
Can Refinement be Automated?

Peter Höfner1 Georg Struth2

Department of Computer Science, University of Sheffield, UK

Abstract

We automatically verify Back’s atomicity refinement law and a classical data refinement law for action
systems. Our novel approach mechanises a refinement calculus based on Kleene algebras in an off the shelf
resolution and paramodulation theorem prover and a counterexample checker with heuristics for hypothesis
learning. The proofs are supported by a toolkit of meaningful refinement laws that has also been verified
and that, for the first time, allows the automated refinement of programs and software systems, and the
verification of further complex refinement laws. This suggests that a substantial proportion of refinement
could indeed be automated.

Keywords: refinement calculus; Kleene algebras; automated deduction; action systems; proof learning.

1 Introduction

The idea of stepwise refining specifications to programs is certainly intriguing: Pro-

vide software developers with a calculus of meaningful refinement laws and they

will deliver code that is highly dependable, conveniently modular and strongly op-

timised. Since the pioneering work of Dijkstra, Hoare and Back, refinement has

matured into an established research area and been integrated into popular for-

mal software development methods such as VDM, Z or B. However, the scientific

success of refinement seems in contrast with its acceptance in industrial practice.

Obvious reasons are that refinement calculi are complex formalisms that require

considerable mathematical knowledge and that their integration into formal meth-

ods is usually achieved through interactive theorem provers that can be tedious to

handle. A much wider acceptance of refinement could certainly be achieved through

automation. But is that possible?

The development of refinement calculi over the decades can be characterised

as an algebraic turn that lead to a considerable simplifications and abstractions.

An important step was Back and von Wright’s quantale-based approach that ab-

stractly characterises the two fundamental models of refinement: binary relations

1 Email: p.hoefner@dcs.shef.ac.uk
2 Email: g.struth@dcs.shef.ac.uk

mailto:p.hoefner@dcs.shef.ac.uk
mailto:g.struth@dcs.shef.ac.uk

Höfner and Struth

and predicate transformers [4]. This approach is, however, essentially higher-order;

a serious obstacle against automation. More recently, in two seminal papers [21,22],

von Wright reconstructed a substantial part of the refinement calculus in a variant

of Kleene algebra. These demonic refinement algebras are entirely within first-order

equational logic which, in principle, for the first time opens the way to automated

deduction. But this intriguing potential has so far not been explored.

From a more practical point of view, however, automated deduction within

formal methods remains a challenge. Over the last decades, driven by the belief that

theorem provers cannot handle complex algebraic axiom systems, considerable effort

has been put into the development of special purpose calculi, but with rather limited

practical impact (cf. [16]). Yet modern technology has changed this situation: the

authors have recently demonstrated that off the shell first-order theorem provers can

successfully verify statements of considerable complexity and practical relevance if

combined with a suitable algebra [10], e.g., Kleene algebra. This suggests that

reasoning with demonic refinement algebras and therefore a substantial part of

refinement can be automated as well.

This paper provides some evidence that this is indeed the case. We use McCune’s

Prover9 in combination with the counterexample search tool Mace4 [12] in a rather

näıve approach, i.e, without much tuning. Our main results are as follows.

• We develop a toolkit of meaningful refinement laws based on demonic refinement

algebras. It contains laws, e.g., for deconstructing and reconstructing concur-

rency, for simulation and for loop refinement.

• We use this toolkit for automatically verifying two complex laws for data refine-

ment and atomicity refinement of action systems.

• We propose novel heuristics for hypothesis learning that seem indispensable for

succeeding with more complex analysis tasks.

The outcome of our proof experiments is largely positive. Many basic refinement

laws can be proved in a straightforward way from the demonic refinement axioms in

a few seconds. In one particular example, our learning approach leads to a simpler

proof than the one from the literature; in another example it yields a more general

theorem. Only for proving the atomicity refinement theorem, two separate steps

were needed. But even von Wright’s proof by hand of this theorem in demonic

refinement algebra is almost two pages long and the proof search involved and the

complexity of the axioms used is substantial. For the sake of readability we do not

display all input/output files and the complete machine proofs. They can all be

found at a web site [1].

So can refinement be automated? At least a first step can certainly be taken.

And further pursuit of this challenging programme promises significant progress

towards more applicable formal methods.

2 Kleene Algebras

The abstract refinement calculi studied in this paper are variants of Kozen’s Kleene

algebras [11] which are based on pioneering work of Salomaa [17], Conway [7],

Park [15] and others. Particular strengths of Kleene algebras are syntactic simplic-

2

Höfner and Struth

ity, universal applicability, concise elegant equational proof-style and easy possibil-

ity of mechanisation. This already led to simplifications and unifications in various

computer science and software engineering applications. Many arguments that pre-

viously required tedious semi-formal reasoning over pages can usually be reduced

to their essence in a few lines of equational calculations.

An idempotent semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a com-

mutative monoid with idempotent addition, (S, ·, 1) is a monoid, multiplication dis-

tributes over addition from the left and right, and 0 is a left and right annihilator

of multiplication. The axioms are, for all x, y, z ∈ S,

x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ 0 = 0, x+ x = x,

x(yz) = x(yz), x1 = x = 1x,

x(y + z) = xy + xz, (x+ y)z = xz + yz,

x0 = 0 = 0x.

Encodings for the automated theorem prover Prover9 are presented in Section 5.

As usual in algebra, we stipulate that multiplication binds stronger than addition,

and we omit the multiplication symbol. In the context of refinement, elements

of S denote actions of a program, multiplication denotes sequential composition,

addition denotes nondeterministic choice, 1 denotes the ineffective action and 0 the

destructive action.

Two properties of idempotent semirings are important for our purposes.

• Every semiring induces an opposite semiring in which the order of multiplication

is swapped. If a statement holds in a semiring, its dual holds in its opposite.

• The relation ≤ defined by x ≤ y ⇔ x + y = x for all elements x, y is a partial

order. It is (up to isomorphism) the only order with least element 0 and for which

addition and multiplication are isotone in both arguments (i.e. x ≤ y ⇒ x+ z ≤

y + z and likewise for all x, y, z ∈ S).

It follows that every idempotent semiring is also a semilattice (S,≤) with addition

as join. Therefore, for all x, y, z ∈ S,

x+ y ≤ z ⇔ x ≤ z ∧ y ≤ z. (1)

This law allows a case analysis of sums at left-hand sides of inequalities. It is

very helpful for automated deduction since its keeps expressions small. There is

no similar law for right-hand sides of inequalities. In the context of refinement, ≥

corresponds to the refinement ordering.

To model finite iteration or reflexive transitive closure, a further operation needs

to be added. A Kleene algebra is a structure (K, ∗) such that K is an idempotent

semiring and star ∗ is a unary operation axiomatised by the star unfold axioms

1 + xx∗ ≤ x∗, 1 + x∗x ≤ x∗

and the star induction axioms

z + xy ≤ y ⇒ x∗z ≤ y, z + yx ≤ y ⇒ zx∗ ≤ y,

3

Höfner and Struth

for all x, y, z ∈ S. This axiomatises finite iterations within first-order logic with

Park-style rules as least prefixed points (which are also least fixed points). By the

first star unfold axiom, an iteration x∗ is either ineffective, whence 1, or it continues

after one single x-action. By the first star induction law x∗ is the least element with

that property. This form of iteration proceeds from left to right through a sequence.

The second star unfold and star induction law are duals of the first ones with respect

to opposition. They correspond to right-to-left iteration. The star is also isotone

with respect to the ordering and the star unfold axioms can be strengthened to

equations. These properties will also be used for theorem proving.

Kleene algebras have many interesting models. The most relevant ones for re-

finement are

• binary relations under union, relational composition and reflexive transitive clo-

sure with the empty and the unit relation;

• predicate transformers under union, function composition and iterated function

application with the empty function and the identity function;

• sets of program traces under union, trace products (obtained by “glueing” traces

together at their respective beginning and end points), reflexive transitive closure,

the empty set and the set of all points from which traces can be built.

Paths, e.g., sequences of program states or languages, e.g., sequences of program

actions immediately arise as special cases from traces.

Some interesting models are, however, excluded by the Kleene algebra axioms.

First, the right zero law x0 = 0 seems inadequate for infinite actions x. Intuitively,

it seems paradoxical to abort, for instance, the execution of an infinite loop.

Second, the predicate transformer model underlying the refinement calculus of

Back and von Wright [4] is excluded as well. Only universally conjunctive or disjunc-

tive predicate transformers satisfy the Kleene algebra axioms [22]. Here, universal

conjunctivity (disjunctivity) means distributivity of multiplication over arbitrary

infima (suprema). This of course implies distributivity over the empty infimum

(supremum), which yields the right zero axiom. Positively conjunctive (disjunc-

tive) predicate transformers, however, which only distribute over non-empty infima

(suprema), do not satisfy the right zero axiom. But they are the appropriate models

for demonically nondeterministic programs under the standard weakest precondition

semantics.

Third, in some contexts, the left distributivity axiom x(y + z) = xy + xz is

inappropriate, for instance in the context of process algebras [6], tree languages [19]

or probabilistic refinement [13]. We will, however, not further pursue this direction

in this paper.

3 Demonic Refinement Algebras

To link Kleene algebras with the refinement calculus, von Wright has adapted the

set of axioms in two ways: by dropping the right zero axiom and by adding a

strong iteration operation which encompasses finite and infinite iteration [21]. The

resulting structure is particularly suitable for modelling action system refinement [5].

Formally, a demonic refinement algebra is a structure (K,∞) such that K is a

4

Höfner and Struth

Kleene algebra without the right zero axiom and the strong iteration ∞ is a unary

operation axiomatised by the strong unfold and the strong coinduction axiom

x∞ = 1 + xx∞, y ≤ z + xy ⇒ y ≤ x∞z,

and linked with the star by the isolation axiom

x∞ = x∗ + x∞0,

for all x, y, z ∈ K. Note that von Wright uses the notation of the refinement calculus

while we adhere to that of Kleene algebra and language theory. The converse strong

unfold law, 1 + x∞x = x∞, follows from the axioms. Moreover, strong iteration is

isotone with respect to the ordering.

The particular axioms of demonic refinement algebra can easily be motivated

from the predicate transformer model with infinite iteration, cf. [22]. It is also

immediately obvious that demonic refinement algebras do not capture the relational

semantics, since in the presence of the right zero axiom, the isolation axiom collapses

strong iteration to finite iteration. However, all theorems of demonic refinement

algebra that do not mention strong iterations are also theorems of Kleene algebra.

4 Prover9 and Mace4

We use McCune’s Prover9 tool [12] for proving theorems in demonic refinement

algebra. Prover9 is a so-called saturation-based theorem prover for first-order equa-

tional logic. It implements an ordered resolution and paramodulation calculus and,

by its treatment of equality by rewriting rules and Knuth-Bendix completion, it is

particularly suitable for algebraic reasoning. Further benefits of Prover9 are its ex-

tensive documentation and the fact that it is complemented by the tool Mace4 that

searches for counterexamples. The combination of Prover9 and Mace4 is very useful

in practice and supports the hypothesis learning heuristics described in Section 6.

Prover9 and Mace4 accept any input in a syntax for first-order equational logic.

The input file consists essentially of a list of assumptions (the set of support), e.g.,

the axioms of demonic refinement algebra, and a goal to be proved. Prover9 then

negates the goal, transforms the assumptions and the goal into clausal normal form

and uses the inference rules of the ordered resolution and paramodulation calculus to

derive a refutation. Mace4, in contrast, enumerates finite models of the assumptions

and checks whether they satisfy the conditions expressed by the goal.

The inference procedure of saturation-based theorem proving is discussed in

detail in the Handbook on Automated Reasoning [16]. Roughly, it consists of two

interleaved modes.

• The deductive mode closes an initial clause set under the inference rules of reso-

lution, factoring and paramodulation

Γ ∨ φ ∆ ∨ ¬ψ

(Γ ∨ ∆)σ

Γ ∨ φ ∨ ψ

(Γ ∨ φ)σ

Γ ∨ s = t ∆[s′]

(Γ ∨ ∆[s′τ/t])τ

where σ is a most general unifier of the literals φ and ψ and τ a most general

5

Höfner and Struth

unifier of s′ and s. The paramodulation rule essentially implements the Leibniz

principle of equality that allows replacing equals by equals.

• The simplification mode discards clauses from the working clause set in case they

are redundant with respect to another clause, e.g., when they are subsumed.

The inference process stops when the closure has been computed (never, perhaps) or

when the empty clause $F — which denotes inconsistency — has been produced. In

the second case, the tool reconstructs a proof from that by connecting the assump-

tions with the empty clause and displays this proof as a sequence. Examples are

given below. This yields a semi-decision procedure for first-order logic. Whenever

the goal is entailed by the assumptions, i.e., whenever the set of support plus the

negation of the goal is inconsistent, the empty clause can be produced in finitely

many steps. Due to the nature of the inference process, it is obvious that simplifi-

cation rules are applied eagerly and deduction rules lazily to keep the working set

small.

In practice, so-called syntactic orderings and other strategies are used to reduce

the nondeterminism of the general inference procedure. The sizes of terms, literals

and clauses are computed (recursively) from a given precedence of constant and

function symbols and only “very big” terms in equations and literals in clauses are

used in inferences. Moreover, “short” formulas are given precedence in inferences.

The choice of strategy may have a crucial impact on the success of the proof search

within reasonable time and memory constraints. In Prover9, it can therefore be

declared as part of the input file. However, default strategies are provided for the

less sophisticated user, including the authors.

5 Automating Demonic Refinement Algebras

In demonic refinement algebras, inequalities and equations can be defined inter-

changeably. Every equation x = y can be replaced by the two inequalities x ≤ y

and y ≤ x, whereas every inequality x ≤ y can be replaced by an equation x+y = y.

Therefore, two different encodings of demonic refinement algebras are possible. An

equational encoding for Prover9 and Mace4 is

op(500, infix, "+"). %declaration of operator precedences
op(490, infix, ";"). %multiplication
op(480, postfix, "*"). %finite iteration
op(480, postfix, "’"). %strong iteration

formulas(sos). %equational axioms of demonic refinement algebra
x+y = y+x & x+0 = x & x+(y+z) = (x+y)+z & x+x = x. %additive monoid
x;1 = x & 1;x = x & x;(y;z) = (x;y);z. %multiplicative monoid
x;(y+z) = x;y+x;z & (x+y);z = x;z+y;z. %distributivity laws
0;x = 0. %right zero law
1+x;x* = x* & 1+x*;x = x*. %Kleene star
((x;y+z)+y = y -> x*;z+y = y) & ((y;x+z)+y = y -> z;x*+y = y).
x’ = 1+x;x’ & (y+(x;y+z) = x;y+z -> y+x’;z = x’;z). %strong iteration
x’ = x*+x’;0.

end_of_list.

formulas(sos). %verified laws that are useful in proofs
(x+y)+z = z <-> (x+z = z & y+z = z). %case analysis
(x+y = y -> x*+y* = y*) & (x+y = y -> x’+y’ = y’). %isotonicity

end_of_list.

formulas(goals).
%put proof goal here

end_of_list.

6

Höfner and Struth

In the first part of the input, the precedence of operators is fixed. Here, the star

and strong iteration bind stronger than multiplication which itself binds stronger

than addition. The second part is a set of support list that contains the axioms of

demonic refinement algebra. The third part is an additional set of support list that

contains some useful laws of demonic refinement algebras that have previously been

proved. The dual unfold law for strong iteration, for instance, will often be added

to this set, too. The third part of the input lists the goal to be proved.

In a previous paper [10] we have used a similar equational encoding for Kleene

algebras. Our experience shows that the approach works well for purely equational

reasoning, but the size of terms is unnecessarily increased and application of iso-

tonicity rules may require intricate matchings or unifications that are difficult to

resolve for the theorem-prover. An inequational encoding, in contrast, yields shorter

expressions and simpler isotonicity reasoning, but most resolution-based theorem

provers do not support inequational reasoning, e.g., with focused chaining rules that

would offer similar benefits as paramodulation.

The proof experiments from this paper show that an integration of equational

and inequational reasoning is an essential step towards proving more complex the-

orems. To this end we define a special binary predicate <= that is assumed to be

reflexive and transitive. In order to avoid duplication of proofs we do not add an

axiom like x ≤ y ⇔ x+y = y. We also do not use the antisymmetry rule. Therefore,

strictly speaking, our proof search is incomplete with respect to demonic refinement

algebra; but this doesn’t show up in applications. The integrated approach still pre-

serves the benefits of equational reasoning when performing paramodulation under

inequality symbols, e.g. inferring a ≤ c from a ≤ b and b = c. Also, isotonicity

axioms for the Kleene algebra operations must now be added explicitly to the set

of axioms. The corresponding set of support is

formulas(sos). %preorder axioms of demonic refinement algebra
x+y = y+x & x+0 = x & x+(y+z) = (x+y)+z & x+x = x. %idempotent semiring
x;1 = x & 1;x = x & x;(y;z) = (x;y);z.
0;x = 0.
x;(y+z) = x;y+x;z & (x+y);z = x;z+y;z.
x <= x. %preorder
x<=y & y<=z -> x<=z.
1+x;x* = x* & 1+x*;x = x*. %star
(x;y+z<=y -> x*;z<=y) & (y;x+z<=y -> z;x*<=y).
x’ = 1+x;x’ & (y<=x;y+z -> y<=x’;z) & x’ = x*+x’;0. %strong iteration
(x<=y -> x+z<=y+z) %isotonicity
(x<=y -> x;z<=y;z) & (x<=y -> z;x<=z;y).
(x<=y -> x*<=y*) & (x<=y -> x’<=y’).

end_of_list.

The nature of the saturation-based proof procedure makes proof search often

difficult to control. A restriction of the number of assumptions is usually helpful

when a proof from the full set of axioms does not succeed, however, sometimes the

presence of a seemingly unnecessary formula can make many formulas in the working

set redundant, whence trigger their deletion. Some axioms, like commutativity

of addition or the unfold laws, easily make the search space explode; some other

axioms, like additional idempotence or the unit or zero laws can act as rewriting

rules that may, under certain circumstances, considerably prune the search space.

Comparing the number of operations and axioms of demonic refinement algebras

with those of the example sets at the Prover9 web site and the literature, the fact

that many theorems can nevertheless be proved from the full set of axioms in a

näıve way was rather unexpected.

7

Höfner and Struth

6 Basic Refinement Calculus

In this section we develop a toolkit of meaningful basic refinement laws in the

context of demonic refinement algebra. It is common practice to use such laws

for proving more complex refinement laws or for developing and analysing concrete

refinements of programs and software systems. These more abstract laws can often

replace the more low-level induction or coinduction axioms of Kleene algebra or

demonic refinement algebra in computations.

We have already developed a toolkit of automatically verified theorems for

Kleene algebras and several extensions that use the right zero axiom x0 = 0 [10].

Many of these theorems are also valid in the weaker context of demonic refinement

algebra. Since the Prover9 output files present all hypotheses used for proving a

particular goal, this can easily be checked. In those cases where Prover9 uses the

right zero axiom, proofs can be replayed without this axiom or else the goal can be

refuted by Prover9. Since this task is simple, but tedious and rather not interesting

for this paper, we do not present a deeper discussion.

The main results of this paper deal with the refinement of concurrent systems,

e.g. action systems. In this context, the expressions (x+y)∗ or (x+y)∞ denote the

repeated concurrent execution of two processes x and y. Concurrency refinement

can often analysed in three phases:

(i) the deconstruction of concurrency into interleaving;

(ii) the transformation of interleaving;

(iii) the reconstruction of concurrency.

We will automatically verify a basic refinement calculus that support these tasks.

Many particular refinement laws can be found in [21]. All technical details, including

the Prover9 and Mace4 input and output files, can be found at a web site [1].

The following auxiliary laws for strong iteration can be proved in a few seconds

with Prover9 from the full set of axioms.

x ≤ 1∞, 1∞x = 1∞, (x∞)∞ = 1∞, (x∗)∞ = 1∞,

x∞ = 1 + x∞x, 0∞ = 1, x∞x∞ = x∞, 1 ≤ x∞,

(x∞)∗ = x∞, x∗x∞ = x∞, x∞x∗ = x∞.

The first law in the first row says that each demonic refinement algebra has a

maximal element, namely 1∞. The first law of the second row is the dual unfold

law for strong iteration previously mentioned. The remaining laws collect further

basic properties of strong iteration. Most of them can be used by Prover9 to simplify

expressions. We also verified isotonicity of strong iteration, x ≤ y ⇒ x∞ ≤ y∞,

(in about three minutes) with the equational set of support before adding it to the

inequational one.

We now list the more meaningful refinement laws for demonic refinement alge-

bras verified with Prover9. Although there are usually similar laws for the star and

for strong iteration, the proofs are often completely different.

8

Höfner and Struth

• Sliding laws. These allow the sliding of loops over sequences.

x(yx)∗ = (xy)∗x, (2)

x(yx)∞ = (xy)∞x, (3)

(x∗y)∞ = y∗(x∗y)∞. (4)

• Denesting laws. These allow the reduction and reconstitution of concurrency.

(x+ y)∗ = x∗(yx∗)∗, (5)

(x+ y)∞ = x∞(yx∞)∞, (6)

(x+ y)∞ = (x∗y)∞x∞, (7)

(x+ y)∗ = y∗x(x+ y)∗ + y∗, (8)

(x+ y)∞ = y∗x(x+ y)∞ + y∞. (9)

• Simulation laws. These are standard, e.g., in data refinement.

yx ≤ xz ⇒ y∗x ≤ xz∗, (10)

xy ≤ zx⇒ xy∗ ≤ z∗x, (11)

xy ≤ zx⇒ xy∞ ≤ z∞x, (12)

yx ≤ xy ⇒ y∗x∗ ≤ x∗y∗, (13)

yx ≤ xy ⇒ y∞x∞ ≤ x∞y∞. (14)

A dual law of (12), yx ≤ xz ⇒ y∞x ≤ xz∞, does not hold in demonic refinement

algebra. Mace4 presents a counterexample with 3 elements.

• Semicommutation laws. These combine denesting with simulation.

yx ≤ xy ⇒ (x+ y)∗ ≤ x∗y∗, (15)

yx ≤ xy ⇒ (x+ y)∞ ≤ x∞y∞. (16)

Since x∗y∗ ≤ (x + y)∗ and x∞y∞ ≤ (x + y)∞ (this has also been automatically

verified), the right-hand sides can even be strengthened to equalities.

• Disabledness laws. These expresses that if y is always disabled by x then x before

an iteration of y reduces to x.

xy = 0 ⇒ xy∗ = x, (17)

xy = 0 ⇒ xy∞ = x. (18)

Proofs by hand for most of these theorems can be found in [21]. Though short and

concise, these proofs are often surprisingly difficult and require some familiarity

with Kleene algebras.

Automating the proofs of these refinement laws was often straightforward, but

some cases were non-trivial, computational expensive and required experimentation.

In some cases, equations had to be split into two inequalities. In some further cases,

the use of expensive axioms, as for instance commutativity of addition or unfolds,

had to be prohibited. In some cases, we had to use lemmas that were already

verified as assumptions. We also experimented with the hint feature of Prover9,

9

Höfner and Struth

which allows one to reuse previous statements or proofs to guide the proof search,

but without much success. For the more important formulas of the above list, the

requirements are listed in the following Figure 1. The computation times are loose

upper bounds for a rather slow machine.

nr (2) (3) (4) (5) (6) (9) (10) (11) (12) (15) (16) (18)

t[s] 60 80 10 3 20 8 50 50 1 140 45 1

rest. - + - - + - - - + + + -

lem. - + - - - - - - - + + -

Figure 1. Requirements for proofs

Learning the appropriate set of restricted axioms and useful lemmas required some

experimentation. Here, the interplay of Prover9 and Mace4 proved very helpful.

We based our heuristics on the following universal principle of logic:

A conclusion cannot be proved from a set of premises if and only if there is

some model in which all premises are true and the conclusion is false.

In practice, when starting with a too small set of hypotheses, Mace4 usually finds

a counterexample. When adding more and more hypotheses, Mace4 eventually will

not return a counterexample in reasonable time. Then Prover9 should be started.

Expensive axioms such as commutativity of addition or the unfold rules should be

added as late as possible. If a proof without commutativity is not possible, it often

helps to commute terms in the set of support and the goal. Handwritten proofs

in variants of Kleene algebras are usually quite short, i.e., less than ten lines. The

number of permutations of terms is therefore strongly limited.

These observations motivate some novel heuristics for hypothesis learning that

should and could be automated as a pre-processing phase for Prover9. This au-

tomation might considerably increase the applicability of Prover9 and simplify proof

search.

7 Denesting in Detail

In this section, we further discuss the automated proof of the non-trivial part of the

denesting law (6), namely

(x+ y)∞ ≤ x∞(yx∞)∞.

Experimenting with our hypothesis learning heuristics, Prover9 can find a proof

from the restricted axiom set
formulas(sos).
x+0 = x & x+(y+z) = (x+y)+z & x+x = x.
x;1 = x & 1;x = x & x;(y;z) = (x;y);z.
0;x = 0.
x;(y+z) = x;y+x;z & (x+y);z = x;z+y;z.
x <= x & (x<=y & y<=z -> x<=z).
x’ = x;x’+1 & x’ = 1+x’;x & (y <= x;y+z -> y <= x’;z).

end_of_list.

10

Höfner and Struth

but without any further assumptions. The proof displayed by Prover9 after about

16s is
1 x <= y ; x + z -> x <= y’ ; z # label(non_clause) [assumption]
2 (x + y)’ <= (x’ ; y)’ ; x’ # label(goal) [goal]
3 x + (y + z) = (x + y) + z [assumption]
4 (x + y) + z = x + (y + z) [copy 3, flip]
5 x ; 1 = x [assumption]
6 x ; (y ; z) = (x ; y) ; z [assumption]
7 (x ; y) ; z = x ; (y ; z) [copy 6, flip]
8 x ; (y + z) = x ; y + x ; z [assumption]
9 x ; y + x ; z = x ; (y + z) [copy 8, flip]
10 (x + y) ; z = x ; z + y ; z [assumption]
11 x ; y + z ; y = (x + z) ; y [copy 10, flip]
12 x <= x [assumption]
13 x’ = x ; x’ + 1 [assumption]
14 x ; x’ + 1 = x’ [copy 13, flip]
15 -(x <= y ; x + z) | x <= y’ ; z [clausify 1]
16 -((c3 + c4)’ <= (c3’ ; c4)’ ; c3’) [deny 2]
17 x ; y + x = x ; (y + 1) [para 5 9]
18 (x + y) ; z + u = x ; z + (y ; z + u) [para 11 4]
19 -((c3 + c4)’ <= c3’ ; (c4 ; (c3 + c4)’ + 1)) [ur 15 16, rewrite 7 17]
20 -((c3 + c4)’ <= c3 ; (c3 + c4)’ + (c4 ; (c3 + c4)’ + 1)) [ur 15 19]
21 x ; (x + y)’ + (y ; (x + y)’ + 1) = (x + y)’ [para 18 14]
22 -((c3 + c4)’ <= (c3 + c4)’) [back_rewrite 20, rewrite 21]
23 $F [resolve 22 12]

Of course, this proof is only a tiny part of the proof search, which in this case

consists of more than 1800 steps. The entire output file can be found at [1]. The

machine proof can easily be retranslated into the usual equational style of reasoning

with Kleene algebra. The essential part of the machine proof starts at line 19; the

previous part containing mainly rearrangements of axioms.

First, to prove the claim, it suffices by strong coinduction to show that

(x+ y)∞ ≤ x∞y(x+ y)∞ + x∞ = x∞(y(x+ y)∞ + 1).

This step corresponds to line 19 of the machine proof. Second, applying strong

coinduction again, it suffices to show that

(x+ y)∞ ≤ x(x+ y)∞ + y(x+ y)∞ + 1.

This corresponds to line 20. Third, this inequality holds, since

x(x+ y)∞ + y(x+ y)∞ + 1 = (x+ y)(x+ y)∞ + 1 = (x+ y)∞

by distributivity and strong unfold. This corresponds to the remaining lines of the

machine proof. Interestingly, the equational reconstruction of the proof found by

Prover9, although it does not use any additional assumptions, is simpler than the

one in [21].

8 Data Refinement

Back and von Wright have presented several laws for data refinement of action

systems in the predicate transformer setting [4]. von Wright has already translated

one of these laws into demonic refinement algebra. In this section, we provide an

automated proof of this law. Here, for the first time, we leave the level of pure

demonic refinement algebra and predominantly work at the more abstract level

of refinement laws introduced and verified in Section 6. Our hypothesis learning

11

Höfner and Struth

heuristics now becomes particularly important for finding the right set of support

for Prover9.

Our analysis of the data refinement law not only illustrates the applicability

of our refinement toolkit. Based on previous work on diagrammatic reasoning in

Kleene algebra [18,9], it also shows that the usual refinement diagrams can in prin-

ciple be recovered from the output of Prover9.

In traditional Kleene algebra notation, the data refinement law considered is

written as follows.

Theorem 8.1 Let b∞ = b∗, za′ ≤ az, zb ≤ z, s′ ≤ sz and ze′ ≤ e. Then

s′(a′ + b)∞e′ ≤ sa∞e.

The first hypothesis says that b cannot loop infinitely. The second hypothesis

expresses that a is data refined by a′ with respect to upward simulation z. By the

third hypothesis, 1 is data refined by b. The fourth and fifth condition expresses

the standard data refinement of initialisations and finalisations.

The proof planning is now greatly simplified in the presence of some experience

with data refinement. It can be expected that some forms of denesting and semi-

commutation will suffice for deconstructing and reconstructing concurrency. For

the transformation of interleaving, simulation laws seem highly relevant, whereas

the laws of the additive monoid seem avoidable. The effect of the star and strong

iteration axioms is hopefully captured by simulation, so that these laws should only

be added if necessary. These considerations provide a basis for hypothesis learning.

In fact, the following set of demonic refinement axions is sufficient for a proof

formulas(sos).
x;(y;z) = (x;y);z.
x <= x & (x<=y & y<=z -> x<=z).
(x<=y -> x;z<=y;z) & (x<=y -> z;x<=z;y) & (x<=y -> x*<=y*) & (x<=y -> x’<=y’).

end_of_list.

and the following three refinement laws are needed.

formulas(sos).
(x+y)’ = y’;(x;y’)’. %denest
(z;y<=x;z -> z;y’<=x’;z) & (x;y<=x -> x;y*<=x). %simulation

end_of_list.

From these sets of support, Prover9 returns after 10s with the proof

1 x <= y & y <= z -> x <= z # label(non_clause) [assumption]
2 x <= y -> x ; z <= y ; z # label(non_clause) [assumption]
3 x <= y -> z ; x <= z ; y # label(non_clause) [assumption]
4 x ; y <= z ; x -> x ; y’ <= z’ ; x # label(non_clause) [assumption]
5 x ; y <= x -> x ; y * <= x # label(non_clause) [assumption]
6 (all s all ss all e all ee all a all aa all b

(b’ = b * & x ; aa <= a ; x & x ; b <= x & ss <= s ; x & x ; ee <= e
->
ss ; ((aa + b)’ ; ee) <= s ; (a’ ; e))) # label(goal) [goal]

7 x ; (y ; z) = (x ; y) ; z [assumption]
8 (x ; y) ; z = x ; (y ; z) [copy 7, flip]
9 -(x <= y) | -(y <= z) | x <= z [clausify 1]
10 -(x <= y) | x ; z <= y ; z [clausify 2]
11 -(x <= y) | z ; x <= z ; y [clausify 3]
12 (x + y)’ = y’ ; (x ; y’)’ [assumption]
13 x’ ; (y ; x’)’ = (y + x)’ [copy 12, flip]
14 -(x ; y <= z ; x) | x ; y’ <= z’ ; x [clausify 4]
15 -(x ; y <= x) | x ; y * <= x [clausify 5]
16 c8 * = c8’ [deny 6]
17 c1 ; c7 <= c6 ; c1 [deny 6]
18 c1 ; c8 <= c1 [deny 6]
19 c3 <= c2 ; c1 [deny 6]
20 c1 ; c5 <= c4 [deny 6]
21 -(c3 ; ((c7 + c8)’ ; c5) <= c2 ; (c6’ ; c4)) [deny 6]

12

Höfner and Struth

22 c1 ; (c7 ; x) <= c6 ; (c1 ; x) [hyper 10 17, rewrite 8 8]
23 c1 ; c8’ <= c1 [hyper 15 18, rewrite 16]
24 c3 ; x <= c2 ; (c1 ; x) [hyper 10 19, rewrite 8]
25 x ; (c1 ; c5) <= x ; c4 [hyper 11 20]
26 x ; (c1 ; c8’) <= x ; c1 [hyper 11 23]
27 c1 ; (c8’ ; x) <= c1 ; x [hyper 10 23, rewrite 8]
28 -(c2 ; (c1 ; ((c7 + c8)’ ; c5)) <= c2 ; (c6’ ; c4)) [ur 9 24 21]
29 -(c1 ; ((c7 + c8)’ ; c5) <= c6’ ; c4) [ur 11 28]
30 -(c1 ; (c8’ ; ((c7 ; c8’)’ ; c5)) <= c6’ ; c4) [para 13 29, rewrite 8]
31 -(c1 ; (c8’ ; ((c7 ; c8’)’ ; c5)) <= c6’ ; (c1 ; c5)) [ur 9 25 30]
32 c1 ; (c7 ; c8’) <= c6 ; c1 [hyper 9 22 26]
33 -(c1 ; ((c7 ; c8’)’ ; c5) <= c6’ ; (c1 ; c5)) [ur 9 27 31]
34 c1 ; (c7 ; c8’)’ <= c6’ ; c1 [hyper 14 32]
35 c1 ; ((c7 ; c8’)’ ; x) <= c6’ ; (c1 ; x) [hyper 10 34, rewrite 8 8]
36 $F [resolve 35 33]

Again, a translation of the machine proof into equational format is not too

difficult. The initialisation, the finalisation and the refinement of the loop can be

separated. The initialisation and finalisation imply that it is sufficient to show that

sz(a′ + b)∞e′ ≤ sa∞ze′ and therefore

z(a′ + b)∞ ≤ a∞z

by isotonicity. The left-hand side of this expression can be denested and, using the

assumptions b∞ = b∗, zb ≤ z and the simulation law, be simplified to

z(a′ + b)∞ = zb∞(a′b∞)∞ = zb∗(a′b∗)∞ ≤ z(a′b∗)∞.

But z(a′b∗)∞ ≤ a∞z follows from the strong simulation law and za′b∗ ≤ azb∗ ≤ az.

This algebraic reasoning can easily be translated into diagrams, as used in term

rewriting (cf. [20]) and refinement (cf. [4]). This has extensively been discussed in [9].

In particular, glueing of diagrams along edges corresponds to isotonicity reasoning.

Therefore, the following diagrams describe the transition from the succedent of the

data refinement theorem to the analysis of the infinite loop.

·

· ·

· ·

·

s′
(a′ + b)∞

e′

s

a∞
e

·

· ·

· ·

·

s′
(a′ + b)∞

e′

s

a∞
e

z z

· ·

· ·

(a′ + b)∞

a∞

z z

The next sequence of diagrams describes essentially the reasoning in the above

sequence of equations.

· ·

· ·

·
b∗ (a′b∗)∞

a∞

z z

· ·

· ·

·
b∗ (a′b∗)∞

a∞

z zz

The last two diagrams describe the reasoning from the simulation assumption to

the loop via the strong simulation law (12).

13

Höfner and Struth

· ·

· ·

(a′b∗)∞

a∞

z z

· ·

· ·

·
a′ b∗

a

z z z

The correspondence between algebra and diagrams could be made more precise by

putting the refinement laws into diagrammatic form. Demonic refinement algebra

would then yield an algebraic semantics for these diagrams. A further elaboration

of this correspondence seems very promising for proof visualisation.

It is obvious from the axioms of demonic refinement algebra that downward sim-

ulations cannot be modelled in this setting. There are nevertheless two extensions

that capture this additional concept. The first one introduces converses x◦ to each

action x. A further discussion can be found in [18]. The second one introduces

forward and backward modalities. A discussion of the relation to simulation and

converse can be found in [8,14]. An automation of these extensions seems feasible.

Modal Kleene algebras have already successfully treated by Prover9 [10].

9 Atomicity Refinement

In 1989 Back proved a rather complex atomicity refinement theorem for action

systems by reasoning over sequences of program states [3]. This proof spreads over

several pages. It has been replayed later at the level of predicate transformers and,

even more concisely, in demonic refinement algebra [21,22]. The proof in demonic

refinement algebra still fills almost two pages. Our automated analysis reveals some

glitches in this proof. The following theorem presents a cleaned-up version of this

law in demonic refinement algebra.

Theorem 9.1 Let s ≤ sq, a ≤ qa, qb = 0, rb ≤ br, (a + r + b)l ≤ l(a + r + b),

rq ≤ qr, ql ≤ lq, r∗ = r∞ and q ≤ 1. Then

s(a+ r + b+ l)∞q ≤ s(ab∞q + r + l)∞.

A discussion about the intuition behind the assumptions and the theorem can

be found in [3]. For the symbol pushing of automated theorem proving this infor-

mation is not needed. Given the length of von Wright’s proof it is no surprise that

Prover9 does not succeed in one full sweep. However, an automated proof up to the

reconstruction of concurrency is possible. We therefore split Theorem 9.1 into two

lemmas.

Lemma 9.2

(i) s(a+ r + b+ l)∞q ≤ sl∞qr∞q(ab∞qr∞)∞ follows from the conditions of The-

orem 9.1 except q ≤ 1.

(ii) Let q ≤ 1. Then sl∞qr∞q(ab∞qr∞)∞ ≤ s(ab∞q + r + l)∞.

As before, the proofs heavily rely on hypothesis learning. The following set of

support can be used for both proofs. The restricted demonic refinement axioms are

14

Höfner and Struth

formulas(sos).
x+(y+z) = (x+y)+z & x;1 = x & 1;x = x & x;(y;z) = (x;y);z & 0;x = 0.
x <= x & (x<=y & y<=z -> x<=z).
(x<=y -> x;z<=y;z) & (x<=y -> z;x<=z;y) & (x<=y -> x’<=y’).

end_of_list.

The basic refinement laws are
formulas(sos).
y;x<=x;y -> (y+x)’=x’;y’. %semicommutation
(x’;y’) <= (y+x)’. %trivial part of semicommutation
(x+y)’ = y’;(x;y’)’. %denesting
(x;y)’;x = x;(y;x)’. %sliding
(z;y<=x;z -> z;y’<=x’;z) & (y;z<=z;x -> y*;z<=z;x*). %simulation
x;y=0 -> x;y’=x. %disabledness

end_of_list.

The goal for Lemma 9.2(i) is

formulas(goals).
all a all b all l all q all r all s(

a<=q;a & r;b<=b;r & (a+(r+b));l<=l;(a+(r+b)) & r;q<=q;r
& r*=r’ & q;l<=l;q & q;b=0 & s<=s;q
->
s;(((a+(r+b))+l)’;q) <= (s;(l’;q));((r’;q);((a;b’);(q;r’))’)).

end_of_list.

We also keep the full set of assumption in the proof of Lemma 9.2(ii), although this

is not strictly necessary.

formulas(goals).
all a all b all l all q all r all s(

a<=q;a & r;b<=b;r & (a+(r+b));l<=l;(a+(r+b)) & r;q<=q;r
& r*=r’ & q;l<=l;q & q;b=0 & s<=s;q & q<=1
->
(s;(l’;q));((r’;q);((a;b’);(q;r’))’) <= s;(((a;b’);q+r)+l)’).

end_of_list.

The machine proof of Lemma 9.2(i) requires about 1200s and 75 steps; it is displayed

in Figure 2. Although it is not particularly readable for humans, it can again be

translated into equational style.

s(a+ b+ r + l)q = sl∞(a+ b+ r)∞q

= sl∞(b+ r)∞a(b+ r)∞)∞q

= sl∞b∞r∞(ab∞r∞)∞q

≤ sl∞b∞r∞(qab∞r∞)∞q

= sl∞b∞r∞q(ab∞r∞q)∞

≤ sql∞b∞r∞q(ab∞r∞q)∞

≤ sl∞qb∞r∞q(ab∞r∞q)∞

≤ sl∞qr∞q(ab∞r∞q)∞

= sl∞qr∞q(ab∞r∗q)∞

≤ sl∞qr∞q(ab∞qr∗)∞

= sl∞qr∞q(ab∞qr∞)∞.

The first step uses the semicommutation law (16). The second step uses the denest-

ing law (6). The third step uses again the semicommutation law (16) . The fourth

step uses the assumption a ≤ qa. The fifth step uses the sliding law (3). The sixth

step uses the assumption s ≤ sq. The seventh step uses the simulation law (12).

The eighth step uses the disabledness law (18) and the assumption qb = 0. The

ninth step uses the assumption r∞ = r∗. The tenth step uses the star simulation

law (10). The eleventh step uses again r∞ = r∗. Given the length of the equational

15

Höfner and Struth

1 x ; 1 = x & 1 ; x = x # label(non_clause) [assumption]
2 x <= y & y <= z -> x <= z # label(non_clause) [assumption]
3 x <= y -> x ; z <= y ; z # label(non_clause) [assumption]
4 x <= y -> z ; x <= z ; y # label(non_clause) [assumption]
5 x <= y -> x’ <= y’ # label(non_clause) [assumption]
6 x ; y <= y ; x -> (x + y)’ = y’ ; x’ # label(non_clause) [assumption]
7 x ; y <= z ; x -> x ; y’ <= z’ ; x # label(non_clause) [assumption]
8 x ; y <= y ; z -> x * ; y <= y ; z * # label(non_clause) [assumption]
9 x ; y = 0 -> x ; y’ = x # label(non_clause) [assumption]

10 (all a all b all l all q all r all s
(a <= q ; a & r ; b <= b ; r & (a + (r + b)) ; l <= l ; (a + (r + b)) & r ; q <= q ; r
& r * = r’ & q ; l <= l ; q & q ; b = 0 & s <= s ; q
->
s ; (((a + (r + b)) + l)’ ; q) <= (s ; (l’ ; q)) ; ((r’ ; q) ; ((a ; b’) ; (q ; r’))’))) # label(goal) [goal]

11 x ; 1 = x [clausify 1]
12 1 ; x = x [clausify 1]
13 x ; (y ; z) = (x ; y) ; z [assumption]
14 (x ; y) ; z = x ; (y ; z) [copy 13, flip]e
15 x <= x [assumption]
16 -(x <= y) | -(y <= z) | x <= z [clausify 2]
17 -(x <= y) | x ; z <= y ; z [clausify 3]
18 -(x <= y) | z ; x <= z ; y [clausify 4]
19 -(x <= y) | x’ <= y’ [clausify 5]
20 -(x ; y <= y ; x) | y’ ; x’ = (x + y)’ [clausify 6]
21 -(x ; y <= y ; x) | (x + y)’ = y’ ; x’ [copy 20, flip]
22 (x + y)’ = y’ ; (x ; y’)’ [assumption]
23 x’ ; (y ; x’)’ = (y + x)’ [copy 22, flip]
24 x’ ; y’ <= (y + x)’ [assumption]
25 (x ; y)’ ; x = x ; (y ; x)’ [assumption]
26 -(x ; y <= z ; x) | x ; y’ <= z’ ; x [clausify 7]
27 -(x ; y <= y ; z) | x * ; y <= y ; z * [clausify 8]
28 x ; y != 0 | x ; y’ = x [clausify 9]
29 c1 <= c4 ; c1 [deny 10]
30 c5 ; c2 <= c2 ; c5 [deny 10]
31 (c1 + (c5 + c2)) ; c3 <= c3 ; (c1 + (c5 + c2)) [deny 10]
32 c5 ; c4 <= c4 ; c5 [deny 10]
33 c5 * = c5’ [deny 10]
34 c4 ; c3 <= c3 ; c4 [deny 10]
35 c4 ; c2 = 0 [deny 10]
36 c6 <= c6 ; c4 [deny 10]
37 -(c6 ; (((c1 + (c5 + c2)) + c3)’ ; c4) <= (c6 ; (c3’ ; c4)) ; ((c5’ ; c4) ; ((c1 ; c2’) ; (c4 ; c5’))’)) [deny 10]
38 -(c6 ; (((c1 + (c5 + c2)) + c3)’ ; c4)

<= c6 ; (c3’ ; (c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’))))) [copy 37, rewrite 14 14 14 14]
39 (x + x)’ = x’ ; x’ [hyper 21 15]
40 x ; ((y ; z)’ ; y) = x ; (y ; (z ; y)’) [para 25 14, rewrite 14]
41 0’ = 1 [hyper 28 12, rewrite 12]
42 c1 ; x <= c4 ; (c1 ; x) [hyper 17 29, rewrite 14]
43 (c5 + c2)’ = c2’ ; c5’ [hyper 21 30]
44 ((c1 + (c5 + c2)) + c3)’ = c3’ ; (c1 + (c5 + c2))’ [hyper 21 31]
45 -(c6 ; (c3’ ; ((c1 + (c5 + c2))’ ; c4))

<= c6 ; (c3’ ; (c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’))))) [back_rewrite 38, rewrite 44 14]
46 c5’ ; c4 <= c4 ; c5’ [hyper 27 32, rewrite 33 33]
47 c4 ; c3’ <= c3’ ; c4 [hyper 26 34]
48 c4 ; c2’ = c4 [hyper 28 35]
49 c6 ; x <= c6 ; (c4 ; x) [hyper 17 36, rewrite 14]
50 x’ ; (x’ ; (y ; (x’ ; x’))’) = (y + (x + x))’ [para 39 23, rewrite 39 14]
51 x’ <= (0 + x)’ [para 41 24, rewrite 11]
52 c4 ; (c2’ ; x) = c4 ; x [para 48 14, flip]
53 x’ <= (0 + (0 + x))’ [hyper 16 51 51]
54 (c1 ; x)’ <= (c4 ; (c1 ; x))’ [hyper 19 42]
55 x ; (c5’ ; c4) <= x ; (c4 ; c5’) [hyper 18 46]
56 c4 ; (c3’ ; x) <= c3’ ; (c4 ; x) [hyper 17 47, rewrite 14 14]
57 -(c6 ; (c4 ; (c3’ ; ((c1 + (c5 + c2))’ ; c4)))

<= c6 ; (c3’ ; (c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’))))) [ur 16 49 45]
58 -(c4 ; (c3’ ; ((c1 + (c5 + c2))’ ; c4)) <= c3’ ; (c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’)))) [ur 18 57]
59 1 <= (0 + (0 + 0))’ [para 41 53]
60 x <= (0 + (0 + 0))’ ; x [hyper 17 59, rewrite 12]
61 (x ; y)’ ; x <= (0 + (0 + 0))’ ; (x ; (y ; x)’) [para 40 60]
62 (c1 ; x)’ ; y <= (c4 ; (c1 ; x))’ ; y [hyper 17 54]
63 (x + (0 + 0))’ = x’ [para 41 50, rewrite 41 41 41 11 11 12 12, flip]
64 (x ; y)’ ; x <= x ; (y ; x)’ [back_rewrite 61, rewrite 63 41 12]
65 -(c3’ ; (c4 ; ((c1 + (c5 + c2))’ ; c4)) <= c3’ ; (c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’)))) [ur 16 56 58]
66 -(c4 ; ((c1 + (c5 + c2))’ ; c4) <= c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’))) [ur 18 65]
67 -(c4 ; (c5’ ; ((c1 ; (c2’ ; c5’))’ ; c4))

<= c4 ; (c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’))) [para 23 66, rewrite 43 43 14 14 14 52]
68 -(c5’ ; ((c1 ; (c2’ ; c5’))’ ; c4) <= c5’ ; (c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’)) [ur 18 67]
69 -((c1 ; (c2’ ; c5’))’ ; c4 <= c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’) [ur 18 68]
70 -((c4 ; (c1 ; (c2’ ; c5’)))’ ; c4 <= c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’) [ur 16 62 69]
71 -(c4 ; (c1 ; (c2’ ; (c5’ ; c4)))’ <= c4 ; (c1 ; (c2’ ; (c4 ; c5’)))’) [ur 16 64 70, rewrite 14 14]
72 -((c1 ; (c2’ ; (c5’ ; c4)))’ <= (c1 ; (c2’ ; (c4 ; c5’)))’) [ur 18 71]
73 -(c1 ; (c2’ ; (c5’ ; c4)) <= c1 ; (c2’ ; (c4 ; c5’))) [ur 19 72]
74 -(c2’ ; (c5’ ; c4) <= c2’ ; (c4 ; c5’)) [ur 18 73]
75 $F [resolve 74 55]

Figure 2. Proof of Lemma 9.2(i)

16

Höfner and Struth

proof, the success of Prover9 seems quite impressive. In general we find that ma-

chine proofs and their equational reconstructions in the usual style of Kleene algebra

differ by a factor between 5 and 10. A main reason is that term rearrangements due

to associativity or commutativity are usually not displayed in hand-written proofs.

The proof of Lemma 9.2(ii) with Prover9 is much simpler than the previous one.

It requires a few milliseconds, has 30 steps and can be found at our web site. Its

translation into an equational proof is not particularly interesting. The combination

of the two parts of Lemma 9.2 has not been achieved, since the introduction of the

additional assumption q ≤ 1, which is needed in the second proof, leads to an

explosion of the search space.

It might be possible to obtain a fully automated proof with a chaining-based

prover, which provides a more effective treatment of inequational reasoning. To

our knowledge, this is not available in state of the art theorem provers. Again, the

proofs can be translated into diagrams, but we do not further pursue this direction.

10 Atomicity Refinement Light

Our attempts to prove the atomicity refinement theorem lead us to consider sim-

plified variants. Setting r = 0 and l = 0, an automated proof can be obtained in a

few seconds. Setting only l = 0, Theorem 9.1 simplifies as follows.

Proposition 10.1 Let s = sq, a = qa, qb = 0, (a + b)l ≤ l(a + b), ql ≤ lq and

q ≤ 1. Then

s(a+ b+ l)∞q = s(ab∞q + l)∞.

A fully automated proof of this statement is possible. The input file, based on

our hypothesis learing heuristics, is

formulas(sos).
x;1 = x & 1;x = x & x;(y;z) = (x;y);z.
x <= x & x<=y & y<=z -> x<=z.

end_of_list.

The refinement laws assumed are
formulas(sos).
y;x <= x;y -> (y+x)’=x’;y’. %semicommutation
z;(x’;y’)<=z;(y+x)’. %inverse semicommutation with context
(x+y)’= y’;(x;y’)’. %denesting
(x;y)’;x=x;(y;x)’. %sliding
z;y<=x;z -> (v;(z;y’));w<=(v;(x’;z));w. %simulation with context
y<=1 -> (x;y);z<= x;z. % one with context
x;y = 0 -> x;y’=x. %disabledness

end_of_list.

Here, contexts are hard-coded into the rules to avoid the free generation of unnec-

essary contexts by the isotonicity laws. The proof goal is

formulas(goals).
all s all a all b all l all q

(s=s;q & a=q;a & q;b = 0 & (a+b);l<=l;(a+b) & q;l <= l;q & q<=1
->
s;(((a+b)+l)’;q)<=s;((a;b’);q+l)’).

end_of_list.

The proof takes 1013s and has 46 steps. Since the output of the mechanised proof

is again not particularly readable, we will only present its equational translation

17

Höfner and Struth

and refer the interested reader to our web site. The equational proof is

s(a+ b+ l)∞q = sl∞(a+ b)∞q

= sl∞b∞(ab∞)∞q

= sl∞b∞(qab∞)∞q

= sl∞b∞q(ab∞q)∞

= sql∞b∞q(ab∞q)∞

≤ sl∞qb∞q(ab∞q)∞

= sl∞qq(ab∞q)∞

≤ sl∞(ab∞q)∞

= s(ab∞q + l)∞.

The first step applies the semicommutation law (16). The second step uses the

denesting law (6). The third step uses the assumption a = qa. The fourth step

uses the sliding law (3). The fifth step uses the assumption sq = s. The sixth step

uses the simulation law (12). The seventh step uses the assumption qb = 0 and the

disabledness law (18). The eight step uses the assumption q ≤ 1. The last step uses

isotonicity and x∞x∞ = x∞.

The assumptions a = qa and sq = s could again, as in the case of Theorem 9.1,

be weakened to s ≤ sq and a ≤ qa.

11 Conclusion

We have shown that a substantial part of demonic refinement algebra can be mech-

anised in an automated theorem prover, that a useful toolkit of refinement laws

can be developed and be automatically verified and that some refinement laws of

considerable complexity can be automatically verified.

A further significant contribution of this paper certainly consists in the diverse

research questions that arise from these results.

From the refinement point of view, it seems very interesting to extend demonic

refinement algebras to encompass also downward simulations, which is needed in

data refinement. As already mentioned, this could be achieved either by adding an

operation of converse or through modal operators. More generally, modal demonic

refinement algebras would considerably increase the expressiveness of the approach.

A second task is the integration of other variants of Kleene algebras into the

refinement toolkit (cf. Section 2) in order to reason about refinements in process

algebras and of probabilistic systems.

A third question concerns the proof presentation and the integration of diagram-

matic reasoning, which is very common in the refinement community, but could only

be sketched in this paper. While a translation from diagrammatic statements to

Kleene algebra and Prover9 input is straightforward, the retranslation of machine

proofs into equational and diagrammatic format seems more involved. Such an

extended input and output might lead to more userfriendly tools.

From the theorem proving point of view, a first task is the automation of the

hypothesis learning heuristics proposed in this paper. The search for feasible hy-

18

Höfner and Struth

potheses seems easily parallelisable and indispensable for proving complex theorems.

Beyond the rather näıve approach taken in this paper, it seems also interesting

to evaluate the impact of the more sophisticated mechanisms provided by Prover9

for guiding the proof search, i.e., the manipulation of syntactic orderings, the as-

signment of weights to literals and clauses and the use of hints. It might be possible

that more complex proofs can be fully automated and hypothesis learning can be

reduced with these mechanisms.

Finally, the implementation of an integrated chaining and paramodulation prover

that allows combined efficient reasoning with inequalities and equations (cf. [2])

might drastically improve the proof search. The example of refinement shows that

automated reasoning with inequalities is perhaps more difficult, but surely not less

interesting than its equational counterpart.

Acknowledgements. We are most grateful to Mark Schaefer for placing his pow-

erful PC at our disposal for proof search. With our own slow machines we would

possibly not have met the deadline.

References

[1] http://www.dcs.shef.ac.uk/∼georg/ka.

[2] Bachmair, L. and H. Ganzinger, Ordered chaining calculi for first-order theories of transitive relations,
J. ACM 45 (1998), pp. 1007–1049.

[3] Back, R.-J., A method for refining atomicity in parallel algorithms, in: E. Odijk, M. Rem and J.-C. Syr,
editors, Parallel Architectures and Languages Europe, Lecture Notes in Computer Science 366 (1989),
pp. 199–216.

[4] Back, R.-J. and J. von Wright, “Refinement Calculus: A Systematic Introduction,” Graduate Texts in
Computer Science, Springer, 1998.

[5] Back, R.-J. and J. von Wright, Reasoning algebraically about loops, Acta Informatica 36 (1999), pp. 295–
334.

[6] Benson, D. B. and J. Tiuryn, Fixed points in free process algebras, Part I, Theoretical Computer Science
63 (1989), pp. 275–294.

[7] Conway, J. H., “Regular Algebra and Finite Machines,” Chapman & Hall, 1971.

[8] Desharnais, J., B. Möller and G. Struth, Kleene algebra with domain, ACM Trans. Computational
Logic 7 (2006), pp. 798–833.

[9] Ebert, M. and G. Struth, Diagram chase in relational system development, in: M. Minas, editor, 3rd
IEEE Workshop on Visual Languages and Formal Methods, Elecronic Notes in Theoretical Computer
Science 127 (2005), pp. 87–105.

[10] Höfner, P. and G. Struth, Automated reasoning in Kleene algebra, in: CADE 2007, Lecture Notes in
Computer Science, (to appear).

[11] Kozen, D., A completeness theorem for Kleene algebras and the algebra of regular events, Information
and Computation 110 (1994), pp. 366–390.

[12] McCune, W., Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/prover9.

[13] McIver, A. K., E. Cohen and C. C. Morgan, Using probabilistic Kleene algebra for protocol verification,
in: R. A. Schmidt, editor, Relations and Kleene Algebra in Computer Science, Lecture Notes in
Computer Science 4136 (2006), pp. 296–310.

[14] Möller, B. and G. Struth, Algebras of modal operators and partial correctness, Theoretical Computer
Science 351 (2006), pp. 221–239.

[15] Park, D., On the semantics of fair parallelism, in: D. Bjørner, editor, Abstract Software Specifications,
Lecture Notes in Computer Science 86 (1980), pp. 504–526.

19

Höfner and Struth

[16] Robinson, J. A. and A. Voronkov, editors, “Handbook of Automated Reasoning (in 2 volumes),” Elsevier
and MIT Press, 2001.

[17] Salomaa, A., Two complete axiom systems for the algebra of regular events, J. ACM 13 (1966), pp. 158–
169.

[18] Struth, G., Abstract abstract reduction, Journal of Logic and Algebraic Programming 66 (2006),
pp. 239–270.

[19] Takai, T. and H. Furusawa, Monodic tree Kleene algebra, in: R. A. Schmidt, editor, Relations and
Kleene Algebra in Computer Science, Lecture Notes in Computer Science 4136 (2006), pp. 402–416.

[20] Terese, editor, “Term Rewriting Systems,” Cambridge University Press, 2003.

[21] von Wright, J., From Kleene algebra to refinement algebra, in: E. A. Boiten and B. Möller, editors,
Mathematics of Program Construction, Lecture Notes in Computer Science 2386 (2002), pp. 233–262.

[22] von Wright, J., Towards a refinement algebra, Science of Computer Programming 51 (2004), pp. 23–45.

20

	Introduction
	Kleene Algebras
	Demonic Refinement Algebras
	Prover9 and Mace4
	Automating Demonic Refinement Algebras
	Basic Refinement Calculus
	Denesting in Detail
	Data Refinement
	Atomicity Refinement
	Atomicity Refinement Light
	Conclusion
	References

