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1 Data61, CSIRO, Australia
2 Computer Science and Engineering, University of New South Wales, Australia

3 Institut für Informatik, Universität Augsburg, Germany

Abstract. We present a new correctness proof for Prim’s algorithm. The
standard proof establishes the invariant that each iteration constructs a
subtree of some minimal spanning tree, and heavily relies on the existence
of a spanning tree of the overall graph, as well as an ‘edge exchange’
property, which includes reasoning about graph cycles. We establish a
stronger property showing that the algorithm builds a minimal spanning
tree in each step, w.r.t. the vertices already covered. As a consequence,
the proof neither uses the existence of a minimal spanning tree of the
entire graph, nor the classical exchange property.

1 Introduction

Prim’s algorithm is a greedy algorithm that calculates a minimal spanning tree
of a given weighted undirected graph. It is one of the most prominent algo-
rithms in computer science and usually part of the curriculum of undergraduate
students. The algorithm was developed by Jarńık [8], and later independently re-
discovered by Prim [9] and Dijkstra [4]. The correctness of this greedy algorithm
is usually proved by maintaining the invariant that each iteration constructs a
subgraph of some minimal spanning tree (e.g. [3]). To the best of our knowledge
all correctness proofs for Prim’s algorithm are built on two facts:

(a) the existence of a minimal spanning tree of the overall graph, and the invari-
ant stating that the constructed tree is a subtree of some minimal spanning
tree;

(b) an ‘edge exchange’ law, stating that an edge in a minimal spanning tree can
be replaced by an edge of the same weight if the result is again a spanning
tree. This includes reasoning about graph cycles.

Figure 1 illustrates the situation. Although the algorithm – described in detail
in Sect. 3 – has only constructed the subtree Ti of an overall spanning tree,
the reasoning involves the entire tree, as depicted. Moreover, the existing proofs
involve reasoning about cycles that involve the edges being exchanged – in the
figure one may replace the bold edge by the dotted one.

In this short paper we develop a different proof. It shows that the algorithm
in each step constructs a minimal spanning tree for the vertices already covered
– a property which seems to be natural and intuitive, but we are not aware of
such a proof in the literature. One reason for this may be that the property is not
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Fig. 1: ‘Classical’ reasoning within the correctness proof.

an invariant, but nevertheless suffices to prove correctness of Prim’s algorithm.
Our property and its proof have been developed to facilitate (semi-)automated
verification of Prim’s algorithm using an algebraic style of reasoning. In partic-
ular, we want to avoid reasoning about cycles and their transformations by edge
exchange, which tends to be quite cumbersome. Although our property follows
from the standard invariant, we did not want to use that path of reasoning: it
would have meant that we would have to prove the standard invariant first –
with exactly the difficulties we want to avoid. Rather we want a direct proof ‘in
one go’, as simple as possible.

2 Prerequisites and Notation

In this section we recapitulate the basic terminology and recall the basic defini-
tions needed for Prim’s algorithm and our correctness proof. For its formulation
we first define weighted undirected graphs.

Definition 2.1

1. An undirected graph is a pair G = (V,E) comprising a set V of vertices and a
set E of edges, which are 2-element subsets of V , i.e. self-loops are excluded.
In this paper we assume V (and hence E) to be finite. To ease readability,
we denote a single edge {u, v} ∈ P(V ) by uv or vu.

2. For a vertex v ∈ V of a graph G = (V,E) we define the degree of v as
degE(v) =df |{e ∈ E : v ∈ e}|.

3. An end vertex of G is a vertex of degree 1, and a thorn is an edge e ∈ E one
of whose two vertices is an end vertex.

4. To add weights to edges we assume a function w : E → W , where W forms
a cancellative, commutative monoid (S,+, 0) of weights. Cancellative means
x + z = y + z ⇒ x = y, for all x, y, z ∈ S. Classical examples for a such
monoids are N≥0 and R≥0 under standard addition + .

5. Addition induces a preorder ≤ on weights by setting x ≤ y ⇔df ∃ z :
x + z = y; we assume this preorder to be a linear order. In case x ≤ y for
some x, y ∈ W , we denote the unique z satisfying x + z = y by y − x. The
definition implies that + is cancellative also w.r.t. inequations, i.e.,

x + z ≤ y + z ⇒ x ≤ y . (1)
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6. A weighted undirected graph is a triple G = (V,E,w), where (V,E) is an
undirected graph and w : E → W is a weight function into some set of
weights. For a subset E′ ⊆ E we define the weight of E′ as w(E′) =df∑
e∈E′

w(e).

Based on this definition we now introduce further basic concepts for Prim’s
algorithm, such as subgraph, path and minimal spanning tree.

Definition 2.2 Assume a (weighted) graph G = (V,E,w).

1. A subgraph of G is a graph G′ = (V ′, E′,w′) with V ′ ⊆ V , E′ ⊆ E and
w′ = w|E′ . When G is understood, we denote G′ by (V ′, E′) and omit w′.
Occasionally we will restrict a graph to a subset of vertices. This means, for
a given set V ′ ⊆ V of vertices we define the restriction subgraph G|V ′ =df

(V ′, {e ∈ E | e ⊆ V ′}) and the subtraction subgraph G− V ′ =df G|V \V ′ .
2. A path in a graph G = (V,E) is a repetition-free sequence P = v0, . . . , vn of

vertices vi ∈ V such that ∀ i < n : vivi+1 ∈ E. If n > 0 then v0v1 is called
the starting edge of P . For an edge e ∈ E we write e ∈ P if there is an
i < n such that vivi+1 is a subsequence of P and e = vivi+1. As in formal
language theory, concatenation of paths is denoted by juxtaposition and a
singleton path is identified with its only vertex. Hence, e.g., xP means the
path starting with vertex x and continuing with the vertices of P .

3. A graph G = (V,E) is connected if there is a path between each pair of
vertices.

4. G is a tree if there is exactly one path between each pair of vertices.
5. As usual, a subtree T of G is a subgraph of G that is also a tree.
6. A spanning tree (ST) for G = (V,E) is a tree T = (V, F ) for some subset

F ⊆ E.
7. The weight of a graph G = (V,E,w) is w(G) =df w(E).
8. A minimal spanning tree (MST) for a weighted graph G = (V,E,w) is a

spanning tree T of G with minimal weight w(T ), i.e., for all spanning trees
T ′ of G, w(T ) ≤ w(T ′). For a subgraph (V ′, E′) of G we will frequently
abbreviate “MST for (V ′, E′)” to “MST for V ′” when E′ does not matter.

3 The Algorithm of Jarńık, Prim, and Dijkstra

As mentioned in the introduction Jarńık, Prim, and Dijkstra independently de-
veloped the same algorithm for constructing a minimal spanning tree [8,9,4].
The input of this greedy algorithm is a connected, weighted undirected graph
G = (V,E,w). Informally, the algorithm first picks an arbitrary vertex s ∈ V and
defines the subtree ({s}, ∅), which is a minimal spanning tree for G|{s}. Until an
MST for G is found, the algorithm chooses a weight-minimal edge among those
edges e ∈ E that connect the (already constructed) tree to vertices not yet in
the tree. If all vertices in V have been connected then a minimal spanning tree
has been constructed.
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More formally the algorithm can be described as follows:4

input: G = (V,E,w)
choose s ∈ V ;
W := {s};
F := ∅;
while |W | < |V | do

choose a minimum weight edge uv such that u ∈ W and v /∈ W ;
W := W ∪ {v};
F := F ∪ {uv};

od
return: (W,F )

To distinguish the constructed sets of vertices and edges, we denote the values of
the variables W and F at the start of the kth iteration by Wk and Fk, respectively
(0≤ k < |V |). The tree (Wk, Fk) is denoted by Tk. It is clear that all Tk are trees.

4 Auxiliary Properties

Before proving the correctness of Prim’s algorithm we show two simple properties
about MSTs, which we will use later on. These properties are well known in graph
theory (e.g. [2]) and only included for completeness.

Lemma 4.1 For a graph G = (V,E) let T = (W,F ) be an MST for G|W with
some W ⊆ V and v an end vertex of T . Then T ′ =df T − {v} is an MST for
W ′ =df W\{v}.

Proof. Let e be the unique thorn of T that contains v. Consider an ST S′ =
(W ′, F ′) for W ′ and set S = (W,F ′ ∪ {e}). Since, by construction, v 6∈ W ′ and
F ′ is a tree, so is S, which means that S is an ST for W . Since T is an MST,
we know

w(T ′) + w(e) = w(T ) ≤ w(S) = w(S′) + w(e) ,

and cancellativity shows w(T ′) ≤ w(S′). ut
Note that minimality of the weight of the removed thorn e is not needed.

Corollary 4.2 If T = (W,F ) is an MST for W and T ′ = (W ′, F ′) is a subtree
of T then T ′ is an MST for W ′.

Proof. T ′ results from T by successive removal of thorns. Hence the claim follows
by repeated application of Lm. 4.1. ut

5 Correctness of the Minimum Spanning Tree Algorithm

We show the following property of Prim’s algorithm on a starting graph G:

Theorem 5.1 Tk is an MST for G|Wk
, where Tk and Wk are the sets of vertices

and edges constructed in the kth iteration of the algorithm.

4 It is not the aim of this paper to present an efficient implementation; of course one
would introduce a counter for |W |, etc.
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Fig. 2: Illustration of Lemma 5.3

Corollary 5.2 T|V |−1 is an MST for V .

The proof of Thm. 5.1 is by induction on k. For the induction step we need
the following lemma which looks at paths constructed by Prim’s algorithm. To
give an informal explanation, consider the path P from w to u in Fig. 2. The
following lemma says if there is at least one outgoing edge on both sides of the
path, here wx and uv, then the weight of the heavier of these edges is larger or
equal to all weights in the path. This property is not obvious as (a) it compares
weights to entire paths (something the algorithm does not consider), and (b) it
does not hold for paths with only one outgoing edge. A more detailed discussion
can be found in Sect. 6.

To formulate the lemma we denote for a tree T = (V,E), with u, v ∈ V , the
unique path from u to v within T by PT (u, v). Note that for u 6= v we have
PT (u, v) 6= PT (v, u): in fact PT (v, u) is the reverse of PT (u, v). Still, for all e ∈ E
we have e ∈ PT (v, u) iff e ∈ PT (u, v). To save indices we write P ′(u, v) and
Pk(u, v) instead of PT ′(u, v) and PTk

(u, v), etc.

Lemma 5.3 Let Tk = (Wk, Fk) be a tree constructed by Prim’s algorithm.
Let uv and wx be two different edges leading out of Tk, i.e. u,w ∈ Wk and
v, x 6∈Wk and either u 6= w or v 6= x. We further assume w(wx) ≤ w(uv). Then
w(e) ≤ w(uv) for all edges e ∈ Pk(w, u).

Proof. We use induction on Tk.
Base: The case k = 0 is trivial, since T0 = ({s}, ∅) is a tree containing only one
path P0(s, s) without any edges.
Step: Suppose that Prim has constructed Tk+1 by adding the edge h to Tk.
Let the edges uv and wx be as in the claim for k+1. Moreover, let Pk+1(w, u)
be the unique path in Tk+1 from w to u and let f , g be the first and last
edges of Pk+1(w, u). Then there are vertices w′, u′ with f = ww′, g = u′u and
Pk+1(w, u) = wPk(w′, u′)u. Note that f and g coincide when Pk+1(w, u) has
only one edge.

We distinguish three cases.

1. Neither f nor g coincides with the edge h added by Prim’s algorithm. Then
the claim holds immediately by the induction hypothesis as Pk+1(w, u) =
Pk(w, u) and v, x 6∈Wk+1 implies v, x 6∈Wk.
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2. f = h. This means w(f) ≤ w(uv). By the induction hypothesis we have
w(e) ≤ w(uv) for all edges e ∈ Pk(w′, u) and therefore

w(e) ≤ w(uv) for all edges e ∈ wPk(w′, u) = Pk+1(w, u) . (2)

If w(wx) ≤ w(uv) the lemma’s claim is identical to (2); if w(uv) ≤ w(wx)
that claim trivially follows from (2) and transitivity of ≤.

3. g = h. The reasoning is completely symmetric to that in the previous case.
ut

We are now ready to prove the main property of the algorithm.

Proof (Thm. 5.1). We use induction on Tk.
Base: The induction base k = 0 is trivial, since T0 = ({s}, ∅) is a tree containing
only one vertex (and no edges).
Step: For k > 0 we distinguish three cases. By the induction hypothesis, Tk is
an MST for Wk. Consider an arbitrary MST T ′ = (Wk+1, F

′) and the new edge
uv chosen by Prim’s algorithm. To show w(Tk+1) ≤ w(T ′) we distinguish three
cases.

1. uv ∈ F ′ is a thorn of T ′.
By Lm. 4.1 T ′−{v} is an MST of Wk and hence w(T ′−{v}) = w(Tk). This
implies

w(Tk+1) = w(Tk) + w(uv) = w(T ′ − {v}) + w(uv) = w(T ′) ,

and hence Tk+1, too, is an MST for Wk+1.
2. uv ∈ F ′, and degF ′(v) = n > 1.

This means that there is a vertex w with u 6= w, u,w ∈ Wk, v 6∈Wk, and
uv,wv ∈ F ′. By the choice of uv in Prim’s algorithm w(uv) ≤ w(wv).
Since Tk is an ST for Wk, it has the path P =df Pk(u,w), which by con-
struction does not contain wv. In P there must be at least one edge e that
is not in T ′; otherwise T ′ would contain P and all its subpaths and thus,
for every edge xy of P , have the two different paths vPk(u, x) and vPk(w, x)
from v to x, contradicting treeness of T ′.
Now pick an edge e in P but not in T ′. Since w(uv) ≤ w(wv), we have,
by Lemma 5.3 w(e) ≤ w(wv). Then T ′′ =df (Wk+1, F

′′) with F ′′ =df

(F ′\{wv}) ∪ {pq} is an ST of G|Wk+1
with w(T ′′) ≤ w(T ′). Hence w(T ′′) =

w(T ′) and T ′′ is also an MST. Moreover, degF ′′(v) = n− 1.
Iterative application of this removal technique eventually leads to an MST
T̂ = (Wk+1, F̂ ) with degF̂ (v) = 1.

Since T̂ satisfies Case 1, we obtain w(Tk+1) ≤ w(T̂ )(= w(T ′)).
3. uv /∈ F ′. Since T ′ is an MST for Wk+1, there must be a vertex w with an

edge wv ∈ F ′ such that T ′′ = (Wk+1, (F
′\{wv})∪ {uv}) is an ST for Wk+1.

By construction, wv is an edge leading out of Wk and hence, by the choice
in Prim’s algorithm, w(uv) ≤ w(wv). Therefore, T ′′ is an MST for Wk+1.
Using T ′′ instead of T ′ we are back to Cases 1 or 2. ut

This concludes the proof of Thm. 5.1.
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6 Discussion

Although the Proof of Thm. 5.1 seems to be long, it is a simple case distinction,
with Lm. 5.3 at its heart. In this section we have a closer look at the shape of
this lemma as well as a crucial assumption for it.

1 5 1
s u v

(a) Lemma 5.3 fails

5

21

s u

v

(b) No invariant

Fig. 3: Illustrations concerning Lemma 5.3

First, it is crucial that the paths Pk(u,w) under consideration by Lm. 5.3
have two outgoing edges. If there is only one, an analogous property does not
hold as shown by the graph in Fig. 3(a). The path P2(s, u) is built in the second
step of Prim’s algorithm, when s is chosen as starting point. However, the weight
of uv does not dominate P2(s, u).

The second interesting point is the proof method used for Lm. 5.3. It was
quite non-trivial to realise that an induction over the construction of Prim graphs
yields a simple proof. In fact, we first developed a proof by contradiction, which
was far more intricate and lengthy. We even believe that our inductive proof is
simpler than any proof found in the literature.

Last, it is important to know that the property proven by Thm. 5.1 is stronger
than the classical invariant in the sense that it establishes that in every step of
the algorithm a minimal spanning tree is created. However, in itself it is not an
invariant in the classical sense, but an always-true property [10]. To illustrate
this fact consider the graph in Fig. 3(b). The edge sv is an MST with regard
to the set of vertices {s, v}. Applying one iteration of Prim’s algorithm to this
MST adds the edge sv. The graph ({s, u, v}, {su, sv}) is obviously not an MST
to for the entire graph. The problem with an invariant approach is that it must
cope with the extension of arbitary graphs, whereas the MST consisting of su
would have never been constructed by Prim’s algorithm. However, Thm. 5.1
can easily be turned into an invariant by adding a reachability premise, more
precisely the requirement that the spanning tree must have been created by
Prim’s algorithm.5 A different problem of always-true properties is that they are
not preserved under parallel composition in a concurrent setting; this, however,
is not a issue for Prim’s algorithm.

5 Such a transformation works for all always-true properties.
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7 Conclusion and Outlook

In this paper we have presented a new correctness proof for Prim’s algorithm.
For a given graph T = (G,E,w) it determines a minimal spanning tree. The
proof is different from the existing ones in that it does not speak about some
MST for the overall graph T , but only about the subtrees T |Wk

that arise in the
course of the algorithm’s iteration.

Another difference to existing proofs is that we directly show an up to now
implicit property (see Thm. 5.1), namely that all subtrees Tk are MSTs for their
vertex sets. Although this may seem intuitively clear, we have pinned down that
assertion by strict mathematical argument.

We hope that this property provides additional insight why the algorithm
does what it is supposed to do. We further hope that similar arguments can be
found for other greedy algorithms.

At first glance our proof may seem longer than proofs found in the literature.
This is not because our proof is more complicated; the reason is that we wanted
to present all details; e.g. Sect. 4 follows from standard graph theory and could
be classified as ‘folklore’. All proofs we found in the literature (e.g. [3]) would
become equally long when all details were added.

Our proof follows ‘classical’ verification techniques for while-programs in that
the correctness of the algorithm immediately follows from the main property
in combination with the termination condition |W | ≥ |V | of the while loop
(Cor. 5.2).

One aim with deriving this new proof was to pave the way for easier (semi-)
automated verification, notably using purely algebraic techniques (e.g. [1,5,6,7]).
The particular advantages of algebraic proofs are that they allow purely (in)equa-
tional reasoning (which is less error-prone than using full first or second order
logic) and are easy to automate. Since our treatment avoids mentioning cycles,
no cumbersome algebraic formalisation and analysis of these is necessary. The
details will be the topic of a subsequent paper.

Acknowledgment We are grateful to Roland Glück and Rob van Glabbeek for
helpful remarks and suggestions.
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