UNIVERSITAT AUGSBURG

ATPPortal
A User-friendly Webbased Interface for Automated
Theorem Provers and for Automatically Generated
Proofs

P. Hofner M.E. Muller S. Zeissler

Report 2010-10 September 2010
“in St It I.It :
informatik

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright (© P. Hofner M.E. Miiller S. Zeissler
Institut fiir Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

ATPPortal
A User-friendly Web-based Interface for Automatically
Theorem Provers and for Automated Generated Proofs

Peter Hofner!, Martin Eric Miiller?, and Stephan Zeissler?

! Institut fiir Informatik, Universitit Augsburg
86135 Augsburg, Germany
hoefner@informatik.uni-augsburg.de
2 Department for Computer Science, University of Applied Sciences Bonn-Rhein-Sieg
53754 St. Augustin, Germany
martin.mueller@h-brs.de, stephan.zeissler@moinz.de

Abstract. This report describes the design, the implementation and the
usage of a system for managing different systems for automated theorem
proving and automatically generated proofs. In particular, we focus on
a user-friendly web-based interface and a structure for collecting and
cataloguing proofs in a uniform way. The second point hopefully helps
to understand the structure of automatically generated proofs and builds
a starting point for new insights for strategies for proof planning.

1 Introduction

Automated theorem proving (ATP) has brought automated reasoning into a
wide variety of domains. Examples where significant and important success sys-
tems has been achieved with ATP, are software and hardware verification (e.g.
[37,13]), software development (e.g. [3]), analysis of network security protocols
(e.g. [1,41]) and mathematics (e.g. [52,38]). Full automation (without user inter-
action) is often only possible by first-order logic. For these tasks ATP systems
like Vampire [49] and Prover9 [40] exist. The broad variety of existing ATP sys-
tems is due to the multitude of many different proof calculi with many different
heuristics guiding proof search. Therefore, ATP systems differ in the derivations
found as well as in the way a derivation is constructed. This results in differ-
ent effective and efficient behaviour when applying theorem provers on concrete
problems. However, all off-the-shelf ATP systems have different syntax, different
input formats and different outputs.

To overcome these difficulties, SystemOnTPTP [53] provides a common lan-
guage and a common interface for first-order ATP systems. The TPTP library
have extensively been used by different users in various case studies covering
various areas of sciences (e.g., [9,27,29,30,60]).

Though TPTP with all its components is easy to use for experts, we see two
disadvantages:

— For an average user, the TPTP syntax, which is mainly prefix, is difficult
to read, to write and to understand. An “unreadable” example is given in

Figure 1, where Back’s atomicity refinement law is encoding using Kleene
algebra [6,57,29].

fof (goals,conjecture, (
! [X0,X1,X2,X3,X4,X5]

((leq(X0,multiplication(X0,X1))

& leq(X2,multiplication(X1,X2))

& multiplication(X1,X3) = zero

& leq(multiplication(addition(addition(X2,X3),X4),X5),
multiplication(X5,addition(addition(X2,X3),X4)))

& leq(multiplication(X1,X5),multiplication(X5,X1))

& leq(multiplication(X4,X3),multiplication(X3,X4))

& leq(multiplication(X4,X1) ,multiplication(X1,X4))

& star(X4) = strong_iteration(X4))

leq(multiplication(multiplication(XO0,
strong_iteration(addition(addition(addition(X2,X3),
X4),%5))),X1) ,multiplication(multiplication(
multiplication(multiplication(multiplication(XO0,
strong_iteration(X5)),X1),strong_iteration(X4)),X1),
strong_iteration(multiplication(multiplication(
multiplication(X2,strong_iteration(X3)),X1),
strong_iteration(X4)))))))).

=>

Fig. 1. Back’s atomicity refinement law in TPTP

— As a consequence of the broad diversity of ATP systems, it is desireable
to work with a multitude of different ATP systems simultaneously to solve
a certain problem when it is unclear to the layman which prover can be
expected to deliver best results.

— The generated proofs (if there are any) are not stored and hence cannot be
used to learn more about the mathematical structure of the proofs.

The work we present in this report describes a system which tries to fix these
issues. We describe the design, the implementation and the usage of a system for
managing different systems for automated theorem proving and automatically
generated proofs.

The management system for ATP systems allows a common language for all
ATP systems (like TPTP). Unlike TPTP a user can define his own format to
display formulas and, with small implementation issues, to use it as input and
output format. At the moment, formulas can be typed in TPTP-style or in the
format of Prover9. Its output is, next to these two formats, MathML, and ETEX.
We hope that the web-based interface enables more users without experience in
ATP to use ATP systems.

The produced proofs and some statistics about them are stored in a database
in a uniform format. On the one hand, this enables us to transform the proofs
in different formats (see above). On the other hand, the stored proofs will help
to understand proofs of ATP systems and to analyse proofs. We hope that an
analysis yield better ATP systems or an axiom selection system (for details see
Section 5).

The report is organised as follows:

In Section 2 we briefly outline the intention and design of the TPTP project.
From this, we derive the requirements on which the implemantion of the ATP-
PORTAL is based. Section 3 gives a short overview of implementational issues; for
details, the reader is asked to consult the appendix. It is followed by a description
of some example applications (both in collected data and ATPs integrated) we
already have implemented in Section 4. The paper concludes with an extensive
outlook of ongoing and future research.

2 Preliminaries

The TPTP World. “The TPTP World is a well known and established in-
frastructure that supports research, development, and deployment of Automated
Theorem Proving systems for classical first-order logics. The TPTP World in-
cludes the TPTP problem library, the TSTP solution library, standards for writ-
ing ATP problems and reporting ATP solutions, tools for processing ATP prob-
lems and solutions, and harnesses for controlling the execution of ATP systems
and tools. The TPTP World infrastructure has been deployed in a range of ap-
plications, in both academia and industry.” [56] The standards within the TPTP
World are well established and widely accepted. Moreover the integrated services
and tools are a good base for our interface:

SystemOnTPTP [53], for example, is a tool that allows to submit problems
to a wide range of ATP systems. At the moment we use this utility to connect
the ATPPORTAL with 11 ATP systems. SystemOnTPTP itself uses other services
provided by the TPTP World like TPTP2X or TPTP4X [56]. Such tools pre- and
postprocess the input and output and give easy feedback.

Requirements. From the point of view of ATP-related research (may it be the
development of ATP systems or research using such systems) all we need is a
database that is organised in a way so we can store all the information we need.
But since the ATPPORTAL is intended to provide an easy-to-use interface which
hides all the different ATP’s pecularities from the user, it has to be a software
system that is simple to install and intuitive in its usage.

— User requirements
1. User Interface
People have become used to graphical interfaces with point-and-click
and drag-and-drop functionality. Theorem provers were (or still are)
command-line tools; some are equipped with GUI-Add-Ons. When it

comes down to a quick translation from one syntax into another, the
usage of different provers simultaneously, and referring back to aximoat-
isations that already exist in the ATPPORTAL-database, one would have
to prepare several different input files and write batch scripts to start all
involved processes. As a consequence, the ATPPORTAL shall provide
a GUI supporting the point-and-click metaphors for theory and axiom
selection.
To ensure that the ATPPORTAL client can be run on any system, it shall
be (and has become) a web-based application.

2. Server-Client architecture
It cannot be taken for sure that every user can install the entire soft-
ware package on his system. Therefore, it has to be implemented as a
Server-Client-System consisting of the client-side GUI, the ATPPORTAL
web server, the underlying database server, and servers hosting all ATP
systems that are plugged into the ATPPORTAL suite.
All parts of the system can be run on arbitrary servers; ranging from
one-for-all to one server for each component.

— Implementation requirements

1. Open Source
The ATPPORTAL is intended for users from various disciplines. Since
all of the software (especially all utilised theorem provers) are subject to
ongoing research, parts of the system are under continuous development.
Also, the ATPPORTAL is designed as an open system (see below) which
benefits from collaboration of many people. Therefore it must not depend
on licensed software and, in consequence, is open sofware.

2. OS independency
For the same reason and for universal usability, ATPPORTAL must be
operating system independent. Therefore, all components are chosen so
they can be run under virtually all current operating systems (Post-
greSQL, Apache Tomcat, etc.). The only exception are the different the-
orem provers—which, if run under a different operating system are inte-
grated by the client-server-architecture decribed above.

3. JAVA
Again, for the same reason, JAVA is chosen as a programming language.
In fact, this is the only “hard” requirement on the system, since every-
thing else is encapsulated in corresponding interfaces and the strict usage
of a layered architecture (the difference between using a PostgreSQL-
database via a JDBC interface or a plain XML-file as a database is just
a matter of a few lines of program code; and the system’s functionality
does not change at all).

— Maintenance requirements

1. Modularity
The highly modular architecture allows an easy extensibility and main-
tainability.

2. Interfaces
The ATPPORTAL lives from its underlying theorem provers which them-

selves—as already mentioned above—are subject to constant develop-
ment. Therefore, the representation language used within the ATPPOR-
TAL database is a strict prefix fully bracketed language. In order to add
a new theorem prover or change the input/output file format, it just
requires the implementation of a new parser specification.

3 Implementation

In [16], Evans presents the method of “Domain Driven (Software) Design”. The
most important aspect is that any kind of software project can be sliced into
four levels resulting in a layered architecture, see Figure 2.

il -

User

Interface Application Domain Infrastructure

Fig. 2. Layered Architecture Model
%fboxDas Bild ist echt ibel; haben wir das in einer besseren Qualitat?

At the very bottom, the infra-structure layer contains all the base function-
ality of the system; these are components and modules that actually handle
the control and data flow. Examples are utility or fascade classes that provide
interfaces to external code libraries or services.

The second level is called the domain-knowledge. It contains (or rather im-
plements) all domain-dependent program logic. The clear distinction between
program logic and control results in abstract and adaptable source code.

On top, the application layer contains all application-dependent logic. In our
context, the domain layer contains everything we need to represent and process
theories and proofs; the application layer implements the functionality of the
ATPPORTAL itself (with, e.g., postgres being the concrete database whereas
the domain layer only contains an abstract definition of a formula “repository”.

Finally, the fourth level is the user interface level. It implements the visuali-
sation and interaction that is required for the domain model to be manipulated
by the user.

3.1 Used Standards, Models, and Software

ATPPortal Implementation. For the implementation of ATPPORTAL v.1.0,
we have built on several different technologies we list in the following:

— Java Platform, Enterprise Edition (JEE) (e.g. [19]) is a Java platform for
server programming that differs from the Java Standard Edition Platform
(Java SE) in that it provides libraries for the development for fault-tolerant,
distributed, multi-tier Java software, based on modular components running
on an application server. Especially the components for the application server
are used ATPPORTAL. In our implemention we use the JEFE 6 platform.

— The Java Servlet.? is a Standard Extension to the Java platform that pro-
vides web application developers with a simple consistent mechanism for
extending the functionality of a web server. A Servlet is a Java class which
conforms a protocol by which a Java class may respond to HTTP requests. It
can be used to add dynamic content to a Web server using the Java platform.
In ATPPORTAL we use Java Servlet API 2.5.

— Java Server Pages (JSP) is the Java platform technology for building appli-
cations containing dynamic Web content such as HTML, DHTML, XHTML
and XML. The JavaServer Pages technology allows to create dynamic con-
tent. In ATPPORTAL we use JSP 2.1.

— Apache Tomcat version 6.0.24 (e.g. [10]) is an open source implementation
of the Java Servlet and the JavaServer Pages specifications.

— Since the ATPPORTAL collects, manages and catalogues data (theorems,
axioms and proofs), a database is necessary. For our implementation we use
PostgreSQL, Version 8.4.2, [47] , an object-relational database management
system developed at the University of California at Berkeley Computer Sci-
ence Department. It is an open-source descendant of this original Berkeley
code and supports a large part of the SQL standard.

— jQuery 1.8.2 [32] is a cross-browser JavaScript library designed to simplify
the client-side scripting of HTML, in particular with respect to database
connections and queries.

— To provide a simple mechanism to build the open source JAVA-based project,
we use Apache Ant*. It is a software tool for automating software build
processes similar to Make but is implemented using the Java language.

— Apache Commons [20] provides reusable, open source Java software. The
Commons is composed of three parts: proper, sandbox, and dormant.

Theorem Provers. As mentioned in the introduction, one of the main pur-
poses of ATPPORTAL is to provide a uniform user interface for ATP systems.
At the moment one theorem prover (Prover9) is fully connected to our portal,
i.e., the original output of Prover9 is parsed and the proofs are stored in our
database. Next to that, we integrated 10 ATP systems via the TPTP project.

3 http://java.sun.com/products/servlet/
4 http://ant.apache.org/

This mechanism allows an easy and quick possibility to connect ATP systems
with ATPPORTAL. Theorems can be proved, but a proof is not given with this
procedure. Hence we cannot store a proof.

We briefly list the integrated theorem prover systems. The systems descrip-
tion are mainly from [54] and [55].

— Prover9 0908 [40] is a saturation-based theorem prover for first-order equa-
tional logic. It implements an ordered resolution and paramodulation calcu-
lus and, by its treatment of equality by rewriting rules and Knuth-Bendix
completion.

— Waldmeister C09a (via TPTP) [21] is a system for unit equational deduc-
tion. Its theoretical basis is unfailing completion in the sense of [5] with
refinements towards ordered completion (cf. [4]). The system saturates the
input axiomatization, distinguishing active facts, which induce a rewrite rela-
tion, and passive facts, which are the one-step conclusions of the active ones
up to redundancy. The saturation process is parameterized by a reduction
ordering and a heuristic assessment of passive facts [22].

— 4Prover 0.7 (via TPTP) [34] is an automated theorem prover based on an
instantiation calculus Inst-Gen [17,35] which is complete for first-order logic.
One of the distinctive features of iProver is a modular combination of first-
order reasoning with ground reasoning. In particular, iProver currently in-
tegrates MiniSat [15] for reasoning with ground abstractions of first-order
clauses. In addition to instantiation, iProver implements ordered resolution
calculus and a combination of instantiation and ordered resolution, see [35]
for the implementation details. The saturation process is implemented as a
modification of a given clause algorithm.

— E 1.1(via TPTP) [51,50] is a purely equational theorem prover. The core
proof procedure operates on formulas in clause normal form, using a cal-
culus that combines superposition (with selection of negative literals) and
rewriting. No special rules for non-equational literals have been implemented,
i.e., resolution is simulated via paramodulation and equality resolution. The
basic calculus is extended with rules for AC redundancy elimination, some
contextual simplification, and pseudo-splitting. The latest versions of E also
supports simultaneous paramodulation, either for all inferences or for se-
lected inferences.

— EP 1.1 (via TPTP) is just a combination of E 0.999 in verbose mode and a
proof analysis tool extracting the used inference steps.

— Vampire 11.0 (via TPTP) [49] is an automatic theorem prover for first-order
classical logic. It consists of a shell and a kernel. The kernel implements the
calculi of ordered binary resolution and superposition for handling equality.
The splitting rule in kernel adds propositional parts to clauses, which are
manipulated using binary decision diagrams (BDDs). A number of standard
redundancy criteria and simplification techniques are used for pruning the
search space: subsumption, tautology deletion, subsumption resolution and
rewriting by ordered unit equalities. The reduction ordering is the Knuth-
Bendix Ordering.

— Otter 3.3 (via TPTP) [39] is an ATP system for statements in first-order
(unsorted) logic with equality. Otter is based on resolution and paramodu-
lation applied to clauses. An Otter search uses the “given clause algorithm”,
and typically involves a large database of clauses; subsumption and demod-
ulation play an important role.

— SPASS 3.5f (via TPTP) and SPASS 3.01 (via TPTP) [59] is an automated
theorem prover for full first-order logic with equality and a number of non-
classical logics. It is a saturation based prover employing superposition, sorts
and splitting [58]

— Prover9 0908 (via TPTP) For a description see above. The only difference
is that this one uses SystemOnTPTP.

3.2 System Architecture

The object model on which the ATPPORTAL implementation is based is mainly
motivated by the underlying entity-relationship model. The focus of our work
lies in storage, intuitive access and processing of theories, axiomatisations and
proofs. Therefore, it is exactly this domain knowledge (c.f. layered architecture
model in Section 3.2) that motivates the database design and, thus, the object
model. We first describe the database model.

E/R Model. The E/R-diagram of the underlying database is shown in Figure 3.
According to the main purpose of the ATPPORTAL, the entire design is grouped
around three basic concepts:

1. Algebras
2. Formulas
3. Proofs

Algebras are defined in terms of axioms, which in turn are just a special kind of
formulas. A proof consists of a sequence of theorems, which are (non-axiomatic)
formulas or goals (however, goals are not explicitly labelled as such for one goal
of a proof can be a lemma in another). The three basic types of entities are
stored in tables algebra, formula, and proof. algebra consists of an id, a
name (e.g. “HA-HCR”), and a comment (“Heyting Algebra; derived from a Horn
clause representation (Prolog)”). It is connected to the table formula via an
m X n-relation algebra formula which defines the set of formulas that belong
to an algebra by relating their corresponding ids. In addition to this, it contains
a boolean flag that is used to mark formulas as an axiom.

The table formula provides an id, a name, a comment, and of course the
formula itself (formula_text). Additional information (currently references to
publications only) are stored in a separate table formula reference (these are
optional; but for compatibility reasons it is desireable to be able to import all
the information stored in the TPTP system).

A proof does not have names; they only have a running id and a timestamp
which originates from the date when the proof was triggered. Since a proof

g
g

=
o

b7l
o
S

-

ceta |_value
atp_oplion

¢ ceral name

proaf

]

fimEstamp

+ atp_id

% 00UCh name
oodcn_va ue

5 d

rame
ELp_wersion

E name
arp_l

a2
=

praves
h_farmulas

JP——
‘ornula_ic

frrmnala_id

J

preof formula ased

¢ Torrnula_id

‘—4

queue|db

aroni_formula|
son_d
arecf_ic
Jueugjot I3
¥

o at_teer

formula

algebra_fareula
T agebra d
T fornula_id
asicm

n

formula_reference
A
Pre——

g passsord

2gin_name

L ia @

algrhra
1ame
ommen:

Fig. 3. The ATPPORTAL database structure

consist of a sequence of formulas, the output of an ATP is parsed line by line
where each line is assumed to represent one single step. The results are stored
in the tabe proof_step. The ATP’s output undergoes a rudimentary parsing
procedure that results in the formula occuring/used in this step and the kind of
reasoning rule that has been applied. By referring to the line counter, proofs
can be reconstructed from the database. Each proof has attached possibly several
proof_details.

The set of formulas one provides when triggering a proof is stored in the
prof _formula proves. However, not all the formulas provided are actually used
within a proof. Therefore, in addition to proof_step and proof _formula proves,
the table proof_formula_used holds information about which formula actually
occurs in a proof.

The rest of the database contents mainly concerns administrative tasks:

— The above mentioned problems with varied use of operator names is solved
using a “lexicon” of operator names and their proper usage. Internally, the
formulas only use standardised, automatically generated functor symbols
which, via the tables operator and operator_syntax_format, are translated
(back) into the desired notation (these tables are not shown in the E/R-
diagram in Figure).

— The interfacing to the ATPs is also managed by the database. The tables
atp and atp_option. The latter contains information about syntactical pec-
ularities, binary names, execution paths (or remote servers), command-line
parameters and/or configuration files for the different ATPs.

— Whenever ATPPORTAL is used as a frontend to perform proofs, a queuejob
is started. The user submits a query which by ATPPORTAL is translated and
forwarded to the according thorem prover. The proof requests are listed in
a queue which allows to sequentially process a set of requests from possibly
many users. Proofs that take longer remain in the queue until finished or
cancelled; i.e. the result can be retrieved later in a separate session. Also, a
parameter specifying the maximum number of parallel child processes helps
to avoid server unresponsiveness due to server overload.

— The account-table finally contains all the information required for user ad-
ministration.

Object Model. The object model of the system implementation reflects the
domain model, and, hence, the database structure (see Figure 4):

Every table representing basic concepts (such as algebras, formulas, proofs,
etc) corresponds to an entity—class. The relations between such objects (realised
as tables in the database) are implemented as queries in repository classes. The
advantage is that loading of objects from memory is always explicitely realised
by repository classes. This helps to avoid obfuscated loading by way of getter-
methods in entity objects.

All repository classes are implemented as abstract as possible; every repos-
itory class resides in a package of its own (see the upmost row or level in the
UML diagram in Figure).

The advantages are the clear distinction between domain logic and infras-
tructure (here, e.g., SQL code) and the possibility of using alternative storage
solutions (e.g. a flat XML-file storage rather than a postgres database). Ev-
ery single repository offers a getlnstance method, to create/retrieve an instance
from the repository. This instance is stored (as a Singleton-Pattern), where the
instance is generated by an initial call of the RepositoryFactory.

This RepositoryFactory is an abstract Singleton. The front end instantiates an
implementation of the RepositoryFactory and saves it by the setlnstance method
in the singleton. By reimplementaion of factories one can add further implemen-
tations of repositories.

The class Atp is used to store configuration data for ATPs. In addition to
this, we created a factory AtpFactory which upon initialisation also checks the

-]
£
H
H

Sowidg

Aionsodayeiqably.

3
8
A H s
1 3
B £
»
2 k3
H L
c § = H
E o g
5B @ 5822
H

omesueL

ig

g

g8] >

£ 1 |g¥5ses H
Eé’ H g §
$323%% g ke H 2i
So5828 g B i 2
£SeREIzE 4 >
L H

Fig. 4. UML Class diagram

validity of paramaters passed over to the theorem prover. Similarly, AuthService
provides methods for user authentication.

The class WorkManager offers an API that allows to change a domain model
even during transactions and wich at the same time hides error handling from
the user.

WorkManager.run(new Runnable() {
public void run() {
// Code in here is execute inside of a Transaction

} }

The programmer is still able to manually perform a commit() or rollback()
by way of getCurrentTransaction().

Postgres Repositories Similarly, there exists a repository for database in-
teraction. Every repository contains a set of standard methods (save, update,
delete und get) corresponding to the functionality of database commands INSERT,
UPDATE, DELETE and SELECT. There exists a number of additional methods
for ATPPORTAL-specific queries to the proof-data repository; for example, the
method getFormulasForProof returns all formulas of a proof. The implemen-
tation of these methods reside in their own Java-Package so as to force a strict
distinction between data model and SQL-query code. The ConnectionFactory
manages connections which can be requested by reqositories via open (reopsito-
ries also have to properly close connections).

Connection con = null;
try {
con = factory.open(); // use the connection

/] ..

} finally {
if (con != null) factory.close(con);

}

Connection pooling speeds up database access.

4 Current Applications

Though the design and the implementation of ATPPORTAL is most flexible
and allows any application based on (first-order) ATP systems, the momentarily
main focus lies on algebraic and formal methods with applications in computer
science.

This is due to the following reasons:

— Simple, first-order algebraic structures, like Boolean algebras, Heyting al-
gebras, relation algebra or Kleene algebras are particular suitable for ATP
systems. This has been shown in several case studies [27,28].

— These structures and variants of them have been emerged as fundamental
structures in computing. They have been used in various applications ranging
from concurrency control [11,23,24] over program analysis and semantics, like
Hoare logic [36,42] and the wp-calculus of Dijkstra [43] to hybrid systems. [25]

For the purpose of the paper we present two examples: The first present
an algebra for feature-oriented software development, the second implements
Heyting algebra and derives properties. Heyting algebras are special partially
ordered sets that play a crucial role for intuitionistic logic pointless topology.

Feature Algebra. Feature-Oriented Software Development (FOSD) is a para-
digm that provides formalisms, methods, languages, and tools for building vari-
able, customizable, and extensible software. A feature reflects a stakeholder’s
requirement and is typically an increment in functionality; features are used to
distinguish between different variants of a program or software system [33].

Research along different lines has been undertaken to realize the vision of
FOSD [33,48,7,12,31,2]. While there are the common notions of a feature and fea-
ture composition, present approaches use different techniques, representations,
and formalisms. Feature algebra [3,26] is such a framework for FOSD. The alge-
bra itself abstracts from details of different programming languages and environ-
ments; alternative design decisions in the algebra reflect variants and alternatives
in concrete programming language mechanisms. It is based on simple first-order
logic and is therefore predestinated to be integrated into ATPPORTAL.

Heyting Algebra. Boolean algebras (as used for algebraic models of classical,
two—valued propositional or first-order logic) are a special case of the more gen-
eral concept of Heyting algebras (HA). In short, the law of the excluded middle
does not generally hold in Heyting algebras which weakens complementation
to relative pseudo-complementation. This is a desirable property for algebraic
models of intuitionistic logic (IL). The study of IL focuses on the notion of deriv-
ability rather than provability in the sense that while in full logic it either holds
that ¢ or —¢, in IL we assume that ¢ is true if - ¢ and —¢ otherwise. This is
closely related to negation as failure as it is utilised in Prolog [18].

Our interest in IL is motivated by reasoning with rough logic, [14,45,46]In
the course of theory refinement in machine learning one seeks to find a set H
of formulas (“hypothesis”) which together with a given theory @ (“background
knowledge”) entails a set of positive examples (positive literals) and which does
not entail a set of negative examples (negative literals). Then, the most general
hypothesis is the relative pseudocomplement of negative examples with respect
to @ while the most specific hypothesis is the relative pseudocomplent of the
negated positive examples, [44] The fact that neither ¢ - ¢ nor @ I/ —¢ finally
expresses that we cannot give a definite answer concerning the validity of ¢ by
way of . What then in rough set theoy corresponds to an element in a boundary
region is in rough logic a formula that requires a third truth value (which is why
the semantics of rough logic is defined in Lukasciewicz algebras).

5 Conclusion and Outlook

ATPPORTAL is a long term project for maintaining different ATP systems. Its
main focus is on a user-friendly interface for arbitrary first-order systems. The
design is made such flexible that the integration of new ATP systems as well as
new input or output language is easy.

As future work we plan to extend the project in different directions:

— Prolog is not just a programming language but a theorem prover itself. In a
first step, we shall integrate Prolog into ATPPORTAL. Second, Prolog is an

ideal programming environment to implement theorem provers by adapting
and controlling Prolog’s internal stack-based resolution machine.

Next to the integration of new theorem provers, there are also engines for
counterexample search (e.g., Mace4). To complement the ATP systems in-
tegrated in ATPPORTAL, these systems should be integrated to. Due to the
modularity of our systems this should be an easy task.

A much more complicated task is the integration of higher-order theorem
provers. To make them usable for “non-experts”, they have to be set up in a
fully automated mode. Moreover a new user-intuitive input language should
be developed

A huge collection of proofs of different theorems in different algebras using
different theorem provers allows us to compare instances of each of the three
sets: If two theorems share a common scheme of proof in all provers and/or
algebras, it appears they share a common property. If a certain axiom or
theorem occurs several times for different proofs, then this formula can be
considered an important axiom. If a certain set of problems can be solved
efficiently with the same provers (and fail on another set of provers) then
the problems obviously require a re-formulation for different proof methods.
And finally, every theorem prover can be configured and fine-tuned by a
multitude of different parameters.

The idea behind applying a proof analysis is to identify similarities behind
theories/theorems, proof patterns and to induce heuristics that an be used
to adapt provers to problems using according parameters. So far there are
only a few systems like SRASS that try to select the “important” axioms.
Verification and testing Verification of software, protocols, hardware and
process specification (workflow) are of increasing importance. One method
is “exhaustive testing”, also known as model checking. In the context of
abstract process specification (may it be software processes or enterprise
processes including software, hardware and human staff), an algebraic or
logic specification is rather uncommon for two reasons: they are hard to
understand (and maintain) and they need to be verified using suitabe proof
methods (which, in the business world, are rather uncommon as well). There-
fore many such specifications are given in prose, by use of some graphical
specification language which lack a proper semantics, or by abstract machine
semantics (that is, a rather procedureal semantics rather than a declara-
tive one). Standardisation committees (DIN, IEC, ISO) prefer the latter
approaches: there are dozens of modeling languages for dozens of different
specific purposes. Since a clear semantics is missing but required by a proper
verification, the committees also favour procedural semantic approaches. Fi-
nally, there is one simple reason why automated verification is a hard busi-
ness: There are many theorem provers around—and for nearly all problems
there is a suitable one. The problem is that it is hard to tell which prover
is the right one for a certain problem. The ATPPORTAL provides a very
simple testbed by which one could give it a try and endeavour a verification
by parallel execution of many provers—hoping that atleast one will return
an answer soon enough (c.f. [8]).

Acknowledgements: We are grateful to Han-Hing Dang and Sarah Edenhofer,
Roland Gliick and Markus Teufelhart for implementing parts of ATPPORTAL
and to Bernhard Moller for many fruitful remarks. We would also like to thank
Geoff Sutcliffe for his permanent support over the last years concerning TPTP.

References

1.

2.

10.

11.

12.

13.

14.

15.

M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and
logic programs. Journal of the ACM, 2004.

S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IFEE Transactions
on Software Engineering, 34(2):162-180, 2008.

S. Apel, C. Lengauer, B. Moller, and C. Késtner. An algebraic foundation for
automatic feature-based program synthesis and architectural metaprogramming.
Science of Computer Programming, 2009. (to appear).

J. Avenhaus, T. Hillenbrand, and B. Lochner. On using ground joinable equations
in equational theorem proving. Journal of Symbolic Computation, 36(1-2):217-233,
2003.

L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In
H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
pages 1-30. Academic Press, 1989.

R.-J. Back. A method for refining atomicity in parallel algorithms. In E. Odijk,
M. Rem, and J.-C. Syr, editors, Parallel Architectures and Languages Europe, vol-
ume 366 of Lecture Notes in Computer Science, pages 199-216. Springer, 1989.
D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. In
ICSE °03: Proceedings of the 25th International Conference on Software Engineer-
ing, pages 187-197. Proceedings of the IEEE, 2003.

E. Borger and B. Thalheim. Modeling workflows, interaction patterns, web ser-
vices and business processes: The asm-based approach. In Proceedings of the 1st
international conference on Abstract State Machines, B and Z, number 5238 in
Lecture Notes in Computer Science, pages 24-38. Springer, 2008.

J. Bos. Applied Theorem Proving - Natural Language Testsuite.
http://www.coli.uni-sb.de/ bos/atp/, 2000.

J. Brittain and I. Darwin. Tomcat: The definitive guide, 2nd edition. O’Reilly,
2007.

E. Cohen. Using Kleene algebra to reason about concurrency control. Technical
report, Telcordia, 1994.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

M. Das. Formal specifications on industrial-strength code - from myth to reality.
In T. Ball and R. Jones, editors, Computer Aided Verification, number 4144 in
Lecture Notes in Computer Science, page 1. Springer, 2006.

I. Diintsch. A logic for rough sets. Theoretical Computer Science, 179(1-2):427-436,
1997.

N. Eén and N. Sorensson. An extensible SAT-solver. In E. Giunchiglia and A. Tac-
chella, editors, Conference on Theory and Applications of Satisfiability Testing,
number 2919 in Lecture Notes in Computer Science, pages 502-518. Springer, 2004.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2003.

H. Ganzinger and K. Korovin. New directions in instantiation-based theorem
proving. In P. Kolaitis, editor, IEEE Symposium on Logic in Computer Science,
pages 55-64, 2003.

A. Gomolko. Negation as inconsistency in prolog via intuitionistic logic. In
E. Borger, Y. Gurevich, and K. Meinke, editors, 7th Workshop on Computer Sci-
ence Logic, volume 832 of Lecture Notes in Computer Science, pages 128 — 138.
Springer, 1993.

A. Goncalves. Beginning Java EE 6 Platform with GlassFish 3: From Novice to
Professional. Apress, 2009.

V. Goyal. Using the Jakarta Commons, Part 1. O'Reilly, 2003.

T. Hillenbrand. Citius altius fortius: Lessons learned from the theorem prover
waldmeister. In I. Dahn and L. Vigneron, editors, Proceedings of the 4th Inter-
national Workshop on First-Order Theorem Proving, number 86.1 in Electronic
Notes in Theoretical Computer Science, 2003.

T. Hillenbrand, A. Jaeger, and B. Lochner. Waldmeister - improvements in per-
formance and ease of use. In H. Ganzinger, editor, Proceedings of the 16th Inter-
national Conference on Automated Deduction, number 1632 in Lecture Notes in
Artificial Intelligence, pages 232-236. Springer, 1999.

C. A. R. Hoare, B. Méller, G. Struth, and I. Wehrman. Concurrent Kleene algebra.
In M. Bravetti and G. Zavattaro, editors, CONCUR 09 — Concurrency Theory,
volume 5710 of Lecture Notes in Computer Science, pages 399-414. Springer, 2009.
C. A. R. Hoare, B. Moéller, G. Struth, and I. Wehrman. Foundations of concurrent
Kleene algebra. In R. Berghammer, A. Jaoua, and B. Mdller, editors, Relations and
Kleene Algebra in Computer Science, volume 5827 of Lecture Notes in Computer
Science. Springer, 2009.

P. Hofner. Algebraic Calculi for Hybrid Systems. Books on Demand GmbH, 2009.
P. Hofner and B. Moller. An algebra of hybrid systems. Journal of Logic and
Algebraic Programming, 78:74-97, 2009.

P. Héfner and G. Struth. Automated reasoning in Kleene algebra. In F. Pfen-
nig, editor, Automated Deduction — CADE-21, volume 4603 of Lecture Notes in
Artificial Intelligence, pages 279-294. Springer, 2007.

P. Hofner and G. Struth. On automating the calculus of relations. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Automated Reasoning (IJCAR 2008),
volume 5159 of Lecture Notes in Computer Science, pages 50-66. Springer, 2008.

P. Hofner, G. Struth, and G. Sutcliffe. Automated verification of refinement laws.
Annals of Mathematics and Artificial Intelligence, Special Issue on First-order The-
orem Proving, pages 35-62, 2008.

A. Hommersom, P. Lucas, and P. van Bommel. Automated Theorem Proving
for Quality-checking Medical Guidelines. In G. Sutcliffe, B. Fischer, and S. Schulz,
editors, Workshop on Empirically Successful Classical Automated Reasoning, 2005.
D. Hutchins. Eliminating distinctions of class: Using prototypes to model virtual
classes. In P. L. Tarr and W. R. Cook, editors, Proceedings of the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2006, pages 1-20. ACM Press, 2006.

jQuery. http://docs. jquery.com/Release: jQuery_1.3.2.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Carnegie-Mellon University Software Engineering Institute, 1990.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

K. Korovin. Implementing an instantiation-based theorem prover for first-order
logic. In C. Benzmiiller, B. Fischer, and G. Sutcliffe, editors, Workshop on the
Implementation of Logics, number 212 in CEUR Workshop Proceedings, pages
63-63, 2006.

K. Korovin. iProver - an instantiation-based theorem prover for first-order logic
(system description). In P. Baumgartner, A. Armando, and D. Gilles, editors, 4th
International Joint Conference on Automated Reasoning, Lecture Notes in Artifi-
cial Intelligence. Springer, 2008.

D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60-76, 2000.

W. Lam. Hardware Design Verification: Simulation and Formal Method-Based
Approaches. Prentice Hall, 2005.

W. McCune. Solution of the robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997.

W. McCune. Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263,
Argonne National Laboratory, Argonne, USA, 2003.

W. W. McCune. Prover9 and Mace4.
<http://www.cs.unm.edu/~mccune/prover9>. (accessed October 31, 2010).

J. Mitchell. Security analysis of network protocols: Logical and computational
methods. In P. Barahona and A. Felty, editors, Principles and Practice of Declar-
ative Programming, ACM SIGPLAN Notices, pages 151-152, 2005.

B. Moller and G. Struth. Algebras of modal operators and partial correctness.
Theoretical Computer Science, 351(2):221-239, 2006.

B. Moller and G. Struth. WP is WLP. In W. MacCaull, M. Winter, and I. Diintsch,
editors, Relational Methods in Computer Science, volume 3929 of Lecture Notes in
Computer Science, pages 200-211. Springer, 2006.

M. E. Miiller. Modalities, relations, and learning. In R. Berghammer, B. Moller,
and A. Jaoua, editors, Relations and Kleene Algebra in Computer Science, volume
5827 of Lecture Notes in Computer Science, pages 260-275. Springer, 2009.

A. Nakamura. A rough logic based on incomplete information and its application
a rough logic based on incomplete information and its application. International
Journal of Approximate Reasoning, 15:367-378, 1996.

E. Orlowska. Reasoning with incomplete information: Rough set based informa-
tion logics. In Proceedings of the SOFTEKS Workshop on Incompleteness and
Uncertainty in Information Systems, pages 16-33, 1993.

The PostgreSQL Global Development Group,
http://www.postgresql.org/files/documentation/pdf/8.4/postgresql-8.4.5-A4.pdf.
PostgreSQL 8.4.5 Documentation, 2009.

C. Prehofer. Feature-oriented programming: A fresh look at objects. In Furopean
Conference on Object-Oriented Programming, volume 1241 of Lecture Notes in
Computer Science, pages 419-443. Springer, 1997.

A. Riazanov and A. Voronkov. The design and implementation of vampire. Al
Communications, 15(2-3):91-110, 2002.

S. Schulz. A comparison of different techniques for grounding near-propositional
cnf formulae. In S. Haller and G. Simmons, editors, 15th International FLAIRS
Conference, pages 72-76. AAAI Press, 2002.

S. Schulz. E: A brainiac theorem prover. AI Communications, 15(2-3):111-126,
2002.

J. Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive search:
Quasigroup existence problems. Computers and Mathematics with Applications,
29(2):115-132, 1995.

53

54.

55.

56.

57.

58.

59.

60.

G. Sutcliffe. System description: SystemOnTPTP. In D. McAllester, editor, Au-
tomated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages
406-410. Springer, 2000.

G. Sutcliffe. Proceedings of the CADE-16 ATP System Competition, 2008.

G. Sutcliffe. Proceedings of the CADE-17 ATP System Competition, 2009.

G. Sutcliffe. The TPTP World — Infrastructure for automated reasoning. In
Logic for Programming and Automated Reasoning, Lecture Notes in Artificial In-
telligence. Springer, 2010. (to appear).

J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51(1-2):23-45, 2004.

C. Weidenbach. Combining superposition, sorts and splitting. Handbook of Auto-
mated Reasoning, pages 1965-2013, 2001.

C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski.
SPASS Version 3.5. In R. Schmidt, editor, Automated Deduction, volume 5663 of
Lecture Notes in Computer Science, pages 140—-145. Springer, 2009.

A. Wojcik. Formal Design Verification of Digital Systems. In 20th Design Automa-
tion Conference, 1983.

