particular heap. Hence the domains of the heaps
would not be disjoint. Therefore the last step yields the empty result. ut

As a check of the adequacy of our definitions we list a couple of properties.

Lemma 5.3. In AS, for assertions p, q, r, we have the inference rules

(p ∧ q) ∗ r ⇒ (p ∗ r) ∧ (q ∗ r) and
p ⇒ r q ⇒ s

p ∗ q ⇒ r ∗ s ,

where an inference rule reads as implication between the premises and the conclusion and p ⇒ q stands for [[p]] ⊆
[[q]].

The second property denotes isotony of separating conjunction. More laws and examples can be found in [12].
For the separating implication the set-based semantics extracted from the definition in Section 3 is

[[ p −∗ q ]] = {(s, h) : ∀ h′ ∈ Heaps : ( dom(h) ∩ dom(h′) = ∅ ∧ (s, h′) ∈ [[ p ]])
⇒ (s, h ∪ h′) ∈ [[ q ]]} .

This implies that separating implication corresponds to a residual.

Lemma 5.4. In AS, [[ p−∗ q ]] = [[ p ]]\[[ q ]] = [[ q ]]/[[ p ]].

Proof. By set theory and definition of ·∪ , we have

(s, h) ∈ [[p−∗ q]]
⇔∀ h′ : ((s, h′) ∈ [[p]] ∧ dom(h) ∩ dom(h′) = ∅ ⇒ (s, h ∪ h′) ∈ [[q]])
⇔{(s, h ∪ h′) : (s, h′) ∈ [[p]] ∧ dom(h) ∩ dom(h′) = ∅} ⊆ [[q]]
⇔{(s, h)} ·∪ [[p]] ⊆ [[q]] .

and therefore, for arbitrary set R of states,

R ⊆ [[p−∗ q]]
⇔∀ (s, h) ∈ R : (s, h) ∈ [[p−∗ q]]
⇔∀ (s, h) ∈ R : {(s, h)} ·∪ [[p]] ⊆ [[q]]
⇔R ·∪ [[p]] ⊆ [[q]] .

Hence, by definition of the residual, [[p−∗ q]] = [[p]]\[[q]]. The second equation follows immediately since multipli-
cation ·∪ in AS commutes (cf. Section 2). ut

Now all laws of [42] about −∗ follow from the standard theory of residuals (e.g. [5]). Many of these laws are
proved algebraically in [12]. Calculating at the abstract level of quantales often shortens the proofs. Moreover the
abstraction paves the way to use first-order off-the-shelf theorem provers for verifying properties; whereas a first-order
theorem prover for separation logic has yet to be developed and implemented (cf. Section 9). For example, the two
main properties of separating implication, namely the currying and decurrying rules, are nothing but the transcriptions
of the defining Galois connection for right residuals.
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Corollary 5.5. In separation logic the following inference rules hold:

p ∗ q ⇒ r
p ⇒ (q−∗ r) , (currying)

p ⇒ (q−∗ r)
p ∗ q ⇒ r . (decurrying)

As far as we know, in his works Reynolds only states that these laws follow directly from the definition. We are not
aware of any proof of the equalities given in Lemma 5.4, although many authors state this claim and refer to Reynolds.

As a further example we prove the algebraic counterpart of the inference rule

q ∗ (q−∗ p) ⇒ p .

Lemma 5.6. Let S be a quantale. For a, b ∈ S the inequality b · (b\a) ≤ a holds. And therefore also (a/b) · b ≤ a.

Proof. By definition of residuals we immediately get
q · (q\p) ≤ p ⇔ q\p ≤ q\p ⇔ true .

ut
By the definitions of Section 4 we now give a concrete definition of the right detachment operator in the logic

itself. This operation is also called septraction in the literature (see e.g. [45]).

Definition 5.7. p −� q =df ¬(q−∗(¬p)). Abstractly, p −� q = pbq.

Lemma 5.8. s, h |= p −� q ⇔ ∃ ĥ : h ⊆ ĥ, s, ĥ |= p, s, ĥ − h |= q.

The proof can be found in Appendix B.
In Appendix A, a couple of properties for septraction are listed. They can all easily be verified (for example using

off-the-shelf ATP systems).
So far, we have derived an algebraic structure for assertions and have presented the correspondence between the

operations of separation logic and the algebra. We sum up this correspondence in Table 5.

Name in SL Symbol in SL Name in Quantales Symbol in AS Symbol in a quantale
disjunction ∨ addition/join ∪ +

conjunction ∧ meet ∩ u
negation ¬ complement
implication ⇒ natural order ⊆ ≤
separating conjunction ∗ multiplication ·∪ ·
separating implication −∗ residual / /
septraction −� detachment b b

Table 1: Correspondence between operators of separation logic and algebra

6. Special Classes of Assertions

In separation logic one distinguishes different classes of assertions [42]. We will give algebraic characterisations
for the most important classes of assertions, namely intuitionistic, pure, precise and supported assertions. Intuitionistic
assertions do not describe the domain of a heap exactly. Hence, when using these assertions one does not know whether
the heap contains additional anonymous cells. This is often the case when pointer references to some portions of a
heap are lost. Pure assertions are independent of the heap and therefore only express conditions on store variables.
In contrast to intuitionistic assertions, the precise ones point out a unique subheap which is relevant to its predicate.
Finally supported assertions ensure for a given set of heaps that there exists a subheap for which the predicate already
holds. This class is e.g. used in [42] when reasoning about directed acyclic graphs.
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6.1. Intuitionistic Assertions
The first assertion class for which we present a simple algebraic characterisation is the class of intuitionistic

assertions. Following [42], an assertion p is intuitionistic iff

∀ s ∈ Stores, ∀ h, h′ ∈ Heaps : (h ⊆ h′ ∧ s, h |= p) ⇒ s, h′ |= p . (3)

This means in detail, if a heap h that satisfies an intuitionistic assertion p then every larger heap, i.e. h extended by
arbitrary cells, still satisfies p.

Theorem 6.1. In AS an element [[ p ]] is intuitionistic iff it satisfies

[[ p ]] ·∪ [[ true ]] ⊆ [[ p ]] .

Proof.

∀ s, h, h′ : (h ⊆ h′ ∧ s, h |= p) ⇒ s, h′ |= p
⇔ {[ Definition of true ]}
∀ s, h, h′ : (h ⊆ h′ ∧ s, h |= p ∧ s, (h′ − h) |= true) ⇒ s, h′ |= p

⇔ {[ set theory ]}
∀ s, h, h′ : (s, h |= p ∧ s, (h′ − h) |= true ∧ dom(h) ∩ dom((h′ − h)) = ∅ ∧ h′ = h ∪ (h′ − h))

⇒ s, h′ |= p
⇔ {[ ⇒ : h′′ = h′ − h, ⇐ : dom(h) ∩ dom(h′′) = ∅ ∧ h′ = h ∪ h′′ ⇒ h′′ = h′ − h ]}
∀ s, h, h′ : (∃ h′′ : s, h |= p ∧ s, h′′ |= true ∧ dom(h) ∩ dom(h′′) = ∅ ∧ h′ = h ∪ h′′) ⇒ s, h′ |= p

⇔ {[ logic ]}
∀ s, h′ : (∃ h, h′′ : s, h |= p ∧ s, h′′ |= true ∧ dom(h) ∩ dom(h′′) = ∅ ∧ h ∪ h′′ = h′) ⇒ s, h′ |= p

⇔ {[ Definition of ∗ ]}
∀ s, h′ : s, h′ |= p ∗ true ⇒ s, h′ |= p

ut
Lifting this to an abstract level motivates the following definition.

Definition 6.2. In an arbitrary Boolean quantale S an element a is called intuitionistic iff it satisfies

a · > ≤ a . (4)

This inequation can be strengthened to an equation since its converse holds for arbitrary Boolean quantales. Elements
of the form a · > are also called vectors or ideals. Those elements are well known, and therefore we obtain many
properties for free (e.g. [44, 29]). We only list some of them to show again the advantages of the algebra.

In particular, we focus on laws that describe the interaction of · and u using intuitionistic assertions.

Lemma 6.3. Consider a commutative Boolean quantale S , intuitionistic elements a, a′ ∈ S and arbitrary elements
b, c ∈ S Then

(a) (a u b) · > ≤ a;

(b) a · b ≤ a u (b · >);

(c) (a u b) · c ≤ a u (b · c);

(d) a · a′ ≤ a u a′.

Proof. To show (a) we calculate (a u b) · > ≤ a · > ≤ a. For a proof of (b) we know a · b ≤ a · > ≤ a and a · b ≤ b · >
by isotony of · and the assumption. The Laws (c) and (d) can be proved analogously. ut

Using the quantale AS, it is easy to see that none of these inequations can be strengthened to an equation. In
particular, multiplication (separation conjunction) and meet need not coincide.
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Example 6.4. Consider a =df a′ =df [[ x 7→ 1 ∗ true ]] = [[ x 7→ 1 ]] ·∪ [[ true ]]. By this definition it is obvious that
a and a′ are intuitionistic. The definitions of Section 3 then immediately imply

a ∩ a′ = [[ x 7→ 1 ]] ·∪ [[ true ]]
a ·∪ a′ = [[ x 7→ 1 ]] ·∪ [[ true ]] ·∪ [[ x 7→ 1 ]] ·∪ [[ true ]] = ∅ .

The last step follows from Example 5.2. ut
The next class will be a proper subset of intuitionistic assertions where these operations indeed coincide.

6.2. Pure Assertions

An assertion p is called pure iff it is independent of the heaps of the states involved, i.e.,

p is pure ⇔df (∀ s ∈ Stores : ∀ h, h′ ∈ Heaps : s, h |= p ⇔ s, h′ |= p) . (5)

Examples for such assertions are e.g., x = 2, x = x + 2, false or true .

Theorem 6.5. In AS an element [[ p ]] is pure iff it satisfies, for all [[ q ]] and [[ r ]],

[[ p ]] ·∪ [[ true ]] ⊆ [[ p ]] and [[ p ]] ∩ ([[ q ]] ·∪ [[ r ]]) ⊆ ([[ p ]] ∩ [[ q ]]) ·∪ ([[ p ]] ∩ [[ r ]]) .

Before we give the proof, we derive a number of auxiliary laws. The above theorem motivates the following definition.

Definition 6.6. In an arbitrary Boolean quantale S an element a is called pure iff it satisfies, for all b, c ∈ S ,

a · > ≤ a , (6)
a u (b · c) ≤ (a u b) · (a u c) . (7)

Corollary 6.7. > is pure.

The second equation states that pure elements distribute over meet. By this characterisation we can immediately
conclude

Corollary 6.8. Every pure element of a Boolean quantale is also intuitionistic.

Lemma 6.9. In a commutative Boolean quantale, Property (7) is equivalent to ab> ≤ a, where ab> forms the down-
ward closure of a.

Proof. (⇐): Using Equation (Ded), isotony and the assumption, we get

a u b · c ≤ (abc u b) · c ≤ (ab> u b) · c ≤ (a u b) · c

and the symmetric formula a u b · c ≤ b · (a u c). From this the claim follows by

a u (b · c) = a u a u (b · c) ≤ a u ((a u b) · c) ≤ (a u b) · (a u c) .

(⇒): From (7) we obtain a u (a · >) ≤ (a u a) · (a u >) = 0 · a = 0 and hence, by shunting (shu) and the exchange
law (exc), ab> ≤ a. ut

Lemma 6.10. In a commutative Boolean quantale, an element a is pure iff one of the following equivalent properties
is satisfied.

(a) a · > ≤ a and a · > ≤ a.

(b) a = (a u 1) · >.
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(c) (a u b) · c = a u b · c.

A proof can be found in Appendix B. Part (a) also holds for non-commutative quantales; Part (b) characterises
pure elements as a fixed points. Part (c) is according to [3]. Since the underlying quantale is commutative, there is also
the dual of Part (c), namely b · (a u c) = a u b · c.

With these characterisations we can now prove the equivalence between the formulation in separation logic and
the algebraic one.

Proof of Theorem 6.5. By Lemma 6.10(b) and definition of the elements of AS it is sufficient to show that the
following formulas are equivalent in separation logic

∀ s ∈ Stores, ∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p) , (8)
∀ s ∈ Stores, ∀ h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true) . (9)

Since both assertions are universally quantified over states we omit that quantification in the remainder and only keep
the quantifiers on heaps. Before proving this equivalence we simplify s, h |= (p ∧ emp ) ∗ true. Using the definitions
of Section 3, we get for all h ∈ Heaps

s, h |= (p ∧ emp ) ∗ true
⇔∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2

and s, h1 |= p and s, h1 |= emp and s, h2 |= true
⇔∃ h1, h2 ∈ Heaps : dom(h1) ∩ dom(h2) = ∅ and h = h1 ∪ h2

and s, h1 |= p and h1 = ∅
⇔∃ h2 ∈ Heaps : h = h2 and s, ∅ |= p
⇔ s, ∅ |= p .

Instantiating Equation (8) and using this result we obtain

∀ h, h′ ∈ Heaps : (s, h |= p ⇔ s, h′ |= p)
⇒∀ h ∈ Heaps : (s, h |= p ⇔ s, ∅ |= p)
⇔∀ h ∈ Heaps : (s, h |= p ⇔ s, h |= (p ∧ emp ) ∗ true) .

For the converse direction, we have, for arbitrary s, h, h′, that s, h |= p ⇔ s, ∅ |= p ⇔ s, h′ |= p. 2

To conclude the paragraph concerning pure elements we list a few number of properties which can be proved very
easily by our algebraic approach.

Corollary 6.11. Pure elements form a Boolean lattice, i.e., they are closed under +, u and . Moreover the lattice is
complete.

The following lemma shows that in the complete lattice of pure elements meet and join coincide with composition
and sum, respectively.

Lemma 6.12. Consider a commutative Boolean quantale S , pure elements a, a′ ∈ S and arbitrary elements b, c ∈ S
Then

(a) a · b = a u b · >;

(b) a · a′ = a u a′; in particular a · a = a and a · a = 0.

Proof. For a proof of (a) we calculate, using Lemma 6.10(c), a u b · > = a u > · b = (a u >) · b = a · b. To show (b),
we use again Lemma 6.10(c) and neutrality of 1 w.r.t. · to obtain a · a′ = a u a′ · 1 = a u a′. ut

Many further properties, in particular, for the interaction of pure assertions with residuals and detachments, can
be found in Appendix A. In some cases we have analogous situations as for the ∗ - operator in Lemma 6.10(c) where
pure assertions can be pulled out of each argument of residuals and detachments.
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6.3. Precise Assertions

The next class of assertions we focus now are precise assertions. They play a main rôle in characterising best
local-actions in [9]. Intuitively they point out precise portions of heaps that satisfy the predicate. An assertion p is
called precise if and only if for all states (s, h), there is at most one subheap h′ of h for which (s, h′) |= p, i.e.,

∀ s, h, h1, h2 : (s, h1 |= p ∧ s, h2 |= p ∧ h1 ⊆ h ∧ h2 ⊆ h) ⇒ h1 = h2

According to [41], this definition is equivalent to distributivity of ∗ over ∧ .

Theorem 6.13. In AS an element [[ p ]] is pure iff it satisfies, for all [[ q ]] and [[ r ]],

([[ p ]] ·∪ [[ q ]]) ∩ ([[ p ]] ·∪ [[ r ]]) ⊆ [[ p ]] ·∪ ([[ p ]] ∩ [[ r ]]) .

Hence in our setting, we can algebraically characterise precise assertions as follows.

Definition 6.14. In an arbitrary Boolean quantale S an element a is called precise iff for all b, c ∈ S

(a · b) u (a · c) ≤ a · (b u c) . (10)

Equation (10) can be strengthened to an equation since a · (b u c) ≤ (a · b) u (a · c) holds by isotony. Next we give
some closure properties for this assertion class which again can be proved fully algebraically.

Lemma 6.15. If a and a′ are precise then so is a · a′, i.e., precise assertions are closed under multiplication.

Proof. The proof is by straightforward calculations. For arbitrary elements b, c and precise elements a, a′, we have

(a · a′) · b u (a · a′) · c = a · (a′ · b) u a · (a′ · c) ≤ a · (a′ · b u a′ · c) ≤ a · a′ · (b u c) . ut

Lemma 6.16. If a is precise and a′ ≤ a then a′ is precise, i.e., precise assertions are downward closed.

A proof can be found in [16].

Corollary 6.17. For an arbitrary assertion b and precise a, also a u b is precise.

Further useful properties are again listed in Appendix A.

6.4. Fully-allocated assertions

After giving algebraic characterisations for precise and intuitionistic elements we turn to the question if there
exists a class of assertions that can fulfil both properties. At first sight trying to find such assertions does not seem
to be sensible, since an assertion p that holds for every larger heap cannot unambiguously point out an exact heap
portion. This is stated in [42]. But heaps that are completely allocated, fulfil preciseness and intuitionisticness. As a
consequence this might disable any allocation of further heap cells in an execution of a program. We call this class of
assertions fully allocated. According to their name the heap storage is fully allocated and allows no further allocation
of non-empty heap cells which can be characterised as follows

p is fully allocated ⇔df (∀ s, h : s, h |= p ⇒ dom(h) = Addresses) . (11)

Theorem 6.18. In AS an element [[p]] is fully allocated iff it satisfies

[[p]] ·∪ [[emp]] ⊆ ∅

Proof.
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∀ s, h : s, h |= p ⇒ dom(h) = Addresses
⇔ {[ order theory ]}
∀ s, h : (s, h |= p ⇒ (∀ h′. h ⊆ h′ ⇒ h′ ⊆ h))

⇔ {[ logic ]}
∀ s, h, h′ : (s, h |= p ⇒ (h ⊆ h′ ⇒ h′ ⊆ h))

⇔ {[ logic, set theory ]}
∀ s, h, h′ : (s, h |= p ⇒ ¬(h ⊆ h′ ∧ h′ − h , ∅))

⇔ {[ logic ]}
∀ s, h′ : ¬(∃ h : s, h |= p ∧ h ⊆ h′ ∧ h′ − h , ∅)

⇔ {[ logic ]}
∀ s, h′ : ¬(∃ h, h′′ : s, h |= p ∧ h′′ , ∅ ∧ dom(h) ∩ dom(h′′) = ∅ ∧ h′ = h ∪ h′′)

⇔ {[ definition of ∗ , logic ]}
∀ s, h′ : s, h′ |= p ∗ ¬emp ⇒ false

ut
Consequently in our algebraic setting we characterise this class as follows.

Definition 6.19. In an arbitrary Boolean quantale S an element a is called fully allocated iff

a · 1 ≤ 0 . (12)

Lemma 6.20. Every fully allocated element is also intuitionistic.

Proof. Let a be fully allocated, then we a · > = a · (1 + 1) = a · 1 + a · 1 ≤ a · 1 = a. These (in)equations hold by
Boolean algebra, distributivity, p being fully allocated and neutrality of 1 w.r.t. ·. ut

Lemma 6.21. If a is fully allocated then a is also precise.

For the proof we need an auxiliary property.

Theorem 6.22. If a is fully allocated then a · b = a · (b u 1) holds.

Proof. We calculate

a · b = a · ((b u 1) + (b u 1)) = a · (b u 1) + a · (b u 1) = a · (b u 1) ,

since a · (b u 1) ≤ a · 1 ≤ 0 by isotony of · and the assumption. ut
Intuitively, this theorem says that adding storage is only possible if the extra portion is empty. In particular, only

the store component can then be changed.
Now we are able to show Lemma 6.21.

Proof of 6.21. For a fully allocated element a and arbitrary b and c, we then get

(a · b) u (a · c) = (a · (b u 1)) u (a · (c u 1)) = a · (b u 1) · (c u 1) = a · ((b u 1) · (c u 1)) ≤ a · (b u c) .

Again this holds by Theorem 6.22, (testdist), isotony of ·, u and the fact that · coincides with u on test elements. 2
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6.5. Supported Assertions

The last assertion class we are considering in this section are supported assertions. These assertions characterise
pairs of heaps for which joint satisfaction of the assertion can be traced down to a common subheap. These assertions
are for example used in [42] for reasoning about directed acyclic graphs.

An assertion p is called supported iff

∀ s, h1, h2 : h1, h2 are compatible ∧ s, h1 |= p ∧ s, h2 |= p

⇒ ∃ h′ : h′ ⊆ h1 ∧ h′ ⊆ h2 ∧ s, h′ |= p

By the assumption h1 and h2 are compatible, it is meant that they agree on their intersection, i.e., h1 ∪ h2 is a
function again. However, the store s is fixed in the definition. Later on, we will introduce an operator that also allows
decomposition of the store. In more details, the decomposition parts have to be compatible, i.e., the stores must agree
on their intersection.

The following characterisation of supported elements is novel.

Theorem 6.23. In AS an element [[ p ]] is supported iff it satisfies, for all [[ q ]] and [[ r ]],

([[ p ]] ·∪ [[ q ]]) ∩ ([[ p ]] ·∪ [[ r ]]) ⊆ [[ p ]] ·∪ ([[ q ]] ·∪ [[ true ]] ∩ [[ r ]] ·∪ [[ true ]]) .

The key idea to prove Theorem 6.23 is to use predicates p which precisely describe one heap and one store, i.e.,
the set [[p]] is a singleton set that contains only a single state. Therefore we state directly [[s, h]] = {(s, h)}. Before
showing the proof we need two auxiliary lemmas. The first is simple set theory — therefore we skip the proof.

Lemma 6.24. We assume three arbitrary sets A, B and C. If B ⊆ C then we have C − A ⊆ C − B ⇔ B ⊆ A.
Hence, if A ⊆ C and B ⊆ C then C − A = C − B ⇔ A = B.

Next we give some simple properties of [[s, h]].

Lemma 6.25. For arbitrary heaps h, h′, store s and assertion p we have

(a) s, h′ |= [[s, h]] ⇔ h = h′. In particular, s, h |= [[s, h]].

(b) If h ⊆ h′ then s, h |= p ⇔ s, h′ |= p ∗ [[s, h′ − h]].

(c) s, h′ |= [[s, h]] ∗ true ⇔ h ⊆ h′.

The lengthy, but straightforward proof can be found in Appendix B. Now we give a proof of the above theorem.

Proof of Theorem 6.23. For the ⇒ -direction we assume p is supported.
Let s, h |= p ∗ q ∧ p ∗ r. Then

s, h |= p ∗ q ∧ p ∗ r
⇔ {[ definition of ∗ ]}
∃ h1, h2 : h1 ⊆ h ∧ h2 ⊆ h ∧ s, h1 |= p ∧ s, h − h1 |= q
∧ s, h2 |= p ∧ s, h − h2 |= r

⇒ {[ p supported, h1 ∪ h2 ⊆ h is a function ]}
∃ h′ : s, h′ |= p ∧ h′ ⊆ h1 ∧ h′ ⊆ h2 ∧
s, h − h1 |= q ∧ s, h − h2 |= r

⇒ {[ h − h1 ⊆ h − h′, s, h1 − h′ |= true, analogously h2 ]}
∃ h′ : s, h′ |= p ∧ s, h − h′ |= q ∗ true ∧ s, h − h′ |= r ∗ true

⇔ {[ definition of ∗ ]}
s, h |= p ∗ (q ∗ true ∧ r ∗ true)
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Next we show the other direction. For that we assume, for all q,r,

s, h |= p ∗ q ∧ p ∗ r ⇒ s, h |= p ∗ (q ∗ true ∧ r ∗ true) . (13)

as well as s, h1 |= p and s, h2 |= p and h1 ∪ h2 is a function.
From this we calculate

s, h1 |= p ∧ s, h2 |= p
⇔ {[ h1 ⊆ h1 ∪ h2 and h2 ⊆ h1 ∪ h2 and Lemma 6.25(b) ]}

s, h1 ∪ h2 |= p ∗ [[s, (h1 ∪ h2) − h1]]∧
s, h1 ∪ h2 |= p ∗ [[s, (h1 ∪ h2) − h2]]

⇒ {[ Assumption (13) ]}
s, h1 ∪ h2 |= p ∗ ([[s, (h1 ∪ h2) − h1]] ∗ true ∧ [[s, (h1 ∪ h2) − h2]] ∗ true

)

⇔ {[ definition of ∗ ]}
∃ h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p∧
s, (h1 ∪ h2) − h′ |= [[s, (h1 ∪ h2) − h1]] ∗ true ∧ [[s, (h1 ∪ h2) − h2]] ∗ true

⇔ {[ definition of ∧ ]}
∃ h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p∧
s, (h1 ∪ h2) − h′ |= [[s, (h1 ∪ h2) − h1]] ∗ true ∧
s, (h1 ∪ h2) − h′ |= [[s, (h1 ∪ h2) − h2]] ∗ true

⇔ {[ Lemma 6.25(c) (twice) ]}
∃ h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p∧
(h1 ∪ h2) − h1 ⊆ (h1 ∪ h2) − h′ ∧
(h1 ∪ h2) − h2 ⊆ (h1 ∪ h2) − h′

⇔ {[ Lemma 6.24 ]}
∃ h′ : h′ ⊆ h1 ∪ h2 ∧ s, h′ |= p ∧ h′ ⊆ h1 ∧ h′ ⊆ h2

⇔ {[ set theory ]}
∃ h′ : s, h′ |= p ∧ h′ ⊆ h1 ∧ h′ ⊆ h2

2

As before, this can be lifted to the abstract level of quantales.

Definition 6.26. In an arbitrary Boolean quantale S an element a is supported iff it satisfies for arbitrary b,c

a · b u a · c ≤ a · (b · > u c · >) .

Following this characterisation of supported assertions we now give properties for this class of assertion which
can be completely derived algebraically. As before, we refer to Appendix A for further properties.

Lemma 6.27. If a is pure then it is also supported.

Proof. By Lemma 6.12(a), associativity, commutativity and idempotence of u, isotony, and Lemma 6.12(a) again:

a · b u a · c
= (a u b · >) u (a u c · >)
= a u (b · > u c · >)
≤ a u (b · > u c · >) · >
= a · (b · > u c · >)

ut

Lemma 6.28. a is precise implies a is supported.

14



Proof. a · b u a · c ≤ a · (b u c) ≤ a · (b · > u c · >). This holds by the definition of precise elements and isotony. ut

Lemma 6.29. Supported elements are closed under ·.

Proof. For supported elements a and a′ we calculate, using the definition of supported elements and isotony,

a · a′ · b u a · a′ · c ≤ a · (a′ · b · > u a′ · c · >)
≤ a · a · (b · > · > u c · > · >)
≤ a · a′ · (b · > u c · >) ut

Corollary 6.30. If a is supported and b is precise or pure then a · b is supported.

Using this and Corollary 6.7, we obtain

Corollary 6.31. a is precise implies a · > is supported.

7. Commands

After dealing with the assertions of separation logic, we now turn to the commands in the simple imperative
language associated with it.

7.1. Commands as Relations

Semantically, we use the common technique of modelling commands as relations between states.

Definition 7.1. A command is a relation C ∈ Cmds =df P(States × States).

Therefore, all relational operations, including sequential composition ;, are available for commands. Moreover,
the structure (Cmds, ⊆ , ;, I), where I is the identity relation, forms a quantale.

Some properties of commands can be described more conveniently using relations that involve pairs of states.

Definition 7.2.

(a) Two states σ1 = (s1, h1) and σ2 = (s2, h2) are ∗-combinable if s1 = s2 and dom(h1) ∩ dom(h2) = ∅. In this case
we set σ1 ∗ σ2 =df (s1, h1 ∪ h2).

(b) The split relation �∗ ⊆ States × (States × States) w.r.t. * is given by

σ�∗ (σ1, σ2) ⇔df σ1, σ2 ∗-combinable and σ = σ1 ∗ σ2.

(c) The join relation �∗ is the converse of split, i.e.,

(σ1, σ2)�∗ σ ⇔df σ1, σ2 ∗-combinable and σ = σ1 ∗ σ2.

We introduce a special symbol for it, rather than writing �∗ ˘, to ease reading.

(d) The Cartesian product C1 ×C2 ⊆ (States × States) × (States × States) of two commands C1,C2 is defined by

(σ1, σ2) (C1 ×C2) (τ1, τ2) ⇔df σ1 C1 τ1 ∧ σ2 C2 τ2 .

(e) The ∗ composition C1 ∗C2 ⊆ States × States of two commands C1,C2 is defined by

C1 ∗C2 =df �∗ ; (C1 ×C2) ; �∗ .
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It is well known that × and ; satisfy the exchange property

(R1 × R2) ; (S 1 × S 2) = (R1 ; S 1) × (R2 ; S 2) . (14)

In particular if R1,R2 and S 1 are subidentities with R1 ⊆ S 1 then

(R1 × R2) ; (S 1 × I) = (R1 × R2) . (15)

In using relations for program semantics, some care has to be taken to correctly treat the possibility of errors in
program execution. In the standard literature on separation logic this is done by introducing a special state fault which
is the “result” of such an error, e.g., access to an unallocated or uninitialised memory cell or to a variable without
value.

The precise treatment of the fault state leads, however, to lot of detail that is not really essential to the semantics
proper. Therefore, for the purposes of this paper, we ignore these phenomena and deal only with the partial correctness
semantics of program constructs.

A detailed treatment dealing with the possibility of program faults is provided by the well known approach of
demonic relational semantics (see e.g. [2, 14, 15, 38] and [17] for a more abstract algebraic treatment in terms of
idempotent semirings and Kleene algebras). There a total correctness view is taken: a state belongs to the domain of a
command relation if and only if no execution starting from it may lead to an error. Hence there is no need to include
fault into the set of states. As a price one has to pay, the relation composition operators become more complex: instead
of the usual (angelic) operators of union and sequential composition one has to use their demonic variants. As we will
see, our techniques for the partial correctness semantics can be adapted to the demonic setting; spelling out the details
would fill a paper of its own, though.

7.2. Tests and Hoare Triples

In partial correctness semantics one uses Hoare triples {p}C {q} where p and q are predicates about states and C
is a command. In the semiring and quantale setting the predicates for pre- and postconditions of such triples can be
modelled by tests.

In the command quantale tests are given by the partial identity relations of the form P̂ = {(σ,σ) | σ ∈ P} for some
set P of states. It is clear that these subidentities, sets of states and predicates characterising states are in one-to-one
correspondence. The set P can be retrieved from P̂ as P = dom(P̂). Because of this isomorphism, for a command C
we simply write dom(C) instead of d̂om(C).

Definition 7.3. Employing tests, we can give the following equivalent definitions of the meaning of Hoare triples
(e.g. [28]):

{p}C {q} ⇔ p ; C ; ¬q ⊆ ∅ ⇔ p ; C ⊆ C ; q ⇔ p ; C = p ; C ; q .

To use this general approach to Hoare logic we simply need to embed the quantale of assertions from the previous
sections into the set of tests of the relational quantale by the above correspondence between sets of states and partial
identity relations. The operation ·∪ on assertions is lifted to tests by

P̂ ·∪ Q̂ =df P̂ ·∪Q .

In contrast to the above general encoding of Hoare triples the interpretation of Reynolds is more restrictive. He
requires that all states that satisfy the precondition actually can lead to transitions under the command C. This is
reflected by the following definition.

Definition 7.4. The strong Hoare triple is given by

{{p}}C {{q}} ⇔df p ⊆ dom(C) ∧ {p}C {q} ⇔ p ⊆ dom(C) ∧ p ; C ⊆ C ; q .

Note that dom(C), according to the above convention, stands for the corresponding partial identity relation.
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7.3. Syntax and Semantics of a Simple Programming Language
We now introduce the program constructs associated with separation logic [42]. Syntactically, they are given by

comm ::= var := exp | skip | comm; comm

| if bexp then comm else comm | while bexp do comm

| newvar var in comm | newvar var := exp in comm

| var := cons (exp, . . . , exp)
| var := [exp] | [exp] := exp

| dispose exp

We skip explanations for the well-known first three lines. In a given state s the command v := cons (e1, ..., en)
allocates n cells with e s

i as the contents of the i-th cell. The cells have to form an unused contiguous region somewhere
on the heap; the concrete allocation process is chosen non-deterministically. The address of the first cell is stored in v
while the rest of the cells can be addressed indirectly via the start address.

A dereferencing assignment v := [e] assumes that e is an exp-expression and the value es (corresponding to *e in
C) is an allocated address on the heap, i.e., es ∈ dom(h) for the current heap h. In particular, after its execution, the
value of v is the contents of a dereferenced heap cell.

Conversely, an execution of [e1] := e2 assigns the value of the expression on the right hand side to the cell whose
address is the value of the left hand side.

Finally, the command dispose e is used for deallocating the heap cell with address es. After execution the disposed
cell is not valid anymore, i.e., dereferencing that cell would cause a fault in the program execution.

We inductively assign to every program P formed according to the above grammar a command [[P]]c ∈ Cmds in
the sense of the previous section. In particular, [[skip]]c =df I. For all programs we assume that the free variables of
all expressions are within the domains of the stores involved.

To abbreviate the next definition, we use a convention similar to that of the refinement calculus (e.g. [1]). We
characterise relations by predicates linking the input states (s, h) and output states (s′, h′). If P is such a predicate then
R =̂ P abbreviates the clause (s, h) R (s′, h′) ⇔df P.

[[[e1] := e2]]c =̂ s′ = s ∧ h′ = (es
1 , e

s
2 ) | h ∧ es

1 ∈ dom(h) ,

[[v := [e]]]c =̂ s′ = (v, h(es)) | s ∧ h′ = h ,

[[ dispose e]]c =̂ s′ = s ∧ es ∈ dom(h) ∧ h′ = h − {(es, h(es))} ,
[[v := cons (e1, ..., en)]]c =̂ ∃ a ∈ Addresses : s′ = (v, a) | s ∧

a, . . . , a + n − 1 < dom(h)∧
h′ = {(a, es

1 ), . . . , (a + n − 1, es
n )} | h .

The condition for dispose guarantees that the dereferenced heap cell is already allocated to avoid a fault in the
program execution. Similarly, the requirement a, . . . , a + n − 1 < dom(h) expresses that all these addresses have to be
unallocated. More details can be found in [12].

We now discuss inference rules for commands. By the above abstraction these rules become simple consequences
of the well established general relational view of commands. We only sketch the rule for mutation.

Theorem 7.5. Let p be an assertion and e, e′ be exp-expressions. Then valid triples for mutation commands are

{{(e1 7→ −)}} [e1] := e2 {{(e1 7→ e2)}} , (local)
{{(e1 7→ −) ∗ p}} [e1] := e2 {{(e1 7→ e2) ∗ p}} , (global)

{{(e1 7→ −) ∗ ((e1 7→ e2)−∗ p)}} [e1] := e2 {{p}} (backward reasoning)

where (e1 7→ −) abbreviates ∃ v. e1 7→ v.

The local mutation law ensures that the cell at address es
1 has the value es

2 after [e1] := e2 is executed; provided
there is an allocated cell at es

1 . In the relational semantics the precondition is satisfied by es
1 ∈ dom(h). The global
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mutation law follows from the local one as an instantiation of the frame rule. It implies that reasoning can be modu-
larised. Conversely, the local rule can be derived from the global one by setting p = emp . The backward reasoning
law is used to determine a precondition that ensures the postcondition p. The global and the backward reasoning rules
are again interderivable (see [42, 12]). Further inference rules, like for disposal, overwriting and non-overwriting allo-
cation as well as lookups are presented and explained in [42]; the algebraic treatment is similar to the one of mutation
and straightforward.

The most central rule of separation logic, however, will be treated in detail in the following section.

8. The Frame Rule

An important ingredient of the separation calculus is the frame rule [40] that describes the use of the separating
conjunction in pre- and postconditions for and allows local reasoning. For assertions p, q and r and command C it
reads

{{p}}C {{q}}
{{p ∗ r}}C {{q ∗ r}}

The premise ensures that starting the execution of C in a state satisfying p ends in a state satisfying q. Furthermore the
conclusion says that extending the initial and final heaps consistently with disjoint heaps will not invalidate the triple
in the premise. Hence a “local” proof of {{p}}C {{q}} will extend to a “more global” one in the additional heap context r.

This rule is not valid for arbitrary commands, though. First, one has to assume that if C can act in a starting state
that satisfies p then it can act in the same state enlarged according to r. Second, C needs to preserve certain parts of
the heap. Finally, no free variable of r may be modified by C.

8.1. Safety-Monotonicity and the Frame Property

Before stating these properties algebraically, we give logical formalisations of the first two.

Definition 8.1. Consider a command C.

(a) If a state σ is in dom(C) then C is called safe at σ, since by our above assumption then C cannot lead to program
errors when starting from σ.

(b) C is called ∗-safety-monotonic if, for every state (s, h) and heap h′ with dom(h′) ∩ dom(h) = ∅,

C is safe at (s, h) ⇒ C is safe at (s, h ∪ h′) .

(c) C has the ∗-frame-property if, for all states (s, h0), (ŝ, ĥ) and heaps h1 with dom(h1) ∩ dom(h0) = ∅,

C is safe at (s, h0) ∧ (s, h0 ∪ h1) C (ŝ, ĥ)
⇒ ∃ ĥ0 : dom(ĥ0) ∩ dom(h1) = ∅ ∧ ĥ = ĥ0 ∪ h1 ∧ ((s, h0) C (ŝ, ĥ0)) .

Intuitively, the frame property expresses that an execution of a command C can be tracked down to a possibly
smaller heap portion it needs for the execution.

An immediate consequence of the definition is the following.

Lemma 8.2. Consider a test relation p. Then command C is safe at all states in p iff p ⊆ dom(C) holds.

Let us now provide an algebraic statement of safety-monotonicity.

Lemma 8.3. Command C is ∗-safety-monotonic iff

dom(C) ·∪ I ⊆ dom(C) .

Proof. For arbitrary store s and heaps h, h′ with dom(h′) ∩ dom(h) = ∅ we have
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C is safe at (s, h) ⇒ C is safe at (s, h ∪ h′)
⇔ {[ Lemma 8.2 ]}

(s, h) ∈ dom(C) ⇒ (s, h ∪ h′) ∈ dom(C)
⇔ {[ I contains every test element ]}

(s, h) ∈ dom(C) ∧ (s, h′) ∈ I ⇒ (s, h ∪ h′) ∈ dom(C)
⇔ {[ definition of ·∪ ]}

dom(C) ·∪ I ⊆ dom(C) .
ut

Next, we formulate the ∗ frame property algebraically. This involves the decomposition operation as well as the
Cartesian product of relations.

Lemma 8.4. Command C has the ∗ frame property iff

(dom(C) × I) ; �∗ ; C ⊆ (C × I) ; �∗ .

Proof. For all stores s, ŝ and heaps h0, h1, ĥ with dom(h1) ∩ dom(h0) = ∅,
C is safe at (s, h0) ∧ (s, h0 ∪ h1) C (ŝ, ĥ)

⇒ ∃ ĥ0 : dom(ĥ0) ∩ dom(h1) = ∅ ∧ ĥ = ĥ0 ∪ h1 ∧ (s, h0 ∪ h1) C (ŝ, ĥ)
⇔ {[ assumption, Lemma 8.2 ]}

(s, h0) ∈ dom(C) ∧ ((s, h0) ∗ (s ∗ h1)) C (ŝ, ĥ0))
⇒ ∃ ĥ0 : (ŝ, ĥ) = (ŝ, ĥ0) ∗ (ŝ, h1) ∧ ((s, h0) C (ŝ, ĥ0))

⇔ {[ definitions ]}
((s, h0), (s ∗ h1)) ((dom(C) × I) ; �∗ ; C) (ŝ, ĥ0))

⇒ ((s, h0), (s ∗ h1)) (C × I) ; �∗ (ŝ, ĥ0)) .
ut

We will give a slightly modified algebraic formulation later on.
As a check for adequacy we show that the mutation command [e1] := e2 satisfies the frame property. To ease

reading, we denote the heap of a state σ by hσ. Moreover, none of the mutation commands change the stores and �∗
assumes the stores of the considered states to be equal, hence all stores of all states that occur in the proof are the
same, denoted by s. As a consequence, we immediately get

σ ∈ dom([[[e1] := e2]]c) ⇔ es
1 ∈ dom(hσ) (16)

From this, we get

(σ1, σ2) (dom([[[e1] := e2]]c) × I) ; �∗ ; [[[e1] := e2]]c τ

⇔ {[ definition of × and I ]}
σ1 ∈ dom([[[e1] := e2]]c) ∧ (σ1, σ2) �∗ ; [[[e1] := e2]]c τ

⇔ {[ definition of �∗ and (16) ]}
(σ1 ∗ σ2) [[[e1] := e2]]c τ ∧ σ1, σ2 combinable ∧ es

1 ∈ dom(hσ1 )
⇔ {[ definition of [[[e1] := e2]]c ]}

hτ = (es
1, e

s
2) | h(σ1 ∗σ2) ∧ es

1 ∈ dom(h(σ1 ∗σ2)) ∧ σ1, σ2 combinable ∧ es
1 ∈ dom(hσ1 )

⇔ {[ definition of ∗ ]}
hτ = (es

1, e
s
2) | (hσ1 ∪ hσ2 ) ∧ dom(hσ1 ) ∩ dom(hσ2 ) = ∅∧

es
1 ∈ dom(hσ1 ) ∪ dom(hσ2 ) ∧ σ1, σ2 combinable ∧ es

1 ∈ dom(hσ1 )
⇔ {[ annihilation property for | (see below), since es

1 < dom(hσ2 ), isotony of dom ]}
hτ = ((es

1, e
s
2) | hσ1 ) ∪ hσ2 ∧ dom(hσ1 ) ∩ dom(hσ2 ) = ∅ ∧ σ1, σ2 combinable ∧ es

1 ∈ dom(hσ1 )
⇒ {[ since es

1 < dom(hσ2 ) ]}
hτ = ((es

1, e
s
2) | hσ1 ) ∪ hσ2 ∧ dom((es

1, e
s
2) | hσ1 ) ∩ dom(hσ2 ) = ∅ ∧ σ1, σ2 combinable ∧ es

1 ∈ dom(hσ1 )
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⇒ {[ logic, definition of [[[e1] := e2]]c and ∗ ]}
σ1 [[[e1] := e2]]c (s, (es

1, e
s
2) | hσ1 ) ∧ τ = (s, (es

1, e
s
2) | hσ1 ) ∗ σ2 ∧ (s, (es

1, e
s
2) | hσ1 ), σ2 combinable

⇔ {[ definitions ]}
(σ1, σ2) ([[[e1] := e2]]c × I) ; �∗ τ

The annihilation property states that for partial function f1 | ( f2 ∪ f3) = ( f1 | f2) ∪ f3 if dom( f1) < dom( f3). A proof for
the annihilation property can be found in [31].

8.2. Preservation of Variables
It remains to express algebraically the requirement that a command does not modify certain variables. In this, we

would like to avoid an explicit mention of syntax and free variables and find a suitable purely semantic condition
instead. A logical formulation might read as follows: command C preserves a test r if for all stores s, ŝ and heaps
h0, h1, ĥ0 with dom(h1) ∩ dom(h0) = ∅,

(s, h0) C (ŝ, ĥ0) ∧ (s, h1) |= r
⇒ dom(h1) ∩ dom(ĥ0) = ∅ ∧ (s, h0 ∪ h1) C (ŝ, ĥ0 ∪ h1) .

An attempt to bring this into pointfree form as before fails, however, since the result state (ŝ, ĥ0 ∪ h1) would need
to be composed from (ŝ, ĥ0) and (s, h1), which is not possible using the ∗ operation, as s and ŝ will be different in
general.

To remedy this, we introduce a generalised decomposition operator in the following section.

8.3. A Generalised Separation Operator
We relaxate the requirement that in the separating conjunction the states have to agree completely and only stipu-

late that they be compatible in the following sense.

Definition 8.5. Let A, B be sets.

(a) The restriction of a partial map s : A → B to a subset X ⊆ A is s|X with dom(s|X) =df dom(S ) ∩ X and
s|X(x) =df s(x) for x ∈ dom(s|X). In particular, s|∅ = ∅.

(b) Two partial maps s1, s2 : A → B are compatible if they agree on the intersection of their domains, i.e., if

s1|dom(s2) = s2|dom(s1) .

Lemma 8.6. Consider partial maps s1, s2 : A → B.

(a) If dom(s1) ∩ dom(s2) = ∅ then s1 and s2 are compatible.

(b) If s1 and s2 are compatible then s1 ∪ s2 is a partial map again.

(c) Every partial map is compatible with all its submaps, in particular, with itself and with ∅.
The proof can be found in the Appendix B.

For pointfree proofs of these properties in relation algebra see [31]. The property s2 = s1|dom(s2) for all s2 ⊆ s1
may even serve as an abstract characterisation of partial maps and of determinacy [16].

We now define our generalised combination operator as follows.

Definition 8.7.

(a) Two states (s1, h1) and (s2, h2) are�-combinable if the states s1 and s2 are compatible and dom(h1)∩dom(h2) = ∅.
(b) For �-combinable states (s1, h1) and (s2, h2) we define their combination by

(s1, h1) � (s2, h2) =df (s1 ∪ s2, h1 ∪ h2) .
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From this and Lemma 8.6(c) it is immediate that, when dom(h1) ∩ dom(h2) = ∅,

(s, h1) ∗ (s, h2) = (s, h1) � (s, h2) .

Lemma 8.8. The operator � is commutative and associative on pairwise combinable states and has the state (∅, ∅)
as neutral element.

Proof. Straightforward from the definitions. ut
The operator � admits arbitrary compatible splits of the store while preserving the requirement of disjointness

of the heap parts. It will allow a convenient definition of non-interacting parallel composition in the next section.
Moreover, it is useful when dealing with ghost variables for verification purposes, see [12]. The use of compatible
union on the store part was inspired by the concept of the demonic R1 u R2 meet of relations R1,R2 ⊆ A× B for some
sets A, B, which is defined as (see e.g. [6])

R1 u R2 =df (R1 − (dom(R2) × B)) ∪ (R2 − (dom(R1) × B)) ∪ (R1 ∩ R2) .

When R1 and R2 are compatible in the sense that dom((R1∩R2)) = dom(R1)∩dom(R2) the element R1uR2 is their
meet w.r.t. the demonic refinement relation. If R1 and R2 are partial maps compatibility is equivalent to the formula
above and R1 u R2 = R1 ∪ R2.

Definition 8.9. The split relation �� and its converse, the join relation �� as well as �-composition are defined as in
Definition 7.2, replacing ∗ by �.

Let us look at the pointwise meaning of � composition:

σ (C1 �C2) τ ⇔ ∃σ1, σ2, τ1, τ2 : σ = σ1 � σ2 ∧ τ = τ1 � τ2 ∧ σ1 C1 τ1 ∧ σ2 C2 τ2 .

Note that the decompositions of σ and τ each have to use compatible stores, i.e., stores in which the values of shared
variables agree.

Using these new operators we propose the following point-free formulations for the three essential properties in
terms of our generalised decomposition operator, in which the domain assertion for the frame property is dropped,
because that property will only be used when the domain assertion holds anyway.

Definition 8.10. Consider a command C and a test r.

(a) C is safety-monotonic iff dom(C) � I ⊆ dom(C).

(b) C has the frame property iff (dom(C) × I) ; �� ; C ⊆ (C × I) ; �� .

(c) C preserves r iff �� ; (C × r) ⊆ C ; �� .

Pointwise the latter spells out to

(σ0 C τ0 ∧ σ1 |= r ∧ σ0, σ1 �-combinable
⇒ τ0, σ1 �-combinable ∧ (σ0 � σ1) C (τ0 � σ1) .

In particular, this expresses that the stores of τ0 and σ1 have to be compatible and hence the parts of these stores that
mention the variables of r have to be identical; in other words, C is not allowed to change these variables. Moreover,
(c) is equivalent to �� ; (C × r) ⊆ C ; �� ; (I × r).

21



8.4. Soundness of the Frame Rule

Now we are in the position to give a purely algebraic proof of the frame rule for the � combination of assertions.

Theorem 8.11. Consider a command C and a test r such that C has the frame property, is safety-monotonic and
preserves r. Then the inference rule

{{p}}C {{q}}
{{p � r}}C {{q � r}}

is valid.

Proof. Suppose {{p}} c {{q}}, i.e., p ⊆ dom(C) ∧ {p}C {q}. By safety-monotonicity of C we have dom(C)� I ⊆ dom(C)
and hence, by isotony, p � r ⊆ dom(C) � I ⊆ dom(C) as well. Moreover we calculate

(p � r) ; C
= {[ definition of � ]}

�� ; (p × r) ; �� ; C
= {[ Equation (15) and p ≤ dom(C) ]}

�� ; (p × r) ; (dom(C) × I) ; �� ; C
⊆ {[ since C has the frame property ]}

�� ; (p × r) ; (C × I) ; ��
⊆ {[ exchange law (14) ]}

�� ; (p ; C) × (r ; I) ; ��
⊆ {[ by {p}C {q} and r ; I = r = r ; r, since r is a test ]}

�� ; (C ; q) × (r ; r) ; ��
= {[ exchange law (14) ]}

�� ; (C × r) ; (q × r) ; ��
⊆ {[ since C preserves r ]}

C ; �� ; (q × r) ; ��
= {[ definition of � ]}

C ; (q � r) .
ut

Since only very few properties of the relational operators are used, this proof as well as the one in the following
subsection carries over to the demonic setting where ∪ and ; are replaced by their demonic variants. The details of this
will be spelled out in a subsequent paper.

8.5. Algebraic Proof of the Frame Rule for ∗ Decomposition

With an analogous method as in the previous sections we can now give a completely algebraic soundness proof
of the standard frame rule, however, at the expense of more complicated formulations of the corresponding frame and
preservation properties. We start by a definition to relate the splittings w.r.t. ∗ and �.

Definition 8.12. The partial identity Q characterises those pairs of states which are combinable:

(σ1, σ2) Q (τ1, τ2) ⇔df σ1 and σ2 ∗-combinable and σ1 = τ1 and σ2 = τ2.

With its help we can express the connection between our split and join operations.

Corollary 8.13.

1. �∗ = �� ; Q and �∗ = Q ; �� .

2. �∗ = �∗ ; Q and �∗ = Q ; �∗ .
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Definition 8.14.

1. Let H be the command that preserves all heaps while being liberal about the stores:

(s, h) H (s′, h′) ⇔df h = h′ .

2. Command C has the ∗-frame-property if

(dom(C) × I) ; �∗ ; C ⊆ (C × H) ; �∗ .

3. Command C ∗-preserves test r if

�∗ ; (C × (r ; H)) ; Q ⊆ C ; �∗ ; (I × r) .

It is clear that H is an equivalence relation and hence H ; H = H. To spell out the pointwise meaning of the ∗-frame-
property and ∗-preservation we use the following notation.

Definition 8.15. Let σ =df (s, h) be a state and h′ be a heap.

1. h′ ⊆ σ ⇔df h′ ⊆ h.

2. If h′ ⊆ σ then σ ∩ h′ =df (s, h ∩ h′) and σ − h′ =df (s, h − h′).

This immediately entails the following decomposition property.

Corollary 8.16. For h′ ⊆ σ we have σ = (σ ∩ h′) ∗ (σ − h′).

Now straightforward calculations show the following.

Lemma 8.17.

1. Command C has the ∗-frame-property iff, for all σ, τ, h,

h ⊆ σ ∧ σC τ ⇒ h ⊆ τ ∧ (σ − h) C (τ − h) .

2. Command C ∗-preserves test r iff, for all σ, τ, h,

h ⊆ σ ∧ σC τ ∧ σ ∩ h |= r ⇒ h ⊆ τ ∧ τ ∩ h |= r .

The above notions now allow a purely algebraic proof of the ∗ frame rule.

Theorem 8.18. Consider a command C and a test r such that C has the ∗-frame-property, is ∗-safety-monotonic and
∗-preserves r. Then the inference rule

{{p}}C {{q}}
{{p ∗ r}}C {{q ∗ r}}

is valid.

Proof. Again we can infer by assumption, isotony and ∗-safety-monotonicity, p ∗ r ⊆ dom(C) ∗ I ⊆ dom(C). Further-
more we calculate
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(p ∗ r) ; C
= {[ definition of ∗ ]}

�∗ ; (p × r) ; �∗ ; C
= {[ Equation (15) and p ≤ dom(C) ]}

�∗ ; (p × r) ; (dom(C) × I) ; (C × H) ; �∗
⊆ {[ since C has the ∗-frame-property ]}

�∗ ; (p × r) ; (C × H) ; �∗
⊆ {[ exchange ]}

�∗ ; (p ; C) × (r ; H) ; �∗
⊆ {[ by {p}C {q} and isotony ]}

�∗ ; (C ; q) × (r ; H) ; �∗
= {[ neutrality of I w.r.t. composition and exchange ]}

�∗ ; (C × (r ; H)) ; (q × I) ; �∗
= {[ by Corollary 8.13.2 ]}

�∗ ; (C × (r ; H)) ; (q × I) ; Q ; �∗
= {[ (q × I) and Q are partial identities and hence commute ]}

�∗ ; (C × (r ; H)) ; Q ; (q × I) ; �∗
⊆ {[ C ∗-preserves r ]}

C ; �∗ ; (I × r) ; (q × I) ; �∗
= {[ neutrality of I and exchange ]}

C ; �∗ ; (q × r) ; �∗
= {[ definition of ∗ ]}

C ; (q ∗ r) .
ut

Next we show again exemplarily that the mutation statement [e1] := e2 ∗-preserves an arbitrary test r. Again we
denote the heap of a state σ by hσ. As in the proof that mutation satisfies the frame property, all stores are fixed.

σ �∗ ; ([[[e1] := e2]]c × (r ; H)) ; Q (τ1, τ2)
⇔ {[ definition of �∗ ]}
∃σ1, σ2 : σ = σ1 ∗ σ2 ∧ (σ1, σ2)([[[e1] := e2]]c × (r ; H)) ; Q (τ1, τ2)

⇔ {[ definition of Q ]}
∃σ1, σ2 : σ = σ1 ∗ σ2 ∧ (σ1, σ2)([[[e1] := e2]]c × (r ; H))(τ1, τ2) ∧ τ1, τ2 ∗ −combinable

⇔ {[ definition of × ]}
∃σ1, σ2 : σ = σ1 ∗ σ2 ∧ σ1 [[[e1] := e2]]c τ1 ∧ σ2(r ; H)τ2 ∧ τ1, τ2 ∗ −combinable

⇔ {[ definition of [[[e1] := e2]]c and r ]}
∃σ1, σ2 : σ = σ1 ∗ σ2 ∧ hτ1 = (es

1, e
s
2) | hσ1 ∧ es

1 ∈ dom(hσ1 ) ∧ σ2Hτ2 ∧ σ2 |= r
∧ τ1, τ2 ∗ −combinable

⇔ {[ since no command changes stores and τ1, τ2 ∗-combinable enforces sτ1 = sτ2 ]}
∃σ1, σ2 : σ = σ1 ∗ σ2 ∧ hτ1 = (es

1, e
s
2) | hσ1 ∧ es

1 ∈ dom(hσ1 ) ∧ σ2 = τ2 ∧ σ2 |= r
∧ τ1, τ2 ∗ −combinable

⇒ {[ logic and σ2 = τ2 ]}
∃σ1 : σ = σ1 ∗ τ2 ∧ hτ1 = (es

1, e
s
2) | hσ1 ∧ es

1 ∈ dom(hσ1 ) ∧ dom(hτ1 ) = dom(hσ1 ) ∧ τ2 |= r
∧ τ1, τ2 ∗ −combinable

⇒ {[ isotony of ∪ , definition of ∗-combinable and dom(hτ1 ) = dom(hσ1 ) ]}
∃σ1 : σ = σ1 ∗ τ2 ∧ hτ1 ∪ hτ2 = ((es

1, e
s
2) | hσ1 ) ∪ hτ2 ∧ es

1 ∈ dom(hσ1 )∧
∧ dom(hσ1 ) ∩ dom(hτ2 ) = ∅ ∧ τ2 |= r ∧ dom(hτ1 ) ∩ dom(hτ2 ) = ∅

⇒ {[ annihilation of | (see above) and definition of ∗ ]}
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∃σ1 : σ = σ1 ∗ τ2 ∧ h(τ1 ∗ τ2) = (es
1, e

s
2) | h(σ1 ∗ τ2) ∧ es

1 ∈ dom(hσ1 ) ∧ dom(hτ1 ) ∩ dom(hτ2 ) = ∅ ∧ τ2 |= r
⇒ {[ logic, isotony of dom and σ = σ1 ∗ τ2 ]}

h(τ1 ∗ τ2) = (es
1, e

s
2) | hσ ∧ es

1 ∈ dom(hσ1 ) ∧ dom(hτ1 ) ∩ dom(hτ2 ) = ∅ ∧ τ2 |= r
⇔ {[ Equation (16) ]}

h(τ1 ∗ τ2) = (es
1, e

s
2) | hσ ∧ σ ∈ dom([[[e1] := e2]]c) ∧ dom(hτ1 ) ∩ dom(hτ2 ) = ∅ ∧ τ2 |= r

⇔ {[ definition of [[[e1] := e2]]c ]}
σ [[[e1] := e2]]cτ1 ∗ τ2 ∧ dom(hτ1 ) ∩ dom(hτ2 ) = ∅ ∧ τ2 |= r

⇔ {[ definition of �∗ and combinability ]}
σ [[[e1] := e2]]c ; �∗ (τ1, τ2) ∧ τ2 |= r

⇔ {[ definition of × and r ]}
σ [[[e1] := e2]]c ; �∗ ; (I × r) (τ1, τ2)

8.6. Closure Properties
Since more complex commands will be built up from simpler ones using the ∪ and ; operators, we show that our

frame and preservation properties are closed under them.

Lemma 8.19. The �-frame property and �-preservation of a test r are closed under union and composition of com-
mands assuming that for a composition C ; D the inequation cod(C) ⊆ dom(D) holds.

Proof. Closure under union is straightforward from distributivity of ; and ×. Next, assume that C and D have the
�-frame property. Then

(dom(C ; D) × I) ; �� ; C ; D
⊆ {[ by isotony ]}

(dom(C) × I) ; �� ; C ; D
⊆ {[ C has the �-frame property ]}

(C × I) ; �� ; D
= {[ exchange ]}

(C × I) ; (cod(C) × I) ; �� ; D
⊆ {[ by the assumption cod(C) ⊆ dom(D) and isotony ]}

(C × I) ; (dom(D) × I) ; �� ; D
⊆ {[ D has the �-frame property ]}

(C × I) ; (D × I) ; ��
= {[ exchange ]}

(C ; D) × (I ; I) ; ��
= {[ neutrality of I ]}

(C ; D) × I ; �� .

Now assume that C and D �-preserve r. Then

�� ; ((C ; D) × r)
= {[ r is a test and hence idempotent ]}

�� ; ((C ; D) × (r ; r))
= {[ exchange ]}

�� ; (C × r) ; (D × r)
⊆ {[ C �-preserves r ]}

C ; �� ; (D × r)
⊆ {[ D �-preserves r ]}

C ; D ; �� .
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ut

Lemma 8.20. Also the ∗-frame property and ∗-preservation of a test r are closed under union and composition of
commands assuming that for a composition C ; D the inequation cod(C) ⊆ dom(D) holds.

Proof. Closure under union is straightforward from distributivity of ; and ×. Next, assume that C and D have the
∗-frame property. Then

(dom(C ; D) × I) ; �∗ ; C ; D
⊆ {[ by isotony ]}

(dom(C) × I) ; �∗ ; C ; D
⊆ {[ C has the ∗-frame property ]}

(C × H) ; �∗ ; D
= {[ exchange ]}

(C × H) ; (cod(C) × H) ; �∗ ; D
⊆ {[ by the assumption cod(C) ⊆ dom(D) and isotony ]}

(C × H) ; (dom(D) × I) ; �∗ ; D
⊆ {[ D has the ∗-frame property ]}

(C × H) ; (D × H) ; �∗
= {[ exchange ]}

(C ; D) × (H ; H) ; �∗
= {[ H is an equivalence relation ]}

(C ; D) × H ; �∗ .

Now assume that C and D ∗-preserve r. Then

�∗ ; ((C ; D) × (r ; H) ; Q
= {[ H is an equivalence relation ]}

�∗ ; ((C ; D) × (r ; H ; H) ; Q
= {[ exchange ]}

�∗ ; (C × (r ; H)) ; (D × H) ; Q
⊆ {[ C ∗-preserves r ]}

C ; �∗ ; (I × r) ; (D × H) ; Q
= {[ exchange and neutrality of I ]}

C ; �∗ ; (D × (r ; H)) ; Q
⊆ {[ D ∗-preserves r ]}

C ; D ; �∗ ; (I × r) .
ut

9. Conclusion and Outlook

We have presented an algebraic treatment of separation logic. For assertions we have introduced a model based
on sets of states. By this, separating implication coincides with a residual and most of the inference rules of [42]
are simple consequences of standard residual laws. For intuitionistic, pure, precise and supported assertions we have
given algebraic characterisations. Furthermore we have defined a class of assertions which are both intuitionistic and
precise.

As a next step we embedded the command part of separation logic into a relational algebraic structure. There, we
were able to give algebraic characterisations of properties on which the frame rule relies. In particular, we are able to
define the side condition that certain variables may not be changed by a command in a purely semantic way without
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appealing to the syntax. Moreover we have algebraically proved the frame rule and defined a more liberal version of
it that rests on simpler side conditions. Finally we have shown that the commands for which the frame rule is sound
are closed under union and composition.

To underpin our approach we have algebraically verified one of the standard examples — an in-place list reversal
algorithm. The details can be found in [12]. The term in-place means that there is no copying of whole structures, i.e.,
the reversal is done by simple pointer modifications.

Due to our relational embedding we can, as a next step, derive inference rules for if-statements and for the while-
loop. This has been done for classical Hoare logic (see [35]); hence it should be straightforward to extend this into the
setting of separation logical.

So far we have not analysed situations where data structures share parts of their cells (cf. Figure 2). First steps

x 1 2 3 4 5
◦

y 7 8

Figure 2: Two lists with shared cells.

towards an algebraic handling of such situations are given in [32, 19]. In future work, we will adapt these approaches
for our algebra of separation logic.

Our algebraic approach to separation logic also paves the way for verifying properties with off-the-shelf theorem
provers. Boolean semirings have proved to be reasonably well suitable for automated theorem provers [24]. Therefore
the first-order part of our approach can easily be shown by automated theorem provers. If one needs the full power
of quantales, the situation is a bit different. There are encodings for quantales for higher-order theorem provers.
However at the moment higher-order systems can only verify simply theorems fully automatically [13]. Looking at
the development of first-order provers in the past, we expect a rapid development in automated higher-order provers.
Hence one of the next plans for future work is to analyse the power of such systems for reasoning with separation logic.
A long-term perspective is to incorporate reasoning about concurrent programs with shared linked data structures
along the lines of [39]. One central property mentioned in this paper is the rule of disjoint concurrency which reads as

{p1}C1 {q1} {p2}C2 {q2}
{p1 ∗ p2}C1||C2 {q1 ∗ q2} ,

assuming C1 does not modify any free variables in p2 and q2 and conversely C2 does not modify free variables of p1
and q1. Using the approach for the frame rule in this paper it should be possible to get an algebraic proof for this rule,
too.
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[24] P. Höfner and G. Struth. Automated reasoning in Kleene algebra. In F. Pfennig, editor, Automated Deduction, volume 4603 of Lecture Notes

in Artificial Intelligence, pages 279–294. Springer, 2007.
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A. Deferred Properties

In this appendix, we list a couple of different properties for separation logic and for our algebraic characterisation.

A.1. Septraction

From Lemma 5.8 and the definitions, we immediately get

Corollary A.1.

1. s, h |= p −� true ⇔ ∃ ĥ : h ⊆ ĥ, s, ĥ |= p.

2. s, h |= (p ∗ q) −� true ⇔ ∃ ĥ, ĥ1, ĥ2 : h ⊆ ĥ, ĥ1 ∪ ĥ2 = ĥ,
dom(ĥ1) ∩ dom(ĥ2) = ∅, s, ĥ1 |= p, s, ĥ2 |= q .

3. s, h |= p ∗ (q −� true) ⇔ ∃ h1, h2, ĥ2 : h1 ∪ h2 = h, h2 ⊆ ĥ2,

dom(h1) ∩ dom(h2) = ∅, s, h1 |= p, s, ĥ2 |= q .

4. s, h |= true −� q ⇔ ∃ h′ : dom(h) ∩ dom(h′) = ∅, s, h′ |= q .

5. s, h |= p −� (true −� q) ⇔ ∃ h′, ĥ : h ⊆ ĥ, dom(ĥ − h) ∩ dom(h′) = ∅,
s, ĥ |= p, s, h′ |= q .

Intuitively, p −� true holds in a state iff p holds in some extension of that state.

Theorem A.2.
(p ∗ q) −� true ⊆ (p −� true) ∗ (q −� true)

Proof. We show s, h |= (p ∗ q) −� true ⇒ s, h |= (p −� true) ∗ (q −� true).

s, h |= (p ∗ q) −� true

⇔ {[ Corollary 1.2(2) ]}
∃ ĥ, ĥ1, ĥ2 : h ⊆ ĥ, ĥ1 ∪ ĥ2 = ĥ, dom(ĥ1) ∩ dom(ĥ2) = ∅,
s, ĥ1 |= p, s, ĥ2 |= q

⇒ {[ set g1 = ĥ1 ∩ h and g2 = ĥ2 ∩ h ]}
∃ g1, g2, ĥ1, ĥ2 : g1 ∪ g2 = h, dom(g1) ∩ dom(g2) = ∅, g1 ⊆ ĥ1, g2 ⊆ ĥ2,

s, ĥ1 |= p, s, ĥ2 |= q
⇔ {[ Corollary 1.2(1) (twice) ]}
∃ g1, g2 : g1 ∪ g2 = h, dom(g1) ∩ dom(g2) = ∅,
s, g1 |= p −� true, s, g2 |= q −� true

⇔ {[ definition of ∗ ]}
s, h |= (p −� true) ∗ (q −� true)

ut
The converse direction does not hold.

Theorem A.3.
s, h |= (p −� true) ∗ (q −� true) ; s, h |= (p ∗ q) −� true

Proof. The counterexample consists of only one variable and a heap with one single cell having address a:

s =df {(x, a)} , h =df {(a, 1)} .

Setting p = q = (x 7→ 1) we get immediately s, h |= (p ∗ q) −� true = false −� true = false (cf. Law 5.5 of [33]).
Therefore it is sufficient to show that s, h |= (p −� true) ∗ (q −� true) is satisfied.
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s, {(a, 1)} |= ((x 7→ 1) −� true) ∗ ((x 7→ 1) −� true)
⇔ {[ definition of ∗ and Corollary 1.2(1) (twice) ]}
∃ h1, h2, ĥ1, ĥ2 :, h1 ∪ h2 = h, dom(h1) ∩ dom(h2) = ∅,
h1 ⊆ ĥ1, h2 ⊆ ĥ2, s, ĥ1 |= (x 7→ 1), ĥ2 |= (x 7→ 1)

⇐ {[ set h1 = ĥ1 = ĥ2 = h = {(a, 1)} and h2 = ∅ ]}
true

ut

A.2. Pure Assertions
Lemma A.4. If t is a test element then the element t · > is pure.

Proof. We use the characterisation of Lemma 6.10(b) and simply calculate ((t · >) u 1) · > = (t · (> u 1)) · > = t · >
which follows immediately from the equation (testdist). ut

We now investigate the interplay between pure assertions and algebraic residuals.

Corollary A.5. For arbitrary assertions a, b and c a u (b\c) ≤ (a u b)\c holds.

Lemma A.6. For pure element a and arbitrary elements b and c the following (in)equations hold:

(a u b)\(a u c) = (a u b)\c (A.1)
a u (b\c) ≤ b\(a u c) (A.2)
a u (b\c) = a u (b\(a u c)) (A.3)
a u (b\c) = a u ((a u b)\c) (A.4)
a u (b\c) = a u ((a u b)\(a u c)) (A.5)

a u ((a u b)\(a u c)) ≤ b\(a u c) (A.6)

Proof. To show (A.1) we use the proof principle of indirect equality. By definition, pureness, shunting, distributivity,
shunting, Lemma 6.10(c), and definition:

∀ x : x ≤ (a u b)\(a u c)
⇔∀ x : (a u b) · x ≤ a u c
⇔∀ x : a u (b · x) ≤ a u c
⇔∀ x : b · x ≤ a + (a u c)
⇔∀ x : b · x ≤ (a + a) u (a + c)
⇔∀ x : a u (b · x) ≤ c
⇔∀ x : (a u b) · x ≤ c
⇔∀ x : x ≤ (a u b)\c

Next we give a proof of Part (A.2). By definition, Lemma 6.10(c), and property of residual, isotony:

a u (b\c) ≤ b\(a u c)
⇔ b · (a u (b\c)) ≤ a u c
⇔ a u (b · (b\c)) ≤ a u c
⇔ true

To prove (A.3) the ≤-direction follows immediately by (A.2) . The ≥-direction can be shown as follows: By definition
of u, definition, Lemma 6.10(c), and property of residual, idempotency, isotony:

a u (b\(a u c)) ≤ a u (b\c)
⇔ a u (b\(a u c)) ≤ b\c
⇔ b · (a u (b\(a u c))) ≤ c
⇔ a u (b · (b\(a u c))) ≤ c
⇔ true
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The ≤-direction of (A.4) follows immediately by Corollary A.5. By definition of u, definition, Lemma 6.10(c),
and property of residual:

a u ((a u b)\c) ≤ a u (b\c)
⇔ a u ((a u b)\c) ≤ b\c
⇔ b · (a u ((a u b)\c)) ≤ c
⇔ (a u b) · ((a u b)\c) ≤ c
⇔ true

Finally (A.5) follows immediately from (A.4) and (A.1) and Equation (A.6) follows from (A.5) and (A.2). ut
After looking at the interplay between pure assertions and residuals we now turn to detachments interacting with

this class of assertions. In fact, we get analogous import and export laws for detachments as in the case of pure
assertions interacting with the separation conjunction in Lemma 6.10(c).

Lemma A.7. For arbitrary elements b, c and pure a the equation (a u b)b(a u c) = (a u b)bc holds.

Proof. The ≤-direction follow immediately from isotony of b in both arguments. The other direction can be shown as
follows. By Law (exc), Definition of b, Boolean algebra, Shunting, a pure, Lemma 6.10(c), a pure, Lemma A.6(A.3),
(A.5), a pure, Lemma 6.10(c), Shunting, Boolean Algebra, and commutativity of · , Lemma 5.6:

(a u b)bc ≤ (a u b)b(a u c)
⇔ (a u b)b(a u c) · c ≤ a u b
⇔ ((a u c)\(a u b)) · c ≤ a u b
⇔ ((a u c)\(a u b)) · c ≤ a + b
⇔ a u (((a u c)\(a u b)) · c) ≤ b
⇔ (a u ((a u c)\(a u b))) · c ≤ b
⇔ (a u (c\(a u b))) · c ≤ b
⇔ a u ((c\(a u b)) · c) ≤ b
⇔ (c\(a u b)) · c ≤ a + b
⇔ (c\(a u b)) · c ≤ a u b
⇔ true

ut

Lemma A.8. For arbitrary elements b, c and pure a the equation (a u b)b(a u c) ≤ 0 is valid. Therefore also
(a u b)b(a u c) ≤ 0 holds.

Proof. By Law (exc), Boolean algebra, pureness, isotony of +, and isotony of u:

(a u b)b(a u c) ≤ 0
⇔> · (a u c) ≤ a u b
⇔> · (a u c) ≤ a + b
⇔ a u (> · c) ≤ a + b
⇐ a u (> · c) ≤ a
⇔ true

ut

Lemma A.9. For arbitrary elements b, c and pure a the equation bb(a u c) = (a u b)bc is valid.

Proof. By Boolean algebra, distributivity of b, pureness, Lemma A.8, and pureness, Lemma A.7:

bb(a u c)
= ((a u b) + (a u b))b(a u c)
= ((a u b)b(a u c)) + ((a u b)b(a u c))
= (a u b)b(a u c)
= (a u b)bc
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ut

Lemma A.10. For arbitrary elements b, c and pure a the equation p u abb = (p u a)bb. is valid.

Proof. We first show the ≥-direction: By Law (exc), Boolean algebra, distributivity, isotony of +, isotony of ·, defini-
tion of b, and a is pure, Lemma 5.6:

(a u b)bc ≤ a u bbc
⇔ a u bbc · c ≤ a u b
⇔ (a + bbc) · c ≤ a + b
⇔ (a · c) + (bbc · c) ≤ a + b
⇐ a · c ≤ a ∧ bbc · c ≤ b
⇐ a · > ≤ a ∧ (b/c) · c ≤ b
⇔ true

ut

Corollary A.11. For arbitrary elements b, c and pure a, a u bbc = (a u b)bc = bb(a u c) = (a u b)b(a u c) holds.

A.3. Precise Assertions

We now give some further useful properties of precise assertions which facilitates calculating with them.

Lemma A.12. If b, c are precise and a is pure, then (a u b) + (a u c) is precise.

Proof. We assume arbitrary elements d, e ∈ S . By distributivity of ∗ , pureness of a and a, distributivity of u, aua = 0,
idempotence of u, preciseness of b and c, pureness of a and a, and distributivity of ∗ :

((a u b) + (a u c)) · d u ((a u b) + (a u c)) · e
= ((a u p) · d + (a u c) · d) u ((a u p) · e + (a u c) · e)
= (a u (b · d) + a u (c · d)) u (a u (b · e) + a u (c · e))
= a u (b · d) u a u (b · e) + a u (c · d) u a u (b · e) +

a u (b · d) u a u (c · e) + a u (c · d) u a u (c · e)
= a u (b · d) u (b · e) + a u (c · d) u (c · e)
= a u (b · (d u e)) + a u (c · (d u e))
= ((a u b) · (d u e)) + ((a u c) · (d u e))
= ((a u b) + (a u c)) · (d u e)

ut

Lemma A.13. If a is precise then, for arbitrary b, c and d, ((a u b) · c) u (a · d) = (a u b) · (c u d)

Proof. First we calculate

((p u a) · (b u c)) u (p · c) ≤ (p · (b u c)) u (p · c) = p · ((b u c) u c) = 0 (∗)

We prove the equation by showing each inequation separately. The ≤-direction can be shown as follows: By
Boolean algebra, distributivity, by (∗), and definition of u:

((a u b) · c) u (a · d)
= ((((a u b) · (c u d)) + ((a u b) · (c u d))) u (a · d)
= ((((a u b) · (c u d)) u (a · d)) + (((a u b) · (c u d)) u (a · d))
= ((a u b) · (c u d)) u (a · d)
≤ (a u b) · (c u d)
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The converse inequation follows by isotony and the fact that a u b is precise (cf. Lemma 6.16):

(a u b) · (c u d) = ((a u b) · c) u ((a u b) · d)) ≤ ((a u b) · c) u (a · d) .

ut

Corollary A.14. If a or a′ is precise, then ((a u b) · a′) u (a · (a′ u c)) = (a u b) · (a′ u c) for all b, c.

This law characterises the interplay between · and u w.r.t. precise assertions. Only the portions of the heaps that
fit together with p and q remain in the intersection on the left-hand side of the equations.

A.4. Supported Assertions
Lemma A.15. a is supported if 1 ≤ a.

Proof. We calculate for arbitrary b and c

a · b u a · c ≤ b · > u c · > = 1 · (b · > u c · >) ≤ a · (b · > u c · >)

The first inequation follows from isotony of · and commutativity. Then by neutrality of 1 and assumption the conjecture
holds. ut

Corollary A.16. 1, > are supported. Moreover (1 + a) is supported if a is.

Lemma A.17. a is supported iff a · > is supported.

Proof. The ⇒ -direction follows by definition and isotony:

a · > · b u a · > · c ≤ a · (b · > u c · >) ≤ a · > · (b · > u c · >)

The converse direction can be shown as follows:

a · b u a · c
≤ (a · >) · b u (a · >) · c
≤ a · > · (b · > u c · >)
≤ a · (> · b · > u > · c · >)
≤ a · (b · > u c · >)

This holds by isotony of ·, definition of supported elements, subdistributivity, commutativity and > = > · >. ut

Corollary A.18. If a is supported and b, c are intuitionistic then

a · b u a · c ≤ a · (b u c) .

B. Deferred Proofs

Proof of Lemma 5.8. By Lemma 5.4 we have [[p−∗ q]] = [[q]]/[[p]]. Now it is easy to see that

s, h |= p −� q
⇔ {[ definition of −� ]}

s, h |= ¬(q−∗(¬p))
⇔ {[ definition of −∗ ]}
¬(∀h′ : ((dom(h′) ∩ dom(h) = ∅, s, h′ |= q) ⇒ s, h′ ∪ h |= ¬p))

⇔ {[ logic: ¬ over ∀ ]}
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∃ h′ : ¬((dom(h′) ∩ dom(h) = ∅, s, h′ |= q) ⇒ s, h′ ∪ h |= ¬p)
⇔ {[ logic: ¬(A ⇒ B) ⇔ (A ∧ ¬B) ]}
∃ h′ : dom(h′) ∩ dom(h) = ∅, s, h′ |= q, s, h′ ∪ h 6|= ¬p

⇔ {[ logic ]}
∃ h′ : dom(h′) ∩ dom(h) = ∅, s, h′ |= q, s, h′ ∪ h |= p

⇔ {[ setting for (⇒) ĥ =df h′ ∪ h and for (⇐) h′ =df ĥ − h ]}
∃ ĥ : h ⊆ ĥ, s, ĥ − h |= q, s, ĥ |= p

2
Proof of Lemma 6.10.

(a) The claim follows immediately from Lemma 6.9.

(b) We first show that a = (a u 1) · > follows from Inequations (6) and (7). By neutrality of > for u, neutrality of 1
for ·, meet-distributivity (7) and isotony, we get

a = a u > = a u (1 · >) ≤ (a u 1) · (a u >) ≤ (a u 1) · > .

The converse inequation follows by isotony and Inequation (6):

(a u 1) · > ≤ a · > ≤ a .

Next we show that a = (a u 1) · > implies the two inequations a · > ≤ a and a · > ≤ a which, by Part (a), implies
the claim. The first inequation is shown by the assumption, the general law > · > = > and the assumption again:

a · > = (a u 1) · > · > = (a u 1) · > = a .

For the second inequation, we note that in a Boolean quantale the law t · > = (t u 1) · > holds for all subidentities
t (t ≤ 1) (e.g. [16]). From this we get

a · > = (a u 1) · > · > = (a u 1) · > · > = (a u 1) · > = (a u 1) · > = a .

(c) (a u b) · c = a u b · c.
We show the equivalence of the equation with Definition 6.6. First we prove the ⇒ -direction and split the proof
showing each inequation separately starting with ≥:

a u b · c ≤ (a u b) · (a u c) ≤ (a u b) · c .

This holds by Equation 7 and isotony. To prove the ≤-direction we know (aub) ·c ≤ a ·c ≤ a ·> ≤ a which follows
from isotony and Equation 6. Now using (a u b) · c ≤ b · c we can immediately conclude (a u b) · c ≤ a u b · c.

Next we give a proof for the ⇐ -direction and assume (a u b) · c = a u b · c holds. Equation 6 follows by
a · > = (a u a) · > = a u a · > ≤ a. Furthermore we calculate

a u (b · c) = a u a u (b · c) = a u ((a u b) · c) = a u (a · (a u b)) = (a u b) · (a u c) ,

which holds by using idempotency of u, the assumption, commutativity of · and again the assumption. 2

Proof of Lemma 6.25.

(a) Since [[s, h]] is a singleton set, this is obvious.

(b) By definition of ∗, Part (1), by the assumption h ⊆ h′ and Lemma 6.24, and set theory:
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s, h′ |= p ∗ [[s, h′ − h]]
⇔∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ s, h′ − ĥ |= [[s, h′ − h]]
⇔∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ h′ − ĥ = h′ − h
⇔∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= p ∧ ĥ = h
⇔ s, h |= p

(c) By definition of ∗, s, h′ − ĥ |= true is true, Part (1), and set theory:

s, h′ |= [[s, h]] ∗ true
⇔∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= [[s, h]] ∧ s, h′ − ĥ |= true
⇔∃ ĥ : ĥ ⊆ h′ ∧ s, ĥ |= [[s, h]]
⇔∃ ĥ : ĥ ⊆ h′ ∧ ĥ = h
⇔ h ⊆ h′
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Proof of Lemma 8.6.

(a) Immediate from the definition and annihilation.

(b) Immediate from the definitions.

(c) Assume s1 ⊆ s2. By isotony of the domain operation we have dom(s1) ⊆ dom(s2) and hence s2|dom(s1) = s2.
Moreover, it is immediate from the definition of partial maps that also s2 = s1|dom(s2).
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